1
|
Shan J, Li L, Du L, Yang P. Association of TBX21 gene polymorphisms and acute anterior uveitis risk in a Chinese population: A case-control study. Exp Eye Res 2023; 229:109417. [PMID: 36796535 DOI: 10.1016/j.exer.2023.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Copy number variations (CNVs) in TBX21 gene have been reported to be significantly and positively correlated with acute anterior uveitis (AAU). Our study was performed to further determine whether single nucleotide polymorphisms (SNPs) in TBX21 gene confer susceptibility to AAU in a Chinese population. In our case-control study, 420 AAU patients and 918 healthy controls were included. SNP genotyping was conducted via the MassARRAY™ iPLEX Gold platform. Association and haplotype analyses were performed via SPSS 23.0 and SHEsis software. No significant association was observed between two candidate SNPs of TBX21 gene (rs4794067, rs11657479) and susceptibility to AAU (Pc > 0.05). In stratification analysis, the result also showed no significant difference between the HLA-B27 positive AAU patients and non-typed healthy controls. Additionally, no association was detected between TBX21 haplotypes and AAU risk. In conclusion, the polymorphisms rs4794067 and rs11657479 in TBX21 gene did not confer disease susceptibility to AAU in a Chinese population.
Collapse
Affiliation(s)
- Jiankang Shan
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China; Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Lin Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China.
| | - Peizeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Ju Y, Wang J, Sun N, Tang Z, Gao H, Gu P, Ji J. Identification of immune hub genes participating in the pathogenesis and progression of Vogt-Koyanagi-Harada disease. Front Immunol 2022; 13:936707. [PMID: 35958546 PMCID: PMC9358976 DOI: 10.3389/fimmu.2022.936707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Vogt-Koyanagi-Harada (VKH) disease is an autoimmune inflammatory disorder characterized by bilateral granulomatous uveitis. The objective of this study was to identify immune hub genes involved in the pathogenesis and progression of VKH disease. Methods High throughput sequencing data were downloaded from the Gene Expression Omnibus (GEO) and an immune dataset was downloaded from ImmPort. Immune differentially expressed genes (DEGs) were obtained from their intersection in the GEO and ImmPort datasets. Immune hub genes for VKH disease were selected through differential expression analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO), protein-protein interaction (PPI) network, and clustering analyses. Confidence in the immune hub genes was subsequently validated using box plots and receiver operating characteristic (ROC) curves. Results A total of 254 DEGs were screened and after the intersection with ImmPort, 20 genes were obtained as immune DEGs. Functional enrichment analysis indicated that the key genes were mainly involved in several types of immune pathways (such as the lymphocyte mediated and leukocyte mediated immune responses, natural killer cell mediated cytotoxicity, and antigen binding) and immunodeficiency diseases. Following PPI network analysis, the top seven genes in cluster 1 were selected as potential immune hub genes in VKH. After evaluating the accuracy of the hub genes, one gene (GNLY) was excluded because its expression level was statistically similar in VKH patients and healthy controls. Finally, six immune hub genes, namely KLRC2, KLRC3 SH2D1B, GZMB, KIR2DL3, and KIR3DL2 were identified as playing important roles in the occurrence and development of VKH disease. Conclusion Six immune hub genes (KLRC2, KLRC3 SH2D1B, GZMB, KIR2DL3, and KIR3DL2) identified by our bioinformatics analyses may provide new diagnostic and therapeutic targets for VKH disease.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Na Sun
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Ping Gu, ; Jing Ji,
| | - Jing Ji
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Ping Gu, ; Jing Ji,
| |
Collapse
|
3
|
Shi W, Ye J, Shi Z, Pan C, Zhang Q, Lin Y, Luo Y, Su W, Zheng Y, Liu Y. Chromatin accessibility analysis reveals regulatory dynamics and therapeutic relevance of Vogt-Koyanagi-Harada disease. Commun Biol 2022; 5:506. [PMID: 35618758 PMCID: PMC9135711 DOI: 10.1038/s42003-022-03430-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/29/2022] [Indexed: 12/19/2022] Open
Abstract
The barrier to curing Vogt-Koyanagi-Harada disease (VKH) is thought to reside in a lack of understanding in the roles and regulations of peripheral inflammatory immune cells. Here we perform a single-cell multi-omic study of 166,149 cells in peripheral blood mononuclear cells from patients with VKH, profile the chromatin accessibility and gene expression in the same blood samples, and uncover prominent cellular heterogeneity. Immune cells in VKH blood are highly activated and pro-inflammatory. Notably, we describe an enrichment of transcription targets for nuclear factor kappa B in conventional dendritic cells (cDCs) that governed inflammation. Integrative analysis of transcriptomic and chromatin maps shows that the RELA in cDCs is related to disease complications and poor prognosis. Ligand-receptor interaction pairs also identify cDC as an important predictor that regulated multiple immune subsets. Our results reveal epigenetic and transcriptional dynamics in auto-inflammation, especially the cDC subtype that might lead to therapeutic strategies in VKH.
Collapse
Affiliation(s)
- Wen Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yuanting Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China. .,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.,Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| |
Collapse
|
4
|
Shu J, Su G, Zhang J, Liu Z, Chang R, Wang Q, Yang P. Analyses of circRNA and mRNA Profiles in Vogt-Koyanagi-Harada Disease. Front Immunol 2022; 12:738760. [PMID: 35003060 PMCID: PMC8727692 DOI: 10.3389/fimmu.2021.738760] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/03/2021] [Indexed: 01/26/2023] Open
Abstract
Recent studies revealed that circular RNAs (circRNAs) are important in numerous biological process and involved in autoimmune diseases. However, their role in Vogt-Koyanagi-Harada (VKH) disease, a classical autoimmune disease, is not yet known. This research aimed to study the expression profile of mRNAs, microRNAs (miRNAs) and circRNAs and investigate the influence of circRNAs on the pathogenesis of VKH disease. We identified circRNAs, miRNAs, and mRNAs expression profiles in CD4+ T cells between 4 VKH patients and 3 healthy controls using the whole-transcriptome sequencing (RNA-seq) technique. We discovered that a total of 5088 mRNAs, 451 circRNAs and 433 miRNAs were differently expressed. The GO and KEGG pathway enrichment analyses were performed for significantly differentially expressed circRNAs and mRNAs. GSEA was conducted for all mRNAs. The functional enrichment suggested that the inflammatory response, the adaptive immune response, NF-kappa B signaling pathway, Th17 cell differentiation, Th1 and Th2 cell differentiation and T cell receptor signaling pathway were associated with VKH disease. In addition, based on the immune-related genes we screened, the circRNA-miRNA-mRNA ceRNA network was analyzed and constructed. Ten differently expressed mRNAs (LAT, ZAP70, ITK, ICOS, RASGRP1, PAG1, PLCG1, PRKCQ, LCK, CARD11) and 5 differently expressed circRNAs (hsa_circ_0033144, hsa_circ_0000233, hsa_circ_0000396, hsa_circ_0001924, hsa_circ_0001320) were selected to be validated by Real-time qPCR (RT-qPCR). The results of RT-qPCR turned out to be consistent with RNA-seq data. Further analysis showed that hsa_circ_0001320 and hsa_circ_0001924 may serve as crucial candidate marker genes of VKH disease. These results reveal that circRNAs may have a crucial immunomodulatory function in the pathophysiological process of VKH disease.
Collapse
Affiliation(s)
- Jia Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
5
|
Su G, Zhong Z, Zhou Q, Du L, Ye Z, Li F, Zhuang W, Wang C, Liang L, Ji Y, Cao Q, Wang Q, Chang R, Tan H, Yi S, Li Y, Feng X, Liao W, Zhang W, Shu J, Tan S, Xu J, Pan S, Li H, Shi J, Chen Z, Zhu Y, Ye X, Tan X, Zhang J, Liu Z, Huang F, Yuan G, Pang T, Liu Y, Ding J, Gao Y, Zhang M, Chi W, Liu X, Wang Y, Chen L, Meguro A, Takeuchi M, Mizuki N, Ohno S, Zuo X, Kijlstra A, Yang P. A genome-wide association study in Chinese identifies novel risk loci for Behcet's uveitis. Arthritis Rheumatol 2021; 74:671-681. [PMID: 34652073 DOI: 10.1002/art.41998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/06/2021] [Accepted: 10/05/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To explore susceptibility loci associated with uveitis in Behcet's disease (BD). METHODS We conducted a genome-wide association study (GWAS) primarily involving 978 BD uveitis cases and 4388 controls and a replication study of 953 BD uveitis cases and 2129 controls in the Chinese population. Luciferase reporter analysis and Chromatin immunoprecipitation (ChIP) assay were performed to explore the functional role of susceptibility genetic variants nearby ZMIZ1. RESULTS Three independent HLA alleles (HLA-B51, HLA-A26 and HLA-C0704) were identified in a genome-wide association with BD uveitis. In the non-HLA region, besides confirming 7 previously reported loci, we identified 22 novel susceptibility variants located in 16 loci. Meta-analysis of the Chinese cohort involving 1931 cases and 6517 controls and a published Japanese cohort of 611 cases and 737 controls showed genome-wide significant associations with ZMIZ1, RPS6KA4, IL10RA, SIPA1-FIBP-FOSL1 and VAMP1. Functional experiments demonstrated that genetic variants of ZMIZ1 were associated with an enhanced transcriptional activity and an increased expression of ZMIZ1. CONCLUSIONS This GWAS study identified a novel set of genetic variants that are associated with susceptibility to uveitis in BD. These findings enriched our understanding of the contribution of genetic factors to the disease.
Collapse
Affiliation(s)
- Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qingyun Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Liping Du
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Fuzhen Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Zhuang
- Department of Ophthalmology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Chaokui Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Liang Liang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yan Ji
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qingfeng Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Rui Chang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Handan Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shenglan Yi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yujing Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaojie Feng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Weiting Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wanyun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jia Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shiyao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Su Pan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hongxi Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Shi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhijun Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Ying Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xingsheng Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiao Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Fanfan Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Tingting Pang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizong Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiadong Ding
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingnan Gao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meifen Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun, China
| | - Yuqin Wang
- The Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Chen
- The Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Akira Meguro
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masaki Takeuchi
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shigeaki Ohno
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Xianbo Zuo
- Department of Pharmacy, Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China.,Institute of Dermatology & Department of Dermatology at No. 1 Hospital, Anhui Medical University, Hefei, Anhui, 230022, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
6
|
Vega-Tapia F, Bustamante M, Valenzuela RA, Urzua CA, Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:658514. [PMID: 34041239 PMCID: PMC8141569 DOI: 10.3389/fcell.2021.658514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Bustamante
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Núcleo de Ciencias Biológicas, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department de Health Science, Universidad de Aysén, Coyhaique, Chile.,Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Ophthalmology, University of Chile, Santiago, Chile.,Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Egbeto IA, Garelli CJ, Piedra-Mora C, Wong NB, David CN, Robinson NA, Richmond JM. Case Series: Gene Expression Analysis in Canine Vogt-Koyanagi-Harada/Uveodermatologic Syndrome and Vitiligo Reveals Conserved Immunopathogenesis Pathways Between Dog and Human Autoimmune Pigmentary Disorders. Front Immunol 2020; 11:590558. [PMID: 33384688 PMCID: PMC7770226 DOI: 10.3389/fimmu.2020.590558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Vogt-Koyanagi-Harada syndrome (VKH) and vitiligo are autoimmune diseases that target melanocytes. VKH affects several organs such as the skin, hair follicle, eyes, ears, and meninges, whereas vitiligo is often limited to the skin and mucosa. Many studies have identified immune genes, pathways and cells that drive the pathogeneses of VKH and vitiligo, including interleukins, chemokines, cytotoxic T-cells, and other leukocytes. Here, we present case studies of 2 canines with VKH and 1 with vitiligo, which occurred spontaneously in client-owned companion dogs. We performed comparative transcriptomics and immunohistochemistry studies on lesional skin biopsies from these cases in order to determine if the immunopathogenesis of autoimmune responses against melanocytes are conserved. In dogs, we found enrichment of T cell gene signatures, with upregulation of IFNG, TNF, PRF1, IL15, CTSW, CXCL10, and CCL5 in both VKH and vitiligo in dogs compared to healthy controls. Similar findings were reported in humans, suggesting that these genes play a role in the pathogenesis of spontaneous VKH and vitiligo. T cell-associated genes, including FOXP3 and TBX21, were enriched, while IGFBP5, FOXO1, and PECAM1 were decreased compared to healthy controls. Further, we identified TGFB3, SFRP2, and CXCL7 as additional potential drivers of autoimmune pigmentary disorders. Future studies exploring the immunopathogenesis of spontaneous autoimmunity will expand our understanding of these disorders, and will be useful in developing targeted therapies, repurposing drugs for veterinary and human medicine, and predicting disease prognosis and treatment response.
Collapse
Affiliation(s)
- Ista A Egbeto
- Department of Dermatology, UMass Medical School, Worcester, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Colton J Garelli
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| | - Cesar Piedra-Mora
- Pathology Department, Tufts Cummings School of Veterinary Medicine, Grafton, MA, United States
| | - Neil B Wong
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| | | | - Nicholas A Robinson
- Pathology Department, Tufts Cummings School of Veterinary Medicine, Grafton, MA, United States
| | - Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, MA, United States
| |
Collapse
|
8
|
Gilbert RM, Zhang X, Sampson RD, Ehrenstein MR, Nguyen DX, Chaudhry M, Mein C, Mahmud N, Galatowicz G, Tomkins-Netzer O, Calder VL, Lightman S. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T-Regulatory Cell Polarized Towards T-bet and TIGIT. Front Immunol 2018; 9:907. [PMID: 29774027 PMCID: PMC5943505 DOI: 10.3389/fimmu.2018.00907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background Non-infectious uveitis can cause chronic relapsing and remitting ocular inflammation, which may require high dose systemic immunosuppression to prevent severe sight loss. It has been classically described as an autoimmune disease, mediated by pro-inflammatory Th1 and Th17 T-cell subsets. Studies suggest that natural immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs) are involved in resolution of inflammation and may be involved in the maintenance of clinical remission. Objective To investigate whether there is a peripheral blood immunoregulatory phenotype associated with clinical remission of sight-threatening non-infectious uveitis by comparing peripheral blood levels of Treg, Th1, and Th17, and associated DNA methylation and cytokine levels in patients with active uveitic disease, control subjects and patients (with previously active disease) in clinical remission induced by immunosuppressive drugs. Methods Isolated peripheral blood mononuclear cells (PBMC) from peripheral blood samples from prospectively recruited subjects were analyzed by flow cytometry for CD3, CD4, FoxP3, TIGIT, T-bet, and related orphan receptor γt. Epigenetic DNA methylation levels of FOXP3 Treg-specific demethylated region (TSDR), FOXP3 promoter, TBX21, RORC2, and TIGIT loci were determined in cryopreserved PBMC using a next-generation sequencing approach. Related cytokines were measured in blood sera. Functional suppressive capacity of Treg was assessed using T-cell proliferation assays. Results Fifty patients with uveitis (intermediate, posterior, and panuveitis) and 10 control subjects were recruited. The frequency of CD4+CD25+FoxP3+ Treg, TIGIT+ Treg, and T-bet+ Treg and the ratio of Treg to Th1 were significantly higher in remission patients compared with patients with active uveitic disease; and TIGIT+ Tregs were a significant predictor of clinical remission. Treg from patients in clinical remission demonstrated a high level of in vitro suppressive function compared with Treg from control subjects and from patients with untreated active disease. PBMC from patients in clinical remission had significantly lower methylation levels at the FOXP3 TSDR, FOXP3 promoter, and TIGIT loci and higher levels at RORC loci than those with active disease. Clinical remission was also associated with significantly higher serum levels of transforming growth factor β and IL-10, which positively correlated with Treg levels, and lower serum levels of IFNγ, IL-17A, and IL-22 compared with patients with active disease. Conclusion Clinical remission of sight-threatening non-infectious uveitis has an immunoregulatory phenotype characterized by upregulation of peripheral Treg, polarized toward T-bet and TIGIT. These findings may assist with individualized therapy of uveitis, by informing whether drug therapy has induced phenotypically stable Treg associated with long-term clinical remission.
Collapse
Affiliation(s)
- Rose M Gilbert
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Xiaozhe Zhang
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Robert D Sampson
- Flow Cytometry Core Facility, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Michael R Ehrenstein
- Division of Medicine, Centre for Rheumatology, University College London (UCL), London, United Kingdom
| | - Dao X Nguyen
- Division of Medicine, Centre for Rheumatology, University College London (UCL), London, United Kingdom
| | - Mahid Chaudhry
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Charles Mein
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nadiya Mahmud
- Genome Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Grazyna Galatowicz
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Oren Tomkins-Netzer
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Virginia L Calder
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Sue Lightman
- Ocular Immunology, Institute of Ophthalmology, University College London (UCL), London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
9
|
Couto C, Schlaen A, Frick M, Khoury M, Lopez M, Hurtado E, Goldstein D. Adalimumab Treatment in Patients with Vogt–Koyanagi–Harada Disease. Ocul Immunol Inflamm 2016; 26:485-489. [DOI: 10.1080/09273948.2016.1236969] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Cristóbal Couto
- Uveitis Clinics, Department of Ophthalmology, University of Buenos Aires, Argentina
| | - Ariel Schlaen
- Uveitis Clinics, Department of Ophthalmology, University of Buenos Aires, Argentina
| | - Mercedes Frick
- Uveitis Clinics, Department of Ophthalmology, University of Buenos Aires, Argentina
| | - Marina Khoury
- Uveitis Clinics, Department of Ophthalmology, University of Buenos Aires, Argentina
| | - Matilde Lopez
- Uveitis Clinics, Department of Ophthalmology, University of Buenos Aires, Argentina
| | - Erika Hurtado
- Uveitis Clinics, Department of Ophthalmology, University of Buenos Aires, Argentina
| | - Debra Goldstein
- Uveitis Service, Northwestern Memorial Hospital, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Du L, Kijlstra A, Yang P. Vogt-Koyanagi-Harada disease: Novel insights into pathophysiology, diagnosis and treatment. Prog Retin Eye Res 2016; 52:84-111. [PMID: 26875727 DOI: 10.1016/j.preteyeres.2016.02.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 02/07/2023]
Abstract
Vogt-Koyanagi-Harada (VKH) disease is one of the major vision-threatening diseases in certain populations, such as Asians, native Americans, Hispanics and Middle Easterners. It is characterized by bilateral uveitis that is frequently associated with neurological (meningeal), auditory, and integumentary manifestations. Although the etiology and pathogenesis of VKH disease need to be further elucidated, it is widely accepted that the clinical manifestations are caused by an autoimmune response directed against melanin associated antigens in the target organs, i.e. the eye, inner ear, meninges and skin. In the past decades, accumulating evidence has shown that genetic factors, including VKH disease specific risk factors (HLA-DR4) and general risk factors for immune mediated diseases (IL-23R), dysfunction of immune responses, including the innate and adaptive immune system and environmental triggering factors are all involved in the development of VKH disease. Clinically, the criteria of diagnosis for VKH disease have been further improved by the employment of novel imaging techniques for the eye. For the treatment, early and adequate corticosteroids are still the mainstream regime for the disease. However, immunosuppressive and biological agents have shown benefit for the treatment of VKH disease, especially for those patients not responding to corticosteroids. This review is focused on our current knowledge of VKH disease, especially for the diagnosis, pathogenesis (genetic factors and immune mechanisms), ancillary tests and treatment. A better understanding of the role of microbiome composition, genetic basis and ongoing immune processes along with the development of novel biomarkers and objective quantitative assays to monitor intraocular inflammation are needed to improve current management of VKH patients.
Collapse
Affiliation(s)
- Liping Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Limburg, The Netherlands; Wageningen UR Livestock Research, Wageningen, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China.
| |
Collapse
|
11
|
Copy number variants and genetic polymorphisms in TBX21, GATA3, Rorc, Foxp3 and susceptibility to Behcet's disease and Vogt-Koyanagi-Harada syndrome. Sci Rep 2015; 5:9511. [PMID: 25873156 PMCID: PMC4397537 DOI: 10.1038/srep09511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/05/2015] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the role of genetic variants including single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) of TBX21, GATA3, Rorc and Foxp3 genes in Behcet's disease (BD) and Vogt-Koyanagi-Harada (VKH) syndrome in a Chinese Han population. Genotyping of 25 SNPs was performed by iPLEX system (Sequenom) or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). TaqMan real time PCR was used to assess CNVs. The expression of Rorc and Foxp3 were examined by real-time PCR and cytokine production was measured by ELISA. High Rorc CNV was associated with the susceptibility to BD (P = 8.99 × 10(-8), OR = 3.0), and low Foxp3 CNV predisposed to BD in female patients (P = 1.92 × 10(-5), OR = 3.1). CNVs for the investigated genes were not altered in VKH syndrome. Further functional studies demonstrated that the relative mRNA expression levels of Rorc were increased in individuals with high Rorc copy number, but not for Foxp3. Increased production of IL-1β and IL-6 was found in individuals carrying a high CNV of Rorc. Our study showed that high CNVs of Rorc and low CNVs of Foxp3 confer risk for BD but not for VKH syndrome. The tested 25 SNPs in TBX21, GATA3, Rorc and Foxp3 did not associate with BD and VKH syndrome.
Collapse
|
12
|
Chen W, Lin H, Zhong X, Liu Z, Geng Y, Xie C, Chen W. Discrepant expression of cytokines in inflammation- and age-related cataract patients. PLoS One 2014; 9:e109647. [PMID: 25303043 PMCID: PMC4193817 DOI: 10.1371/journal.pone.0109647] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Inflammatory cataracts secondary to Behcet's disease (BD) or Vogt-Koyanagi-Harada disease (VKH) are thought to result from a pathological dysregulation of cytokines that is different from that of age-related (AR) cataracts. However, little is known about the function of cytokines in the development of inflammatory cataracts. The purpose of this study was to identify possible differences in cytokine expression in inflammation- and age-related cataract patients. METHODS Analysis techniques involving the concomitant use of a cocktail of antibody-coated non-magnetic beads were used to determine the cytokine expression profiles of BD, VKH and AR cataract patients. Furthermore, anterior chamber aqueous flares and inflammatory cells were quantitatively measured with a laser flare cell meter (LFCM). RESULTS The expressions of interleukin-2 (IL-2), IL-4, IL-6, IL-10, IL-17A, and interferon-γ (IFN-γ) were analyzed in aqueous humor (AqH), phytohemagglutinin (PHA)-stimulated and non-PHA-stimulated cultures of peripheral blood mononuclear cells (PBMCs) from the three types of cataract patients. IL-6 and IFN-γ were identified above the detection limits, but, among the BD and VKH cataract patients, only the levels of IL-6 were significantly higher in both the AqH and PBMC non-PHA cultures compared with the levels observed in the AR cataract patients. In contrast, IFN-γ was significantly elevated in the AqH of the BD cataract patients compared with the VKH and AR cataract patients. In the PHA-stimulated PBMC cultures, IL-2, IFN-γ, IL-6, and IL-17A were significantly increased, and the IL-6 level was significantly higher in the VKH patients than in the BD and AR cataract patients. The correlation analyses of the cytokines and inflammation indexes of the AqH obtained with the LFCM revealed that only IL-6 was significantly correlated with the inflammation index. CONCLUSION Distinct expression profiles of cytokines and the correlations of these profiles with in vivo inflammatory indexes for inflammatory and AR cataract patients were identified.
Collapse
Affiliation(s)
- Wan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojian Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaochuan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Geng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chufang Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Abad S, Wieërs G, Colau D, Wildmann C, Delair E, Dhote R, Brézin AP, Kawakami Y, Coulie PG, van der Bruggen P. Absence of recognition of common melanocytic antigens by T cells isolated from the cerebrospinal fluid of a Vogt-Koyanagi-Harada patient. Mol Vis 2014; 20:956-69. [PMID: 24991188 PMCID: PMC4077848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Vogt-Koyanagi-Harada (VKH) syndrome is an autoimmune disease characterized by inaugural uveomeningitidis and hearing loss and at late stages a depigmentation in eyes and skin. Melanocytes are the cells common to the four affected tissues, namely eye, brain, inner ear, and skin. Melanocytes are therefore considered as the source of self-antigens. The melanocytic proteins tyrosinase-related protein-1 (TRP1), TRP2, tyrosinase, and gp100 have been proposed as the proteins targeted by autoreactive T cells from VKH patients bearing human leukocyte antigen (HLA)-DRB1*04:05, the HLA allele classically associated with VKH disease. The objective of this work was to determine the antigens recognized by a large number of potentially autoreactive CD4 T lymphocytes obtained from the cerebrospinal fluid of one VKH patient who did not express HLA-DRB1*04:05. METHODS T cells were isolated from the cerebrospinal fluid of a newly diagnosed HLA-DRB1*14:01,*15:03;-DPB1*01:01,*04:02 patient in the acute phase of the VKH disease and cloned by limiting dilution. Each of the 107 T cell clones, of which 90% were CD4(+), was tested for its ability to secrete cytokines upon contact with autologous antigen-presenting cells loaded with either of the melanocytic proteins TRP1, TRP2, tyrosinase, gp100, Melan-A and KU-MEL-1. The sensitivity of our recombinant bacteria-based approach was validated with a CD4 T cell clone with known antigen specificity. The ability of each of the 107 clones to secrete cytokines upon nonspecific stimulation was verified. RESULTS None of the 107 T cell clones was able to secrete tumor necrosis factor-α, interferon-γ, interleukin (IL)-5, or IL-17 upon contact with autologous B cells loaded with any of the six common melanocytic proteins. Nine clones secreted high-level IL-17 upon stimulation with beads coated with antibodies. CONCLUSIONS The self-antigens that triggered the VKH disease in this patient probably derive from proteins other than the six melanocytic proteins mentioned above. Further study of antigens that are recognized by potential autoreactive T cells from VKH patients is likely to benefit from testing a broader set of melanocytic proteins.
Collapse
Affiliation(s)
- Sébastien Abad
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de recherche clinique et thérapeutique, Bobigny, France; Service de Médecine Interne, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Grégoire Wieërs
- Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, 74 av. Hippocrate, Brussels, Belgium
| | - Didier Colau
- Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, 74 av. Hippocrate, Brussels, Belgium
| | - Claude Wildmann
- Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, 74 av. Hippocrate, Brussels, Belgium
| | - Emmanuelle Delair
- Université Paris Descartes, Faculté de Médecine, AP-HP, Groupe Hospitalier Cochin-Hôtel-Dieu, Paris, France
| | - Robin Dhote
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de recherche clinique et thérapeutique, Bobigny, France; Service de Médecine Interne, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France
| | - Antoine P. Brézin
- Université Paris Descartes, Faculté de Médecine, AP-HP, Groupe Hospitalier Cochin-Hôtel-Dieu, Paris, France
| | - Yukata Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Pierre G. Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research and de Duve Institute, Université catholique de Louvain, 74 av. Hippocrate, Brussels, Belgium
| |
Collapse
|
14
|
Sun M, Yang P, Du L, Yang Y, Ye J. The role of interleukin-1 receptor-associated kinases in Vogt-Koyanagi-Harada disease. PLoS One 2014; 9:e93214. [PMID: 24690905 PMCID: PMC3972217 DOI: 10.1371/journal.pone.0093214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/03/2014] [Indexed: 12/14/2022] Open
Abstract
Purpose To explore whether IRAK1 and IRAK4 are involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease. Methods Thirty-nine VKH patients and thirty-two healthy controls were included in this study. The mRNA levels of IRAK1 and IRAK4 from active VKH patients, inactive VKH patients, and normal controls in peripheral blood mononuclear cells (PBMCs) were detected using real-time quantitative PCR. CD4+T cells were purified from PBMCs obtained from active VKH patients and normal controls. The effect of IRAK1/4 inhibition on CD4+T cell proliferation following stimulation with IL-18 or IL-1β was measured using a modified MTT assay. CD4+T cell expression of IFN-γ and IL-17 were detected by flow cytometry (FCM) and enzyme-linked immunosorbent assay (ELISA). The effect of IRAK1/4 inhibition on NF-κB, STAT1, and STAT3 activation was detected by FCM. Results The mRNA levels of IRAK1 and IRAK4 were both significantly increased in active VKH patients compared to inactive VKH patients and healthy controls. No difference in the IRAK1 or IRAK4 mRNA level could be detected between inactive patients and healthy controls. After incubation with IRAK1/4 inhibitor, the proliferation of CD4+T cells was inhibited both in the active VKH patients and in the healthy controls. IRAK1/4 inhibition was also associated with a decreased expression of IFN-γ and IL-17. Phosphorylation of NF-κB, STAT1, and STAT3 in CD4+T from healthy controls was significantly decreased after inhibition of IRAK1/4. Conclusions High mRNA levels of IRAK1 and IRAK4 correlated with VKH disease activity. IRAK1 and IRAK4 play a role in the activation and proliferation of CD4+T cells and the higher expression observed in VKH may contribute to the pathogenesis of this blinding condition.
Collapse
Affiliation(s)
- Min Sun
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Third Military Medical University, Chongqing, P.R. China
- The First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, P. R. China
| | - Peizeng Yang
- The First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, P. R. China
- * E-mail: (PY); (JY)
| | - Liping Du
- The First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, P. R. China
| | - Yan Yang
- The First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, P. R. China
| | - Jian Ye
- Department of Ophthalmology, Research Institute of Surgery & Daping Hospital, Third Military Medical University, Chongqing, P.R. China
- * E-mail: (PY); (JY)
| |
Collapse
|
15
|
Schewitz-Bowers LP, Lee RWJ, Dick AD. Immune mechanisms of intraocular inflammation. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.09.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Xu M, Wang C, Tian Y, Kijlstra A, Yang P. Inhibition of Proinflammatory Cytokine by IL-25 in Vogt-Koyanagi-Harada Syndrome. Ocul Immunol Inflamm 2013; 22:294-9. [DOI: 10.3109/09273948.2013.854391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Yi X, Yang P, Sun M, Yang Y, Li F. Decreased 1,25-Dihydroxyvitamin D3 level is involved in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease. Mol Vis 2011; 17:673-9. [PMID: 21403851 PMCID: PMC3056125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/02/2011] [Indexed: 12/04/2022] Open
Abstract
PURPOSE 1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has recently been found to be involved in the development of autoimmune diseases. This study was to investigate the expression and potential role of 1,25(OH)(2)D(3) in the pathogenesis of Vogt-Koyanagi-Harada (VKH) disease. METHODS Blood samples were obtained from VKH patients and healthy individuals. Serum 1,25(OH)(2)D(3) levels were measured using ELISA. Peripheral blood mononuclear cells (PBMCs) or cluster of differentiation (CD) 4(+) T cells were cultured with or without 1,25(OH)(2)D(3) in the presence of anti-CD3 and anti-CD28 for the measurement of cell proliferation and cytokines. The cell proliferation was detected using the Cell Counting Kit. The levels of interleukin (IL)-17 and interferon (IFN)-γ levels in the supernatants of PBMCs or CD4(+) T cells were detected by ELISA. RESULTS 1,25(OH)(2)D(3) was significantly decreased in the serum of active VKH patients as compared with inactive VKH patients and controls. It significantly inhibited PBMCs proliferation and CD4(+) T cell proliferation. It was also able to significantly inhibit the production of IL-17 and IFN-γ by both PBMCs and CD4(+) T cells from VKH patients and controls. CONCLUSIONS These findings suggest that decreased expression of 1,25(OH)(2)D(3) may be involved in the development of VKH disease. 1,25(OH)(2)D(3) may be potentially used in the treatment of this disease.
Collapse
Affiliation(s)
- Xianglong Yi
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Min Sun
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yan Yang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Fuzhen Li
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
18
|
Mao L, Yang P, Hou S, Li F, Kijlstra A. Label-free proteomics reveals decreased expression of CD18 and AKNA in peripheral CD4+ T cells from patients with Vogt-Koyanagi-Harada syndrome. PLoS One 2011; 6:e14616. [PMID: 21297967 PMCID: PMC3030555 DOI: 10.1371/journal.pone.0014616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/03/2011] [Indexed: 01/29/2023] Open
Abstract
Vogt-Koyanagi-Harada (VKH) syndrome is a systemic autoimmune disease. CD4+ T cells have been shown to be involved in autoimmune diseases including VKH syndrome. To screen aberrantly expressed membrane proteins in CD4+ T cell from patients with active VKH syndrome, blood samples were taken from five patients with active VKH syndrome and five healthy individuals. A label-free quantitative proteomic strategy was used to identify the differently expressed proteins between the two groups. The results revealed that the expression of 102 peptides was significantly altered (p<0.05) between two groups and matched amino acid sequences of proteins deposited in the international protein index (ipi.HUMAN.v3.36.fasta). The identified peptides corresponded to 64 proteins, in which 30 showed more than a 1.5-fold difference between the two groups. The decreased expression of CD18 and AKNA transcription factor (AKNA), both being three-fold lower than controls in expression identified by the label-free method, was further confirmed in an additional group of five active VKH patients and six normal individuals using the Western blot technique. A significantly decreased expression of CD18 and AKNA suggests a role for both proteins in the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Liming Mao
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peizeng Yang
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- * E-mail:
| | - Shengping Hou
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Fuzhen Li
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Aize Kijlstra
- The Department of Ophthalmology, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
19
|
Liu X, Yang P, Lin X, Ren X, Zhou H, Huang X, Chi W, Kijlstra A, Chen L. Inhibitory effect of Cyclosporin A and corticosteroids on the production of IFN-γ and IL-17 by T cells in Vogt–Koyanagi–Harada syndrome. Clin Immunol 2009; 131:333-42. [DOI: 10.1016/j.clim.2008.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/13/2008] [Accepted: 12/16/2008] [Indexed: 11/26/2022]
|
20
|
Abstract
PURPOSE Vogt-Koyanagi-Harada syndrome is a bilateral, chronic, diffuse granulomatous panuveitis frequently associated with neurological, auditory, and integumentary manifestations. It is also one of the most common forms of uveitis among pigmented races including Chinese patients. METHODS This article reviews the current developments of Vogt-Koyanagi-Harada syndrome, including epidemiology, etiology, clinical features, observational techniques, genetics, treatment, and prognosis. RESULTS Increasing reports have been published to describe the clinical features of Vogt-Koyanagi-Harada syndrome in various ethnic populations from different parts of the world. In spite of tremendous progress in laboratory and clinical research, the etiology of Vogt-Koyanagi-Harada syndrome is still not completely known. Numerous studies indicate an autoimmune nature for this disease. A recent study has shown that Th17, a new subset of T cell, plays an important role in the initiation and maintenance of this disease. Early and aggressive systemic corticosteroids are still the mainstay of initial therapy for Vogt-Koyanagi-Harada syndrome. However, nonsteroid immunomodulatory therapy, including cyclosporine, chlorambucil, cyclophosphamide, and azathioprine have brought out encouraging results. Improved visual outcomes in patients with Vogt-Koyanagi-Harada syndrome in recent years have been reported when compared with decades ago, presumably due to the more aggressive use of immunosuppressive agents. CONCLUSION Although the prognosis for VKH syndrome was greatly improved, future prospective, controlled, multi-center studies are needed to determine the optimal treatment regime for this disease. The IL17/23 pathway may provide a novel therapeutic target to control inflammation in VKH syndrome.
Collapse
Affiliation(s)
- Wang Fang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China.
| | | |
Collapse
|
21
|
Montero JA, Sanchis ME, Fernandez-Munoz M. Vogt-Koyanagi-Harada Syndrome in a Case of Multiple Sclerosis. J Neuroophthalmol 2007; 27:36-40. [PMID: 17414871 DOI: 10.1097/wno.0b013e3180325d84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 34-year-old woman in whom multiple sclerosis (MS) had been diagnosed 2 years earlier developed progressive bilateral visual loss associated with peripapillary exudative retinal detachment and other features of Vogt-Koyanagi-Harada (VKH) syndrome. She was treated with corticosteroid pulses and interferon beta-1A with visual acuity improvement and resolution of the retinal detachment. This is the first reported case of VKH syndrome in a patient with MS. The combination of VKH syndrome and MS suggests a common autoimmune pathogenesis.
Collapse
Affiliation(s)
- Javier A Montero
- VISSUM, Instituto Oftalmológico de Alicante, Retina Unit, Alicante, Spain.
| | | | | |
Collapse
|
22
|
Bibliography. Current world literature. Neuro-ophthalmology. Curr Opin Ophthalmol 2006; 17:574-5. [PMID: 17065928 DOI: 10.1097/icu.0b013e32801121a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Li B, Yang P, Chu L, Zhou H, Huang X, Zhu L, Kijlstra A. T-bet expression in the iris and spleen parallels disease expression during endotoxin-induced uveitis. Graefes Arch Clin Exp Ophthalmol 2006; 245:407-13. [PMID: 16896914 DOI: 10.1007/s00417-006-0385-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/27/2006] [Accepted: 05/30/2006] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND T lymphocytes have been implicated in the development of endotoxin-induced uveitis (EIU). T-bet is a Th1 cell-specific transcription factor that is involved in differentiation and effector functions. The aim of this study was to investigate kinetics of T-bet expression at the mRNA and protein levels during EIU using real-time PCR and whole-mount immunohistochemistry. METHODS A single footpad injection of 200 mug of lipopolysaccharide (LPS) was administered to male Wistar rats in order to induce EIU. Clinical changes were followed by slit-lamp examination. The expression of T-bet mRNA in the spleen was evaluated 0, 8, 16, 24, 48, and 96 h after LPS injection using real-time PCR. Immunohistochemistry was performed on the iris whole-mounts as well as on frozen sections of the spleen to evaluate T-bet protein expression. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed on the iris whole-mounts to assay apoptotic cells. RESULTS Uveitis was observed in all rats that received LPS. T-bet(+) cells and TUNEL(+) cells in the iris whole-mounts showed a similar pattern in cell number and distribution and both types of cells were observed at 8 h, significantly increased 24 h, and decreased 48 h after LPS injection. T-bet expression at both the mRNA and protein levels in spleen also paralleled ocular inflammation. It was weakly detectable after 0 h, increased after 8 h (index 1.3, T-bet(+) cells OD 17.43+/-2.15), reached its peak after 24 h (index 4.00, OD 53.52+/-4.00), and decreased 48 h following LPS injection (index 1.38, OD 25.75+/-2.45). CONCLUSIONS The results show that T-bet expression in both the iris and the spleen, and in apoptotic cells in the iris parallel the severity of intraocular inflammation after systemic LPS administration. These results suggest that T-bet may play a significant role in the dynamics of EIU.
Collapse
Affiliation(s)
- Bing Li
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|