1
|
Faraz M, Parmigiani A, Monkash N, Chen A. T-Cell Acute Lymphoblastic Leukemia/Lymphoma (T-ALL) With Negative Screening Immaturity Markers and Gamma-Delta Receptor Expression. Cureus 2024; 16:e57399. [PMID: 38694666 PMCID: PMC11062493 DOI: 10.7759/cureus.57399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is characterized by the combination of T-cell lineage and the presence of immaturity marker(s). Sometimes, the most common immaturity markers for initial flow cytometry screening in T-ALL may be negative, which can be a diagnostic pitfall. When a lack of common first-line immaturity markers is encountered in combination with gamma/delta T-cell receptor expression, a misdiagnosis of mature gamma-delta T-cell leukemia/lymphoma could be rendered. Here, we discuss two T-ALL cases with the absence of common flow cytometry immaturity markers and positive gamma/delta receptor expression.
Collapse
Affiliation(s)
- Maria Faraz
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, USA
| | - Anita Parmigiani
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, USA
| | - Nina Monkash
- Department of Radiology, Albany Medical Center, Albany, USA
| | - Anne Chen
- Department of Pathology & Immunology, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
2
|
Xiao H, Wang S, Tang Y, Li S, Jiang Y, Yang Y, Zhang Y, Han Y, Wu X, Zheng L, Li Y, Gao Y. Absence of terminal deoxynucleotidyl transferase expression in T-ALL/LBL accumulates chromosomal abnormalities to induce drug resistance. Int J Cancer 2023; 152:2383-2395. [PMID: 36757202 DOI: 10.1002/ijc.34465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
T-acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is a malignant neoplasm of immature lymphoblasts. Terminal deoxynucleotidyl transferase (TDT) is a template-independent DNA polymerase that plays an essential role in generating diversity for immunoglobulin genes. T-ALL/LBL patients with TDT- have a worse prognosis. However, how TDT- promotes the disease progression of T-ALL/LBL remains unknown. Here we analyzed the prognosis of T-ALL/LBL patients in Shanghai Children's Medical Center (SCMC) and confirmed that TDT- patients had a higher rate of recurrence and remission failure and worse outcomes. Cellular experiments demonstrated that TDT was involved in DNA damage repair. TDT knockout delayed DNA repair, arrested the cell cycle and decreased apoptosis to induce the accumulation of chromosomal abnormalities and tolerance to abnormal karyotypes. Our study demonstrated that the poor outcomes in TDT- T-ALL/LBL might be due to the drug resistance (VP16 and MTX) induced by chromosomal abnormalities. Our findings revealed novel functions and mechanisms of TDT in T-ALL/LBL and supported that hematopoietic stem cell transplantation (HSCT) might be a better choice for these patients.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Siqi Wang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yuejia Tang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Shanshan Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yufeng Jiang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yi Yang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yinwen Zhang
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yali Han
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Xiaoyu Wu
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Liang Zheng
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yanxin Li
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Yijin Gao
- Department of Hematology & Oncology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| |
Collapse
|
3
|
Eens S, Van Hecke M, Favere K, Tousseyn T, Guns PJ, Roskams T, Heidbuchel H. B-cell lymphoblastic lymphoma following intravenous BNT162b2 mRNA booster in a BALB/c mouse: A case report. Front Oncol 2023; 13:1158124. [PMID: 37197431 PMCID: PMC10183601 DOI: 10.3389/fonc.2023.1158124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
Unprecedented immunization campaigns have been rolled out worldwide in an attempt to contain the ongoing COVID-19 pandemic. Multiple vaccines were brought to the market, among two utilizing novel messenger ribonucleic acid technology. Despite their undisputed success in decreasing COVID-19-associated hospitalizations and mortality, various adverse events have been reported. The emergence of malignant lymphoma is one of such rare adverse events that has raised concern, although an understanding of the mechanisms potentially involved remains lacking. Herein, we present the first case of B-cell lymphoblastic lymphoma following intravenous high-dose mRNA COVID-19 vaccination (BNT162b2) in a BALB/c mouse. Two days following booster vaccination (i.e., 16 days after prime), at only 14 weeks of age, our animal suffered spontaneous death with marked organomegaly and diffuse malignant infiltration of multiple extranodal organs (heart, lung, liver, kidney, spleen) by lymphoid neoplasm. Immunohistochemical examination revealed organ sections positive for CD19, terminal deoxynucleotidyl transferase, and c-MYC, compatible with a B-cell lymphoblastic lymphoma immunophenotype. Our murine case adds to previous clinical reports on malignant lymphoma development following novel mRNA COVID-19 vaccination, although a demonstration of direct causality remains difficult. Extra vigilance is required, with conscientious reporting of similar cases and a further investigation of the mechanisms of action explaining the aforementioned association.
Collapse
Affiliation(s)
- Sander Eens
- Laboratory of Physiopharmacology, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- *Correspondence: Sander Eens,
| | - Manon Van Hecke
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Kasper Favere
- Laboratory of Physiopharmacology, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Thomas Tousseyn
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
| | - Tania Roskams
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, Genetics, Pharmacology and Physiopathology of Heart, Blood Vessels and Skeleton (GENCOR), University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
4
|
Elderdery AY, Alhamidi AH, Elkhalifa AME, Althobiti MM, Eltayeb Omer N, Alsugoor MH, Alsuhaymi N, Atebien EM, Hamza SMA, Alzahrani B, Alanazi F, Subbiah SK, Mok PL. Synthesis, Characterization, and Antimicrobial and Antiproliferative Effects of CuO-TiO 2-Chitosan-Escin Nanocomposites on Human Leukemic MOLT4 Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213753. [PMID: 36364538 PMCID: PMC9655830 DOI: 10.3390/nano12213753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/15/2022] [Accepted: 10/19/2022] [Indexed: 05/13/2023]
Abstract
Nanocomposites comprised of CuO-TiO2-chitosan-escin, which has adjustable physicochemical properties, provide a solution for therapeutic selectivity in cancer treatment. By controlling the intrinsic signaling primarily through the mitochondrial signaling pathway, we desired nanocomposites with enhanced anticancer activity by containing CuO-TiO2-chitosan-escin. The metal oxides CuO and TiO2, the natural polymer chitosan, and a phytochemical compound escin were combined to form CuO-TiO2-chitosan-escin nanocomposites. The synthesized nanocomposites were confirmed and characterized using FTIR spectroscopy, TEM, and UV-Vis absorption spectroscopy. A human leukemia cell line (MOLT-4) was used to assess the efficacy and selectivity of nanocomposites. Based on a cytotoxicity study, CuO-TiO2-chitosan-escin nanocomposites had inhibition concentrations (IC50) of 13.68, 8.9, and 7.14 µg/mL against human T lymphoblast cells after 24, 48, and 72 h of incubation, respectively. Compared with untreated MOLT-4 cells, CuO-TiO2-chitosan-escin nanocomposite-treated cells significantly increased (p < 0.05) caspase-3, -8, and -9 and decreased the levels of antioxidant enzymes GR, SOD, and GSH. Furthermore, MDA for lipid peroxidase and ROS levels significantly increased (p < 0.05) in the treated cells than in the untreated cells. Remarkably, CuO-TiO2-chitosan-escin nanocomposite-mediated control of cell cycles were mainly achieved through the activation of caspase-3, -8, and -9.
Collapse
Affiliation(s)
- Abozer Y. Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka 42421, Saudi Arabia
- Correspondence: (A.Y.E.); (P.L.M.)
| | - Abdulaziz H. Alhamidi
- Clinical Laboratory Sciences Department, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 13316, Saudi Arabia
| | - Maryam M. Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Shaqra 15572, Saudi Arabia
| | | | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Naif Alsuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Entesar M. Atebien
- Department of Clinical Laboratory Science, College of Applied Medical Science, King Saud University, Shaqra 15572, Saudi Arabia
| | - Siddiqa M. A. Hamza
- College of Medicine, Department of Pathology, Umm Alqura University Algunfuda, Mecca 24382, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Fehaid Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-AlQurayyat, Jouf University, Sakaka 42421, Saudi Arabia
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (A.Y.E.); (P.L.M.)
| |
Collapse
|
5
|
Tembhare PR, Chatterjee G, Khanka T, Ghogale S, Badrinath Y, Deshpande N, Panda D, Patkar NV, Narula G, Girase K, Verma S, Sanyal M, Sriram HN, Banavali S, Gujral S, Subramanian PG. Eleven‐marker 10‐color flow cytometric assessment of measurable residual disease for T‐cell acute lymphoblastic leukemia using an approach of exclusion. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:421-433. [DOI: 10.1002/cyto.b.21939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/16/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Prashant R. Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Sitaram Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Yajamanam Badrinath
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Devasis Panda
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Nikhil V. Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Gaurav Narula
- Department of Pediatric Oncology, Tata Memorial CenterTata Memorial Hospital, Parel Mumbai India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Shefali Verma
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Mahima Sanyal
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Harshini N. Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | - Shripad Banavali
- Department of Pediatric Oncology, Tata Memorial CenterTata Memorial Hospital, Parel Mumbai India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial CenterHBNI University Navi Mumbai India
| | | |
Collapse
|