1
|
Himmelberg MM, Winawer J, Carrasco M. Stimulus-dependent contrast sensitivity asymmetries around the visual field. J Vis 2020; 20:18. [PMID: 32986805 PMCID: PMC7533736 DOI: 10.1167/jov.20.9.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022] Open
Abstract
Asymmetries in visual performance at isoeccentric locations are well-documented and functionally important. At a fixed eccentricity, visual performance is best along the horizontal, intermediate along the lower vertical, and poorest along the upper vertical meridian. These performance fields are pervasive across a range of visual tasks, including those mediated by contrast sensitivity. However, contrast performance fields have not been characterized with a systematic manipulation of stimulus spatial frequency, eccentricity, and size; three parameters that constrain contrast sensitivity. Further, individual differences in performance fields measurements have not been assessed. Here, we use an orientation discrimination task to characterize the pattern of contrast sensitivity across four isoeccentric locations along the cardinal meridians, and to examine whether and how this asymmetry pattern changes with systematic manipulation of stimulus spatial frequency (4 cpd to 8 cpd), eccentricity (4.5 degrees to 9 degrees), and size (3 degrees visual angle to 6 degrees visual angle). Our data demonstrate that contrast sensitivity is highest along the horizontal, intermediate along the lower vertical, and poorest along the upper vertical meridian. This pattern is consistent across stimulus parameter manipulations, even though they cause profound shifts in contrast sensitivity. Eccentricity-dependent decreases in contrast sensitivity can be compensated for by scaling stimulus size alone. Moreover, we find that individual variability in the strength of performance field asymmetries is consistent across conditions. This study is the first to systematically and jointly manipulate, and compare, contrast performance fields across spatial frequency, eccentricity, and size, and to address individual variability in performance fields.
Collapse
Affiliation(s)
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
2
|
Nizawa T, Baba T, Kitahashi M, Oshitari T, Yamamoto S. Different fixation targets affect retinal sensitivity obtained by microperimetry in normal individuals. Clin Ophthalmol 2017; 11:2011-2015. [PMID: 29180846 PMCID: PMC5694195 DOI: 10.2147/opth.s146831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the differences in the retinal sensitivities obtained by microperimetry with a single cross or a circular fixation target in normal individuals. Methods Thirty-two eyes of 16 healthy volunteers (mean age 28.9±1.4 years, range 24-44 years) were studied. The retinal sensitivity of the central 0 degrees and of the mean central 2 degrees consisting of 8 points were determined independently using the two different fixation targets with Microperimeter 3. The Goldmann III stimulus with a luminance of 1.0 cd/m2 was presented for 200 ms on a white background. Results The retinal sensitivity of the central 0 degrees was significantly better with the circular target than that with the cross target (P=0.003, right eyes; P=0.001, left eyes). The mean retinal sensitivity in the central 2 degrees was not significantly different between the cross and circular fixation targets. (P=0.07, right eyes; P=0.08, left eyes). Conclusion These results indicate that the circular fixation target is a better target to use to evaluate the central retinal sensitivity. The difference in the retinal sensitivity is most likely due to the cross fixation target overlapping the test stimulus target.
Collapse
Affiliation(s)
- Tomohiro Nizawa
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayasu Kitahashi
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
3
|
Mantovani A, Invernizzi A, Staurenghi G, Herbort CP. Multiple Evanescent White Dot Syndrome: A Multimodal Imaging Study of Foveal Granularity. Ocul Immunol Inflamm 2017; 27:141-147. [DOI: 10.1080/09273948.2017.1353104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Alessandro Invernizzi
- Eye Clinic, Department of Biomedical and Clinical Science “L. Sacco”, Luigi Sacco Hospital, University of Milan, Milan, Italy
- Save Sight Institute, University of Sydney, Sydney, Australia
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Science “L. Sacco”, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Carl P. Herbort
- Retinal and inflammatory Eye Diseases, Centre for Ophthalmic Specialized Care (COS), Clinic Montchoisi, Lausanne, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Cysewski P, Jeliński T. Accuracy of color prediction of anthraquinone dyes in methanol solution estimated from first principle quantum chemistry computations. J Mol Model 2012; 19:4089-97. [PMID: 23250806 DOI: 10.1007/s00894-012-1717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
Abstract
The electronic spectrum of four different anthraquinones (1,2-dihydroxyanthraquinone, 1-aminoanthraquinone, 2-aminoanthraquinone and 1-amino-2-methylanthraquinone) in methanol solution was measured and used as reference data for theoretical color prediction. The visible part of the spectrum was modeled according to TD-DFT framework with a broad range of DFT functionals. The convoluted theoretical spectra were validated against experimental data by a direct color comparison in terms of CIE XYZ and CIE Lab tristimulus model color. It was found, that the 6-31G** basis set provides the most accurate color prediction and there is no need to extend the basis set since it does not improve the prediction of color. Although different functionals were found to give the most accurate color prediction for different anthraquinones, it is possible to apply the same DFT approach for the whole set of analyzed dyes. Especially three functionals seem to be valuable, namely mPW1LYP, B1LYP and PBE0 due to very similar spectra predictions. The major source of discrepancies between theoretical and experimental spectra comes from L values, representing the lightness, and the a parameter, depicting the position on green→magenta axis. Fortunately, the agreement between computed and observed blue→yellow axis (parameter b) is very precise in the case of studied anthraquinone dyes in methanol solution. Despite discussed shortcomings, color prediction from first principle quantum chemistry computations can lead to quite satisfactory results, expressed in terms of color space parameters.
Collapse
Affiliation(s)
- Piotr Cysewski
- Department of Physical Chemistry, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz, Poland,
| | | |
Collapse
|
5
|
Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD, Wolfe R, Visel M, Stone D, Libby RT, DiLoreto D, Schaffer D, Flannery J, Williams DR, Merigan WH. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 2011; 52:2775-83. [PMID: 21310920 PMCID: PMC3088562 DOI: 10.1167/iovs.10-6250] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Adeno-associated virus serotype 2 (AAV2) has been shown to be effective in transducing inner retinal neurons after intravitreal injection in several species. However, results in nonprimates may not be predictive of transduction in the human inner retina, because of differences in eye size and the specialized morphology of the high-acuity human fovea. This was a study of inner retina transduction in the macaque, a primate with ocular characteristics most similar to that of humans. METHODS In vivo imaging and histology were used to examine GFP expression in the macaque inner retina after intravitreal injection of AAV vectors containing five distinct promoters. RESULTS AAV2 produced pronounced GFP expression in inner retinal cells of the fovea, no expression in the central retina beyond the fovea, and variable expression in the peripheral retina. AAV2 vector incorporating the neuronal promoter human connexin 36 (hCx36) transduced ganglion cells within a dense annulus around the fovea center, whereas AAV2 containing the ubiquitous promoter hybrid cytomegalovirus (CMV) enhancer/chicken-β-actin (CBA) transduced both Müller and ganglion cells in a dense circular disc centered on the fovea. With three shorter promoters--human synapsin (hSYN) and the shortened CBA and hCx36 promoters (smCBA and hCx36sh)--AAV2 produced visible transduction, as seen in fundus images, only when the retina was altered by ganglion cell loss or enzymatic vitreolysis. CONCLUSIONS The results in the macaque suggest that intravitreal injection of AAV2 would produce high levels of gene expression at the human fovea, important in retinal gene therapy, but not in the central retina beyond the fovea.
Collapse
Affiliation(s)
- Lu Yin
- From the Flaum Eye Institute
- the Center for Visual Science
| | - Kenneth Greenberg
- the Helen Wills Neuroscience Institute and
- the Departments of Molecular and Cell Biology
- Vision Science, and
| | | | | | - Kathleen D. Kolstad
- the Helen Wills Neuroscience Institute and
- the Departments of Molecular and Cell Biology
- Vision Science, and
| | | | | | - Meike Visel
- the Helen Wills Neuroscience Institute and
- the Departments of Molecular and Cell Biology
- Vision Science, and
| | - Daniel Stone
- the Helen Wills Neuroscience Institute and
- Chemical Engineering, University of California, Berkeley, Berkeley, California
| | | | | | - David Schaffer
- the Helen Wills Neuroscience Institute and
- Chemical Engineering, University of California, Berkeley, Berkeley, California
| | - John Flannery
- the Helen Wills Neuroscience Institute and
- the Departments of Molecular and Cell Biology
- Vision Science, and
| | - David R. Williams
- the Center for Visual Science
- Institute of Optics, University of Rochester, Rochester, New York; and
| | | |
Collapse
|
6
|
Affiliation(s)
- J.D. Moreland
- a Technical Optics Section, Imperial College, London
| | - A. Cruz
- a Technical Optics Section, Imperial College, London
| |
Collapse
|
7
|
|
8
|
Peripheral Colour Vision. ACTA ACUST UNITED AC 1972. [DOI: 10.1007/978-3-642-88658-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Rawlings SC, Shipley T. Stereoscopic acuity and horizontal angular distance from fixation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA 1969; 59:991-3. [PMID: 5802956 DOI: 10.1364/josa.59.000991] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|