1
|
Hypoxia and the Prolyl Hydroxylase Inhibitor FG-4592 Protect Corneal Endothelial Cells From Mechanical and Perioperative Surgical Stress. Cornea 2018; 37:501-507. [PMID: 29504956 DOI: 10.1097/ico.0000000000001430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine whether hypoxia preconditioning can protect corneal endothelial cells from mechanical stress and perioperative procedures mimicking Descemet stripping automated endothelial keratoplasty (DSAEK). METHODS Preconditioning was delivered by 2 hours of 0.5% oxygen incubation in a hypoxia chamber or by exposure to the prolyl hydroxylase inhibitor FG-4592, which prevents hypoxia-inducible factor-1 alpha degradation. Damage to whole corneas was produced by brief sonication. To mimic use with DSAEK, FG-4592-preconditioned and control donor corneas were dissected with a microkeratome, and the posterior donor button was pulled through a transplant insertion device (Busin glide). The area of endothelial damage was determined by trypan blue staining. RESULTS In all cases, hypoxia preconditioning or incubation with FG-4592 protected corneal endothelial cells from death by mechanical stress. Hypoxia-preconditioned human and rabbit corneas showed 19% and 29% less cell loss, respectively, relative to controls, which were both significant at P < 0.05. FG-4592 preconditioning reduced endothelial cell loss associated with preparation and insertion of DSAEK grafts by 23% relative to the control (P < 0.01). CONCLUSIONS These results support the hypothesis that preconditioning by hypoxia or exposure to FG-4592 improves corneal endothelial cell survival and may also provide protection during surgical trauma.
Collapse
|
2
|
Kumar A, Tiwari AK. Molecular Chaperone Hsp70 and Its Constitutively Active Form Hsc70 Play an Indispensable Role During Eye Development of Drosophila melanogaster. Mol Neurobiol 2017. [PMID: 28634860 DOI: 10.1007/s12035-017-0650-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the present study, we demonstrate that molecular chaperone Hsp70 and Hsc70 is essential for normal organization and development of ommatidial cells in Drosophila melanogaster eye. An exogenously expressed dominant negative mutant of Hsp70 (K71E) and Hsc70.4 (K71S and D206S) in an eye-specific manner resulted in eye degeneration that includes loss of eye pigment, disorganized ommatidia, abnormality in bristle cell arrangement and reduction in the eye size. The developmental organization of ommatidial cells (cone, photoreceptor, pigment, and bristle cell complex) was disturbed in Hsp70 and Hsc70 mutants. Acridine orange (AO) and caspase 3 staining showed an increased cell death in Hsp70 and Hsc70 mutant eyes. Genetic interaction study of Hsp70 and Hsc70 mutants with candidate genes of JNK signaling pathway and immunocytochemistry study using phospho-JNK antibody suggested that mutation in Hsp70 and Hsc70 results in ectopic activation of JNK signaling in fly eye. Further, anti-PH3 staining in Hsp70 and Hsc70 mutant eyes revealed a reduced number of mitotic cells in second mitotic wave (SMW) of developing eye and anti-Rh1 staining showed reduced Rh1 expression, accumulation of Rh1 in the cytoplasm, and rhabdomere degeneration. Thus, on the basis of results, it was concluded that molecular chaperone Hsp70 and Hsc70 play an indispensable role during Drosophila eye development.
Collapse
Affiliation(s)
- Ajay Kumar
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
3
|
Impact of temporary hyperthermia on corneal endothelial cell survival during organ culture preservation. Graefes Arch Clin Exp Ophthalmol 2015; 253:753-8. [DOI: 10.1007/s00417-014-2903-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022] Open
|
4
|
Abstract
Corneal wound healing is a complex process: its mechanisms and the underlying genetic control are not fully understood. It involves the integrated actions of multiple growth factors, cytokines and proteases produced by epithelial cells, stromal keratocytes, inflammatory cells and lacrimal gland cells. Following an epithelial insult, multiple cytokines are released triggering a cascade of events that leads to repair the epithelial defect and remodelling of the stroma to minimize the loss of transparency and function. In this review, we examine the literature surrounding the genomics of corneal wound healing with respect to the following topics: epithelial and stromal wound healing (including inhibition); corneal neovascularisation; the role of corneal nerves in wound healing; the endothelium; the role of aquaporins and aptamers. We also examine the effect of ectasia on corneal wound healing with regard to keratoconus and following corneal surgery. A better understanding of the cellular and molecular changes that occur during repair of corneal wounds will provide the opportunity to design treatments that selectively modulate key phases of the healing process resulting in scars that more closely resemble normal corneal architecture.
Collapse
Affiliation(s)
- Nick J R Maycock
- Eye Department, Queen Alexandra Hospital, Portsmouth, UKNational Institute for Health Research (NIHR), Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | | |
Collapse
|
5
|
Haug K, Azqueta A, Johnsen‐Soriano S, Shahdadfar A, Drolsum LK, Moe MC, Røger MT, Romero FJ, Collins AR, Nicolaissen B. Donor cornea transfer from Optisol GS to organ culture storage: a two-step procedure to increase donor tissue lifespan. Acta Ophthalmol 2013; 91:219-25. [PMID: 22429721 PMCID: PMC3652042 DOI: 10.1111/j.1755-3768.2012.02390.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose Storage time for donor corneas in Optisol GS is limited compared to Eye Bank Organ Culture (EBOC). We here examine the epithelium on donor corneoscleral rims after primary storage in Optisol GS and subsequent incubation in EBOC. Methods Morphology was monitored by light and electron microscopy, expression of phenotypic and genotypic markers by immunohistochemistry and RT-PCR and changes in oxidative lipid and DNA damage by ELISA and COMET assay. Results A prominent loss of cells was observed after storage in Optisol GS. After maintenance in EBOC, spreading apical cells were Occludin+, while the staining for E-cadherin and Connexin-43 was less intense. There were an upregulation of Occludin and a downregulation of E-cadherin and Connexin-43. Eye Bank Organ Culture was associated with an ongoing proliferative activity and a downregulation of putative progenitor/stem cell marker ABCG2 and p63. Staining for 8-OHdG and Caspase-3 did not increase, while levels of malondialdehyde and number of DNA strand breaks and oxidized bases increased. Conclusions This dual procedure should be pursued as an option to increase the storage time and the pool of available donor corneas. The observed downregulation of markers associated with stemness during EBOC is relevant considering the potential use of donor epithelium in the treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Kristiane Haug
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål and University of Oslo, Oslo, Norway
| | - Amaya Azqueta
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål and University of Oslo, Oslo, Norway
| | - Liv K. Drolsum
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål and University of Oslo, Oslo, Norway
| | - Morten C. Moe
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål and University of Oslo, Oslo, Norway
| | - Magnus T. Røger
- Department of Pathology, Oslo University Hospital, Ullevål and University of Oslo, Oslo, Norway
| | - Francisco J. Romero
- Fundación Oftalmológica del Mediterráno, Valencia, Spain
- Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Andrew R. Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Nicolaissen
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål and University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
He Z, Campolmi N, Gain P, Ha Thi BM, Dumollard JM, Duband S, Peoc'h M, Piselli S, Garraud O, Thuret G. Revisited microanatomy of the corneal endothelial periphery: new evidence for continuous centripetal migration of endothelial cells in humans. Stem Cells 2013; 30:2523-34. [PMID: 22949402 DOI: 10.1002/stem.1212] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The control of corneal transparency depends on the integrity of its endothelial monolayer, which is considered nonregenerative in adult humans. In pathological situations, endothelial cell (EC) loss, not offset by mitosis, can lead to irreversible corneal edema and blindness. However, the hypothesis of a slow, clinically insufficient regeneration starting from the corneal periphery remains debatable. The authors have re-evaluated the microanatomy of the endothelium in order to identify structures likely to support this homeostasis model. Whole endothelia of 88 human corneas (not stored, and stored in organ culture) with mean donor age of 80 ± 12 years were analyzed using an original flat-mounting technique. In 61% of corneas, cells located at the extreme periphery (last 200 μm of the endothelium) were organized in small clusters with two to three cell layers around Hassall-Henle bodies. In 68% of corneas, peripheral ECs formed centripetal rows 830 ± 295 μm long, with Descemet membrane furrows visible by scanning electron microscopy. EC density was significantly higher in zones with cell rows. When immunostained, ECs in the extreme periphery exhibited lesser differentiation (ZO-1, Actin, Na/K ATPase, CoxIV) than ECs in the center of the cornea but preferentially expressed stem cell markers (Nestin, Telomerase, and occasionally breast cancer resistance protein) and, in rare cases, the proliferation marker Ki67. Stored corneas had fewer cell clusters but more Ki67-positive ECs. We identified a novel anatomic organization in the periphery of the human corneal endothelium, suggesting a continuous slow centripetal migration, throughout life, of ECs from specific niches.
Collapse
Affiliation(s)
- Zhiguo He
- Corneal Graft Biology, Engineering and Imaging Laboratory, Federative Institute of Research in Sciences and Health Engineering, Faculty of Medicine, Jean Monnet University, Saint-Etienne, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tsai MJ, Hsu YL, Wu KY, Yang RC, Chen YJ, Yu HS, Kuo PL. Heat Effect Induces Production of Inflammatory Cytokines Through Heat Shock Protein 90 Pathway in Cornea Cells. Curr Eye Res 2013; 38:464-71. [DOI: 10.3109/02713683.2012.763103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Heise EA, Fort PE. Impact of diabetes on alpha-crystallins and other heat shock proteins in the eye. J Ocul Biol Dis Infor 2011; 4:62-9. [PMID: 23264844 DOI: 10.1007/s12177-011-9073-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/05/2011] [Indexed: 12/25/2022] Open
Abstract
Diabetes and its related complications represent a major growing health concern and economic burden worldwide. Ocular manifestations of diabetes include cataractogenesis and retinopathy, the latter being the leading cause of blindness in the working-age population. Despite numerous studies and recent progress, the exact pathophysiology of the disease remains to be fully elucidated and development of new and improved therapeutic strategies for this chronic condition are greatly needed. Heat shock proteins (Hsps) are highly conserved families of proteins, which are generally regarded as protective molecules that play a wide variety of roles and can be expressed in response to different types of cellular stresses. In recent years, numerous studies have reported their implication in various ocular diseases including diabetic retinopathy. The present review focuses on the potential implication of Hsps in ocular diabetic complications and discusses their specific mechanisms of regulation with respect to their expression, functions and alteration during diabetes. The review will conclude by examining the potential of Hsps as therapeutic agents or targets for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Erich A Heise
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI USA
| | | |
Collapse
|
9
|
Fuchsluger TA, Jurkunas U, Kazlauskas A, Dana R. Corneal endothelial cells are protected from apoptosis by gene therapy. Hum Gene Ther 2011; 22:549-58. [PMID: 21158568 DOI: 10.1089/hum.2010.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Corneal grafting is the most prevalent form of transplantation. Corneal endothelial cells (ECs), which form a monolayer of the cornea with minimal proliferative potential, are pivotal for maintenance of corneal clarity. Loss of EC viability and apoptosis leads to graft failure posttransplantation and reduces the quality of donor corneas in storage, such that up to 30% do not meet selection criteria and must be discarded. The current study investigates antiapoptotic effects of transduced mammalian Bcl-x(L) and baculoviral p35 on human ECs. Multiple apoptotic cell features are observed while inducing apoptosis either via the extrinsic (death receptor) or intrinsic (mitochondrial) apoptotic pathway. Human ECs were studied under three experimental conditions: (1) as an immortalized cell line, (2) as primary cells, and (3) in an intact cornea. Interestingly, in primary EC suspensions, Bcl-x(L) was protective against apoptosis mediated via both pathways. However, p35 was significantly more protective against apoptosis mediated via the intrinsic pathway compared with Bcl-x(L). Our results provide critical insight into the role of apoptotic pathways in the maintenance of EC viability and the efficacy with which these protective proteins exert their effect. These observations could form the basis for future applications of antiapoptotic gene therapy to corneal preservation aiming to reduce both graft failure after transplantation as well as donor corneal damage during storage.
Collapse
Affiliation(s)
- Thomas A Fuchsluger
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
10
|
Heat shock proteins in the human eye. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2010:479571. [PMID: 22084677 PMCID: PMC3200129 DOI: 10.1155/2010/479571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/11/2010] [Accepted: 12/17/2010] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (Hsps) are believed to primarily protect and maintain cell viability under stressful conditions such as those occurring during thermal and oxidative challenges chiefly by refolding and stabilizing proteins. Hsps are found throughout the various tissues of the eye where they are thought to confer protection from disease states such as cataract, glaucoma, and cancer. This minireview summarizes the placement, properties, and roles of Hsps in the eye and aims to provide a better comprehension of their function and involvement in ocular disease pathogenesis.
Collapse
|
11
|
Ebrahimi M, Mohammadi P, Daryadel A, Baharvand H. Assessment of heat shock protein (HSP60, HSP72, HSP90, and HSC70) expression in cultured limbal stem cells following air lifting. Mol Vis 2010; 16:1680-8. [PMID: 20806039 PMCID: PMC2927380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/11/2010] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES The aim of this study is to create an ex vivo model to examine the expression of major heat-shock protein (HSP) families; HSP60, HSP72, and HSP90, and heat-shock cognate 70 (HCS70) at the mRNA and protein level in differentiating corneal cells from limbal stem cells (LSC) following air exposure. METHODS Limbal biopsies taken from cadaveric normal human limbus were cultivated as explants on human amniotic membrane (HAM) and plastic dish (PD). Corneal differentiation was induced by air lifting for 16 days. The expression of putative LSC markers (P63 and ATP-binding cassette G2 [ABCG2]), corneal markers (keratin 3 [K3/12] and connexin 43 [CX43]), and HSP60, HSP72, HSP90, and HSC70 were tested by RT-PCR, immunofluorescence, and flow cytometry pre- and post-air exposure. Fresh limbal and corneal tissues were used as control groups. RESULTS Air lifting induced corneal differentiation with a decrease in the number of P63(+) cells and an increase in the number of K3(+)/CX43(+) cells, which characterized transient amplifying cells (TACs). Moreover, denuded HAM provided a superior niche for LSC proliferation and phenotype maintenance in vitro. Additionally, we have evidence that expressions of HSC70 as well as HSP72 were enhanced through corneal differentiation and HSP90 post-air lifting in vitro and in vivo. HSP60, however, was not detected in either LSC or corneal cells, in vivo and in vitro. CONCLUSIONS These results suggest that corneal differentiation following air exposure may regulate HSP72 and HSC70 expression. In addition, HSP72 and HSP90 may protect LSC and corneal cells against oxidative stress.
Collapse
Affiliation(s)
- Marzeih Ebrahimi
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR,Tehran, Iran,Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR,Tehran, Iran
| | - Parvaneh Mohammadi
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR,Tehran, Iran,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Arezoo Daryadel
- Department of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR,Tehran, Iran,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Pons M, Cousins SW, Csaky KG, Striker G, Marin-Castaño ME. Cigarette smoke-related hydroquinone induces filamentous actin reorganization and heat shock protein 27 phosphorylation through p38 and extracellular signal-regulated kinase 1/2 in retinal pigment epithelium: implications for age-related macular degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1198-213. [PMID: 20651235 DOI: 10.2353/ajpath.2010.091108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retinal pigment epithelium (RPE)-derived membranous debris named blebs, may accumulate and contribute to sub-RPE deposit formation, which is the earliest sign of age-related macular degeneration (AMD). Oxidative injury to the RPE might play a significant role in AMD. However, the underlying mechanisms are unknown. We previously reported that hydroquinone (HQ), a major pro-oxidant in cigarette smoke, foodstuff, and atmospheric pollutants, induces actin rearrangement and membrane blebbing in RPE cells as well as sub-RPE deposits in mice. Here, we show for the first time that phosphorylated Heat shock protein 27 (Hsp27), a key regulator of actin filaments dynamics, is up-regulated in RPE from patients with AMD. Also, HQ-induced nonlethal oxidative injury led to Hsp27mRNA up-regulation, dimer formation, and Hsp27 phosphorylation in ARPE-19 cells. Furthermore, we found that a cross talk between p38 and extracellular signal-regulated kinase (ERK) mediates HQ-induced Hsp27 phosphorylation and actin aggregate formation, revealing ERK as a novel upstream mediator of Hsp27 phosphorylation. Finally, we demonstrated that Hsp25, p38, and ERK phosphorylation are increased in aging C57BL/6 mice chronically exposed to HQ, whereas Hsp25 expression is decreased. Our data suggest that phosphorylated Hsp27 might be a key mediator in AMD and HQ-induced oxidative injury to the RPE, which may provide helpful insights into the early cellular events associated with actin reorganization and bleb formation involved in sub-RPE deposits formation relevant to the pathogenesis of AMD.
Collapse
Affiliation(s)
- Marianne Pons
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
13
|
Shi B, Han B, Schwab IR, Isseroff RR. UVB Irradiation-Induced Changes in the 27-kd Heat Shock Protein (HSP27) in Human Corneal Epithelial Cells. Cornea 2006; 25:948-55. [PMID: 17102673 DOI: 10.1097/01.ico.0000224643.43601.5d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE This study investigated the presence of the 27-kd heat shock protein (HSP27) and its responses to ultraviolet B (UVB) irradiation in human corneal epithelium and in cultured corneal epithelial cells. METHODS Human corneal epithelial cells including presumed corneal epithelial stem cells were cultured in vitro. HSP27 expression and intracellular localization in normal corneas or cultured corneal cells were examined using immunofluorescence staining. The expression of HSP27 in cultured corneal cells was also detected using western blotting, and the phosphorylated isoforms of HSP27 were identified using isoelectric focusing. RESULTS In normal corneal tissue, HSP27 was present in limbal basal and suprabasilar epithelial cells. In cultured epithelial corneal cells, HSP27 expression was heterogeneous: Some cells expressed virtually no HSP27 and others showed relatively strong expression. HSP27 was localized to the cytoplasm in nonstressed cells and translocated to the perinuclear and nuclear areas after UVB irradiation. UVB irradiation also induced the phosphorylation of HSP27, resulting in the increase in monophosphorylated isoform and formation of biphosphorylated isoform. UV induced the phosphorylation of HSP27 apparently through activation of p38 mitogen-activated protein kinase. CONCLUSION HSP27 is present mainly as a nonphosphorylated isoform in corneal epithelium and cultured corneal epithelial cells under nonstressed conditions. The constitutional expression of HSP27 suggests that it plays a physiologic role in the cornea. After UVB irradiation, HSP27 undergoes rapid phosphorylation and translocation. This stress response may be related to a protective role of HSP27 for survival of UVB-exposed corneal cells.
Collapse
Affiliation(s)
- Biao Shi
- Department of Dermatology, University of California Davis School of Medicine, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
14
|
Zhong X, Ran YL, Lou JN, Hu D, Yu L, Zhang YS, Zhou Z, Yang ZH. Construction of human liver cancer vascular endothelium cDNA expression library and screening of the endothelium-associated antigen genes. World J Gastroenterol 2004; 10:1402-8. [PMID: 15133843 PMCID: PMC4656274 DOI: 10.3748/wjg.v10.i10.1402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To gain tumor endothelium associated antigen genes from human liver cancer vascular endothelial cells (HLCVECs) cDNA expression library, so as to find some new possible targets for the diagnosis and therapy of liver tumor.
METHODS: HLCVECs were isolated and purified from a fresh hepatocellular carcinoma tissue sample, and were cultured and proliferated in vitro. A cDNA expression library was constructed with the mRNA extracted from HLCVECs. Anti-sera were prepared from immunized BALB/c mice through subcutaneous injection with high dose of fixed HLCVECs, and were then tested for their specificity against HLCVECs and angiogenic effects in vitro, such as inhibiting proliferation and inducing apoptosis of tumor endothelial cells, using immunocytochemistry, immunofluorescence, cell cycle analysis and MTT assays, etc. The identified xenogeneic sera from immunized mice were employed to screen the library of HLCVECs by modified serological analyses of recombinant cDNA expression libraries (SEREX). The positive clones were sequenced and analyzed by bio-informatics.
RESULTS: The primary cDNA library consisted of 2 × 106 recombinants. Thirty-six positive clones were obtained from 6 × 105 independent clones by immunoscreening. Bio-informatics analysis of cDNA sequences indicated that 36 positive clones represented 18 different genes. Among them, 3 were new genes previously unreported, 2 of which were hypothetical genes. The other 15 were already known ones. Series analysis of gene expression (SAGE) database showed that ERP70, GRP58, GAPDH, SSB, S100A6, BMP-6, DVS27, HSP70 and NAC alpha in these genes were associated with endothelium and angiogenesis, but their effects on HLCVECs were still unclear. GAPDH, S100A6, BMP-6 and hsp70 were identified by SEREX in other tumor cDNA expression libraries.
CONCLUSION: By screening of HLCVECs cDNA expression library using sera from immunized mice with HLCVECs, the functional genes associated with tumor endothelium or angiogenesis were identified. The modified SEREX, xenogeneic functional serum screening, was demonstrated to be effective for isolation and identification of antigen genes of tumor endothelium, and also for other tumor cell antigen genes. These antigen genes obtained in this study could be a valuable resource for basic and clinical studies of tumor angiogenesis, thus facilitating the development of anti- angiogenesis targeting therapy of tumors.
Collapse
Affiliation(s)
- Xing Zhong
- Department of Cell and Molecular Laboratory, Cancer Institute (Hospital), Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan, Chaoyang Qu PO Box, Beijing, 100021, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Thuret G, Chiquet C, Herrag S, Dumollard JM, Boudard D, Bednarz J, Campos L, Gain P. Mechanisms of staurosporine induced apoptosis in a human corneal endothelial cell line. Br J Ophthalmol 2003; 87:346-52. [PMID: 12598452 PMCID: PMC1771564 DOI: 10.1136/bjo.87.3.346] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Apoptosis very probably plays a key part in endothelial cell loss during corneal storage in organ culture as well as hypothermic storage. However, the mechanisms underlying endothelial apoptosis are poorly understood. The response of a human corneal endothelial cell (HCEC) line to staurosporine, a known inducer of apoptosis, was investigated to gain insights into the intracellular modulators that participate in endothelial cell death. METHODS Immortalised HCECs were studied after 3, 6, 12, and 24 hours of incubation with 0.2 micro M staurosporine. Cell shedding was monitored. Hoechst 33342 fluorescent DNA staining combined with propidium iodide was used for apoptosis/necrosis quantification and morphological examination. The caspase-3 active form was assessed using western blot, proteolytic activity detection, and immunocytochemistry. The cleaved form of poly(ADP-ribose) polymerase (PARP) was assessed using immunocytochemistry and western blot. The ultrastructural features of cells were screened after 12 hours with staurosporine or vehicle. RESULTS The specific apoptotic nature of staurosporine induced HCEC death was confirmed. The ultrastructural features of staurosporine treated cells were typical of apoptosis. HCEC shedding and DNA condensation increased with time. Caspase-3 activity was detected as early as 3 hours after exposure with staurosporine, peaking at 12 hours of incubation. The presence of cleaved PARP after 3 hours confirmed caspase-3 activation. CONCLUSIONS These data suggest strongly that HCEC cell death induced by staurosporine is apoptosis. The main consequence of HCEC apoptosis is shedding. Staurosporine induced apoptosis of endothelial cells involves activation of caspase-3, and could be a useful model to study strategies of cell death inhibition.
Collapse
Affiliation(s)
- G Thuret
- Cell death and neoplasia laboratory, EA 3063, University of Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gain P, Thuret G, Chiquet C, Dumollard JM, Mosnier JF, Burillon C, Delbosc B, Hervé P, Campos L. Value of two mortality assessment techniques for organ cultured corneal endothelium: trypan blue versus TUNEL technique. Br J Ophthalmol 2002; 86:306-10. [PMID: 11864889 PMCID: PMC1771045 DOI: 10.1136/bjo.86.3.306] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM It is known that trypan blue staining is not a good predictor of loss of corneal endothelial cells (ECs) during organ culture. As it is primarily an indicator of membrane integrity, it would also not be expected to identify ECs undergoing apoptosis. The aim of this study was to determine the ability of the in situ TdT dUTP mediated nick end labelling (TUNEL) technique to detect cell death in the corneal endothelium caused by apoptosis during organ culture, compared with conventional vital staining with trypan blue. METHODS 31 human corneas were organ cultured at 31C for 3-35 days. Staurosporine was used to induce apoptosis in five control corneas. The endothelium was assessed by trypan blue and by the in situ TUNEL technique. The percentages of trypan and TUNEL positive ECs were compared. Their links with sex, donor age, time from donor death and organ culture, initial and final EC density and cell loss were studied. RESULTS TUNEL stained ECs were observed in all corneas. TUNEL positive ECs were mostly located either in corneal folds or at the periphery of corneal folds showing central shedding. The mean percentage of cell death at the end of storage, assessed by the trypan blue technique, was 1.47% (SD 2.63, range 0.03-12); assessed by the TUNEL technique it was 12.7% (SD 16.4 range 0.6-65.5). There was a significant correlation between the two techniques (r = 0.7, p<0.001). The percentage of TUNEL stained ECs was correlated negatively with EC density at the end of storage (r = -0.47, p <0.005) and positively with percentage EC loss during storage (r = 0.46, p < 0.05). CONCLUSION This study demonstrates that organ cultured corneas systematically carry non-viable ECs that are implicated in cell death by apoptosis and go undetected when trypan blue staining is used. Because the in situ TUNEL assay detects earlier events in the cell death process than does trypan blue, it should be used to quantify endothelial viability, especially for experiments with new storage media.
Collapse
Affiliation(s)
- P Gain
- Cell Death and Neoplasia Laboratory, University of Saint-Etienne, France.
| | | | | | | | | | | | | | | | | |
Collapse
|