1
|
Abousy M, Antonio-Aguirre B, Aziz K, Hu MW, Qian J, Singh MS. Multimodal Phenomap of Stargardt Disease Integrating Structural, Psychophysical, and Electrophysiologic Measures of Retinal Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100327. [PMID: 37869022 PMCID: PMC10585476 DOI: 10.1016/j.xops.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 10/24/2023]
Abstract
Objective To cluster the diverse phenotypic features of Stargardt disease (STGD) using unsupervised clustering of multimodal retinal structure and function data. Design Retrospective cross-sectional study. Subjects Eyes of subjects with STGD and fundus autofluorescence (FAF), OCT, electroretinography (ERG), and microperimetry (MP) data available within 1 year of the baseline evaluation. Methods A total of 46 variables from FAF, OCT, ERG, and MP results were recorded for subjects with STGD as defined per published criteria. Factor analysis of mixed data identified the most informative variables. Unsupervised hierarchical clustering and silhouette analysis identified the optimal number of clusters to classify multimodal phenotypes. Main Outcome Measures Phenotypic clusters of STGD subjects and the corresponding cluster features. Results We included 52 subjects and 102 eyes with a mean visual acuity (VA) at the time of multimodal testing of 0.69 ± 0.494 logarithm of minimum angle of resolution (20/63 Snellen). We identified 4 clusters of eyes. Compared to the other clusters, cluster 1 (n = 16) included younger subjects, VA greater than that of clusters 2 and 3, normal or moderately low total macular volume (TMV), greater preservation of scotopic and photopic ERG responses and fixation stability, less atrophy, and fewer flecks. Cluster 2 (n = 49) differed from cluster 1 mainly with less atrophy and relatively stable fixation. Cluster 3 (n = 10) included older subjects than clusters 1 and 2 and showed the lowest VA, TMV, ERG responses, and fixation stability, with extensive atrophy. Cluster 4 (n = 27) showed better VA, TMV similar to clusters 1 and 2, moderate ERG activity, stable fixation, and moderate-high atrophy and flecks. Conclusions Reflecting the phenotypic complexity of STGD, an unsupervised clustering approach incorporating phenotypic measures can be used to categorize STGD eyes into distinct clusters. The clusters exhibit differences in structural and functional measures including quantity of flecks, extent of retinal atrophy, visual fixation accuracy, and ERG responses, among other features. If novel pharmacologic, gene, or cell therapy modalities become available in the future, the multimodal phenomap approach may be useful to individualize treatment decisions, and its utility in aiding prognostication requires further evaluation. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Mya Abousy
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Kanza Aziz
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mandeep S. Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
2
|
Parmann R, Tsang SH, Sparrow JR. Primary versus Secondary Elevations in Fundus Autofluorescence. Int J Mol Sci 2023; 24:12327. [PMID: 37569703 PMCID: PMC10419315 DOI: 10.3390/ijms241512327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The method of quantitative fundus autofluorescence (qAF) can be used to assess the levels of bisretinoids in retinal pigment epithelium (RPE) cells so as to aid the interpretation and management of a variety of retinal conditions. In this review, we focused on seven retinal diseases to highlight the possible pathways to increased fundus autofluorescence. ABCA4- and RDH12-associated diseases benefit from known mechanisms whereby gene malfunctioning leads to elevated bisretinoid levels in RPE cells. On the other hand, peripherin2/RDS-associated disease (PRPH2/RDS), retinitis pigmentosa (RP), central serous chorioretinopathy (CSC), acute zonal occult outer retinopathy (AZOOR), and ceramide kinase like (CERKL)-associated retinal degeneration all express abnormally high fundus autofluorescence levels without a demonstrated pathophysiological pathway for bisretinoid elevation. We suggest that, while a known link from gene mutation to increased production of bisretinoids (as in ABCA4- and RDH12-associated diseases) causes primary elevation in fundus autofluorescence, a secondary autofluorescence elevation also exists, where an impairment and degeneration of photoreceptor cells by various causes leads to an increase in bisretinoid levels in RPE cells.
Collapse
Affiliation(s)
- Rait Parmann
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Stephen H. Tsang
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| | - Janet R. Sparrow
- Departments of Ophthalmology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
- Departments of Pathology and Cell Biology, Columbia University, 635 W. 165th Street, New York, NY 10032, USA
| |
Collapse
|
3
|
Kaltak M, de Bruijn P, Piccolo D, Lee SE, Dulla K, Hoogenboezem T, Beumer W, Webster AR, Collin RW, Cheetham ME, Platenburg G, Swildens J. Antisense oligonucleotide therapy corrects splicing in the common Stargardt disease type 1-causing variant ABCA4 c.5461-10T>C. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:674-688. [PMID: 36910710 PMCID: PMC9999166 DOI: 10.1016/j.omtn.2023.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 02/20/2023]
Abstract
Stargardt disease type 1 (STGD1) is the most common hereditary form of maculopathy and remains untreatable. STGD1 is caused by biallelic variants in the ABCA4 gene, which encodes the ATP-binding cassette (type 4) protein (ABCA4) that clears toxic byproducts of the visual cycle. The c.5461-10T>C p.[Thr1821Aspfs∗6,Thr1821Valfs∗13] variant is the most common severe disease-associated variant, and leads to exon skipping and out-of-frame ABCA4 transcripts that prevent translation of functional ABCA4 protein. Homozygous individuals typically display early onset STGD1 and are legally blind by early adulthood. Here, we applied antisense oligonucleotides (AONs) to promote exon inclusion and restore wild-type RNA splicing of ABCA4 c.5461-10T>C. The effect of AONs was first investigated in vitro using an ABCA4 midigene model. Subsequently, the best performing AONs were administered to homozygous c.5461-10T>C 3D human retinal organoids. Isoform-specific digital polymerase chain reaction revealed a significant increase in correctly spliced transcripts after treatment with the lead AON, QR-1011, up to 53% correct transcripts at a 3 μM dose. Furthermore, western blot and immunohistochemistry analyses identified restoration of ABCA4 protein after treatment. Collectively, we identified QR-1011 as a potent splice-correcting AON and a possible therapeutic intervention for patients harboring the severe ABCA4 c.5461-10T>C variant.
Collapse
Affiliation(s)
- Melita Kaltak
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, and Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | - Petra de Bruijn
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Davide Piccolo
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Sang-Eun Lee
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Kalyan Dulla
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | | | - Wouter Beumer
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| | - Andrew R. Webster
- UCL, Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
- Moorfields Eye Hospital, 162 City Road, EC1V 2PD London, UK
| | - Rob W.J. Collin
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, and Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands
| | | | | | - Jim Swildens
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, the Netherlands
| |
Collapse
|
4
|
Al-Khuzaei S, Broadgate S, Foster CR, Shah M, Yu J, Downes SM, Halford S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes (Basel) 2021; 12:1241. [PMID: 34440414 PMCID: PMC8392661 DOI: 10.3390/genes12081241] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stargardt disease (STGD1) and ABCA4 retinopathies (ABCA4R) are caused by pathogenic variants in the ABCA4 gene inherited in an autosomal recessive manner. The gene encodes an importer flippase protein that prevents the build-up of vitamin A derivatives that are toxic to the RPE. Diagnosing ABCA4R is complex due to its phenotypic variability and the presence of other inherited retinal dystrophy phenocopies. ABCA4 is a large gene, comprising 50 exons; to date > 2000 variants have been described. These include missense, nonsense, splicing, structural, and deep intronic variants. Missense variants account for the majority of variants in ABCA4. However, in a significant proportion of patients with an ABCA4R phenotype, a second variant in ABCA4 is not identified. This could be due to the presence of yet unknown variants, or hypomorphic alleles being incorrectly classified as benign, or the possibility that the disease is caused by a variant in another gene. This underlines the importance of accurate genetic testing. The pathogenicity of novel variants can be predicted using in silico programs, but these rely on databases that are not ethnically diverse, thus highlighting the need for studies in differing populations. Functional studies in vitro are useful towards assessing protein function but do not directly measure the flippase activity. Obtaining an accurate molecular diagnosis is becoming increasingly more important as targeted therapeutic options become available; these include pharmacological, gene-based, and cell replacement-based therapies. The aim of this review is to provide an update on the current status of genotyping in ABCA4 and the status of the therapeutic approaches being investigated.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | | | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| |
Collapse
|
5
|
Al-Khuzaei S, Shah M, Foster CR, Yu J, Broadgate S, Halford S, Downes SM. The role of multimodal imaging and vision function testing in ABCA4-related retinopathies and their relevance to future therapeutic interventions. Ther Adv Ophthalmol 2021; 13:25158414211056384. [PMID: 34988368 PMCID: PMC8721514 DOI: 10.1177/25158414211056384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this review article is to describe the specific features of Stargardt disease and ABCA4 retinopathies (ABCA4R) using multimodal imaging and functional testing and to highlight their relevance to potential therapeutic interventions. Standardised measures of tissue loss, tissue function and rate of change over time using formal structured deep phenotyping in Stargardt disease and ABCA4R are key in diagnosis, and prognosis as well as when selecting cohorts for therapeutic intervention. In addition, a meticulous documentation of natural history will be invaluable in the future to compare treated with untreated retinas. Despite the familiarity with the term Stargardt disease, this eponymous classification alone is unhelpful when evaluating ABCA4R, as the ABCA4 gene is associated with a number of phenotypes, and a range of severity. Multimodal imaging, psychophysical and electrophysiologic measurements are necessary in diagnosing and characterising these differing retinopathies. A wide range of retinal dystrophy phenotypes are seen in association with ABCA4 mutations. In this article, these will be referred to as ABCA4R. These different phenotypes and the existence of phenocopies present a significant challenge to the clinician. Careful phenotypic characterisation coupled with the genotype enables the clinician to provide an accurate diagnosis, associated inheritance pattern and information regarding prognosis and management. This is particularly relevant now for recruiting to therapeutic trials, and in the future when therapies become available. The importance of accurate genotype-phenotype correlation studies cannot be overemphasised. This approach together with segregation studies can be vital in the identification of causal mutations when variants in more than one gene are being considered as possible. In this article, we give an overview of the current imaging, psychophysical and electrophysiological investigations, as well as current therapeutic research trials for retinopathies associated with the ABCA4 gene.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | | | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
6
|
Xu S, Coku A, Muraleedharan CK, Harajli A, Mishulin E, Dahabra C, Choi J, Garcia WJ, Webb K, Birch D, Goetz K, Li W. Mutation Screening in the miR-183/96/182 Cluster in Patients With Inherited Retinal Dystrophy. Front Cell Dev Biol 2020; 8:619641. [PMID: 33425925 PMCID: PMC7785829 DOI: 10.3389/fcell.2020.619641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal dystrophy (IRD) is a heterogenous blinding eye disease and affects more than 200,000 Americans and millions worldwide. By far, 270 protein-coding genes have been identified to cause IRD when defective. However, only one microRNA (miRNA), miR-204, has been reported to be responsible for IRD when a point-mutation occurs in its seed sequence. Previously, we identified that a conserved, polycistronic, paralogous miRNA cluster, the miR-183/96/182 cluster, is highly specifically expressed in all photoreceptors and other sensory organs; inactivation of this cluster in mice resulted in syndromic IRD with multi-sensory defects. We hypothesized that mutations in the miR-183/96/182 cluster in human cause IRD. To test this hypothesis, we perform mutation screening in the pre-miR-183, -96, -182 in >1000 peripheral blood DNA samples of patients with various forms of IRD. We identified six sequence variants, three in pre-miR-182 and three in pre-miR-96. These variants are in the pre-miRNA-182 or -96, but not in the mature miRNAs, and are unlikely to be the cause of the IRD in these patients. In spite of this, the nature and location of these sequence variants in the pre-miRNAs suggest that some may have impact on the biogenesis and maturation of miR-182 or miR-96 and potential roles in the susceptibility to diseases. Although reporting on negative results so far, our study established a system for mutation screening in the miR-183/96/182 cluster in human for a continued effort to unravel and provides deeper insight into the potential roles of miR-183/96/182 cluster in human diseases.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ardian Coku
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Chithra K. Muraleedharan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ali Harajli
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eric Mishulin
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Chafic Dahabra
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Joanne Choi
- Class of 2020, School of Medicine, Wayne State University, Detroit, MI, United States
| | - William J. Garcia
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kaylie Webb
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - David Birch
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - Kerry Goetz
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Weifeng Li
- Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Starace V, Battista M, Brambati M, Pederzolli M, Viganò C, Arrigo A, Cicinelli MV, Bandello F, Parodi MB. Genotypic and phenotypic factors influencing the rate of progression in ABCA-4-related Stargardt disease. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2021.1860753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Vincenzo Starace
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battista
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Brambati
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Pederzolli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Viganò
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Vittoria Cicinelli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Maurizio Battaglia Parodi
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Sun Z, Yang L, Li H, Zou X, Wang L, Wu S, Zhu T, Wei X, Zhong Y, Sui R. Clinical and genetic analysis of the ABCA4 gene associated retinal dystrophy in a large Chinese cohort. Exp Eye Res 2020; 202:108389. [PMID: 33301772 DOI: 10.1016/j.exer.2020.108389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
ABCA4 gene associated retinal dystrophies (ABCA4-RD) are a group of inherited eye diseases caused by ABCA4 gene mutations, including Stargardt disease, cone-rod dystrophy and retinitis pigmentosa. With the development of next-generation sequencing (NGS), numerous clinical and genetic studies on ABCA4-RD have been performed, and the genotype and phenotype spectra have been elucidated. However, most of the studies focused on the Caucasian population and limited studies of large Chinese ABCA4-RD cohorts were reported. In this study, we summarized the phenotypic and genotypic characteristics of 129 Chinese patients with ABCA4-RD. We found a mutation spectrum of Chinese patients which is considerably different from that of the Caucasian population and identified 35 novel ABCA4 mutations. We also reported some rare and special cases, such as, pedigrees with patients in two generations, patients diagnosed with cone-rod dystrophy or retinitis pigmentosa, patients with subretinal fibrosis and patients with preserved foveal structure. At the same time, we focused on the correlation between the genotypes and phenotypes. By the comprehensive analysis of multiple clinical examinations and the application of multiple regression analysis, we proved that patients with two "null" variants had a younger onset age and reached legal blindness earlier than patients with two "none-null" variants. Patients with one or more "none-null" variants tended to have better visual acuity and presented with milder fundus autofluorescence changes and more preserved rod functions on the full-field electroretinography than patients with two "null" variants. Furthermore, most patients with the p.(Phe2188Ser) variant shared a mild phenotype with a low fundus autofluorescence signal limited to the fovea and with normal full-field electroretinography responses. Our findings expand the variant spectrum of the ABCA4 gene and enhance the knowledge of Chinese patients with ABCA4-RD.
Collapse
Affiliation(s)
- Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China; Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Tokyo, 152-8902, Japan; Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Zou
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lei Wang
- Beijing Mei'ermu Hospital, Beijing, China
| | - Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Zhong
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
9
|
Sung YC, Yang CH, Yang CM, Lin CW, Huang DS, Huang YS, Hu FR, Chen PL, Chen TC. Genotypes Predispose Phenotypes-Clinical Features and Genetic Spectrum of ABCA4-Associated Retinal Dystrophies. Genes (Basel) 2020; 11:genes11121421. [PMID: 33261146 PMCID: PMC7759801 DOI: 10.3390/genes11121421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
The ABCA4 gene is one of the most common disease-causing genes of inherited retinal degeneration. In this study, we report different phenotypes of ABCA4-associated retinal dystrophies in the Taiwanese population, its clinical progression, and its relationship with genetic characteristics. Thirty-seven subjects were recruited and all patients underwent serial ophthalmic examinations at a single medical center. Fundus autofluorescence (FAF) images were quantified for clinical evaluation, and panel-based next-generation sequencing testing was performed for genetic diagnosis. Visual preservation, disease progression, and genotype–phenotype correlation were analyzed. In this cohort, ABCA4-associated retinal degeneration presented as Stargardt disease 1 (STGD1, 62.16%), retinitis pigmentosa (32.43%), and cone-rod dystrophy (5.41%). STGD1 could be further divided into central and dispersed types. In each phenotype, the lesion areas quantified by FAF increased with age (p < 0.01) and correlated with poorer visual acuity. However, three patients had the foveal sparing phenotype and had relatively preserved visual acuity. Forty-two ABCA4 variants were identified as disease-causing, with c.1804C>T (p.Arg602Trp) the most frequent (37.84%). Patients with a combination of severe/null variants could have more extensive phenotypes, such as arRP and dispersed STGD1. This is the first cohort study of ABCA4-associated retinal degeneration in Taiwan with wide spectrums of both genotypic and phenotypic characteristics. An extremely high prevalence of c.1804C>T, which has not been reported in East Asia before, was noted. The extensiveness of retinal involvement might be regarded as a spectrum of ABCA4-associated retinal dystrophies. Different types of genetic variations could lead to distinctive phenotypes, according to the coding impact of variants.
Collapse
Affiliation(s)
- Yu-Chi Sung
- Department of Medical Education, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (D.-S.H.); (Y.-S.H.); (F.-R.H.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (D.-S.H.); (Y.-S.H.); (F.-R.H.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (D.-S.H.); (Y.-S.H.); (F.-R.H.)
| | - Ding-Siang Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (D.-S.H.); (Y.-S.H.); (F.-R.H.)
| | - Yu-Shu Huang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (D.-S.H.); (Y.-S.H.); (F.-R.H.)
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (D.-S.H.); (Y.-S.H.); (F.-R.H.)
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| | - Ta-Ching Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-H.Y.); (C.-M.Y.); (C.-W.L.); (D.-S.H.); (Y.-S.H.); (F.-R.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (P.-L.C.); (T.-C.C.); Tel.: +886-2-23123456 (ext. 71942) (P.-L.C.); +886-2-23123456 (ext. 63783) (T.-C.C.); Fax: +886-2-23934420 (T.-C.C.)
| |
Collapse
|
10
|
|
11
|
Jonsson F, Westin IM, Österman L, Sandgren O, Burstedt M, Holmberg M, Golovleva I. ATP-binding cassette subfamily A, member 4 intronic variants c.4773+3A>G and c.5461-10T>C cause Stargardt disease due to defective splicing. Acta Ophthalmol 2018; 96:737-743. [PMID: 29461686 DOI: 10.1111/aos.13676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Inherited retinal dystrophies (IRDs) represent a group of progressive conditions affecting the retina. There is a great genetic heterogeneity causing IRDs, and to date, more than 260 genes are associated with IRDs. Stargardt disease, type 1 (STGD1) or macular degeneration with flecks, STGD1 represents a disease with early onset, central visual impairment, frequent appearance of yellowish flecks and mutations in the ATP-binding cassette subfamily A, member 4 (ABCA4) gene. A large number of intronic sequence variants in ABCA4 have been considered pathogenic although their functional effect was seldom demonstrated. In this study, we aimed to reveal how intronic variants present in patients with Stargardt from the same Swedish family affect splicing. METHODS The splicing of the ABCA4 gene was studied in human embryonic kidney cells, HEK293T, and in human retinal pigment epithelium cells, ARPE-19, using a minigene system containing variants c.4773+3A>G and c.5461-10T>C. RESULTS We showed that both ABCA4 variants, c.4773+3A>G and c.5461-10T>C, cause aberrant splicing of the ABCA4 minigene resulting in exon skipping. We also demonstrated that splicing of ABCA4 has different outcomes depending on transfected cell type. CONCLUSION Two intronic variants c.4773+3A>G and c.5461-10T>C, both predicted to affect splicing, are indeed disease-causing mutations due to skipping of exons 33, 34, 39 and 40 of ABCA4 gene. The experimental proof that ABCA4 mutations in STGD patients affect protein function is crucial for their inclusion to future clinical trials; therefore, functional testing of all ABCA4 intronic variants associated with Stargardt disease by minigene technology is desirable.
Collapse
Affiliation(s)
- Frida Jonsson
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Ida Maria Westin
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Lennart Österman
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Ola Sandgren
- Clinical Sciences/Ophthalmology; University of Umeå; Umeå Sweden
| | - Marie Burstedt
- Clinical Sciences/Ophthalmology; University of Umeå; Umeå Sweden
| | - Monica Holmberg
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| | - Irina Golovleva
- Medical Biosciences/Medical and Clinical Genetics; University of Umeå; Umeå Sweden
| |
Collapse
|
12
|
Abstract
PURPOSE To report the ultrawidefield fundus autofluorescence (UWF-FAF) patterns in ABC4A Stargardt disease. METHODS A retrospective cohort study of patients with a clinical diagnosis of Stargardt disease, confirmed ABCA4 genotype, and ultrawidefield fundus autofluorescence imaging using an Optos P200Tx. Four independent graders evaluated the images. Ultrawidefield fundus autofluorescence images were evaluated for the presence of posterior pole and peripheral findings, and were classified into one of three types (Type I: lesions confined to the macula with no peripheral findings; Type II: macular atrophy with flecks only in the periphery; Type III: macular atrophy and varying degrees of peripheral atrophy). RESULTS Ultrawidefield fundus autofluorescence was performed on 58 eyes of 29 patients. Reviews of images revealed the presence of peripheral (outside the 55° view of standard nonwidefield FAF imaging) alterations on UWF-FAF in 76% of eyes. Overall, the UWF-FAF pattern was classified as Type I in 24% eyes (14/58), Type II in 24% (14/58), and Type III in 52% (30/58). The most common genetic mutations were c.2588G>C (6/29 patients, 20.7%), and c.5882G>A (5/29 patients, 17.2%). CONCLUSION Ultrawidefield fundus autofluorescence reveals peripheral changes in the majority of patients with Stargardt disease. Peripheral FAF changes may have implications for diagnosis, prognosis, and management of individual patients with Stargardt disease.
Collapse
|
13
|
Schulz HL, Grassmann F, Kellner U, Spital G, Rüther K, Jägle H, Hufendiek K, Rating P, Huchzermeyer C, Baier MJ, Weber BHF, Stöhr H. Mutation Spectrum of the ABCA4 Gene in 335 Stargardt Disease Patients From a Multicenter German Cohort-Impact of Selected Deep Intronic Variants and Common SNPs. Invest Ophthalmol Vis Sci 2017; 58:394-403. [PMID: 28118664 PMCID: PMC5270621 DOI: 10.1167/iovs.16-19936] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose Stargardt disease (STGD1) is an autosomal recessive retinopathy, caused by mutations in the retina-specific ATP-binding cassette transporter (ABCA4) gene. To establish the mutational spectrum and to assess effects of selected deep intronic and common genetic variants on disease, we performed a comprehensive sequence analysis in a large cohort of German STGD1 patients. Methods DNA samples of 335 STGD1 patients were analyzed for ABCA4 mutations in its 50 coding exons and adjacent intronic sequences by resequencing array technology or next generation sequencing (NGS). Parts of intron 30 and 36 were screened by Sanger chain-terminating dideoxynucleotide sequencing. An in vitro splicing assay was used to test selected variants for their splicing behavior. By logistic regression analysis we assessed the association of common ABCA4 alleles while a multivariate logistic regression model calculated a genetic risk score (GRS). Results Our analysis identified 148 pathogenic or likely pathogenic mutations, of which 48 constitute so far unpublished ABCA4-associated disease alleles. Four rare deep intronic variants were found once in 472 alleles analyzed. In addition, we identified six risk-modulating common variants. Genetic risk score estimates suggest that defined common ABCA4 variants influence disease risk in carriers of a single pathogenic ABCA4 allele. Conclusions Our study adds to the mutational spectrum of the ABCA4 gene. Moreover, in our cohort, deep intronic variants in intron 30 and 36 likely play no or only a minor role in disease pathology. Of note, our findings demonstrate a possible modifying effect of common sequence variants on ABCA4-associated disease.
Collapse
Affiliation(s)
- Heidi L Schulz
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany 3RetinaScience, Bonn, Germany
| | - Georg Spital
- Department of Ophthalmology, St. Franziskus-Hospital, Münster, Germany
| | | | - Herbert Jägle
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | | | - Philipp Rating
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Maria J Baier
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Kong X, Strauss RW, Cideciyan AV, Michaelides M, Sahel JA, Munoz B, Ahmed M, Ervin AM, West SK, Cheetham JK, Scholl HPN. Visual Acuity Change over 12 Months in the Prospective Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study: ProgStar Report Number 6. Ophthalmology 2017; 124:1640-1651. [PMID: 28549516 DOI: 10.1016/j.ophtha.2017.04.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To estimate the yearly rate of change of best-corrected visual acuity (BCVA) and the risk of loss 1 line or more over 1 year and to identify risk factors for BCVA loss in patients with Stargardt disease (STGD1). DESIGN Multicenter, prospective cohort study. PARTICIPANTS Two hundred fifty-nine patients (489 eyes) with molecularly confirmed STGD1 enrolled at 9 centers in the United States and Europe. METHODS Participants were followed up every 6 months, and data at the baseline and 6- and 12-month visits were analyzed. Best-corrected visual acuity was measured using the Early Treatment Diabetic Retinopathy Study (ETDRS) protocol. Standardized reporting forms were used to collect participants' characteristics and clinical observations. Linear mixed effects models were used to estimate the rate of BCVA loss. Linear models with generalized estimating equations were used to identify risk factors for BCVA loss of 1 line or more over 1 year. MAIN OUTCOME MEASURES Change in BCVA over 1 year. RESULTS Cross-sectional analysis at baseline showed that earlier symptom onset and longer duration since onset was associated with worse BCVA. Longitudinal analysis showed no overall significant change of BCVA within 12 months, but the rate of BCVA change was significantly different by baseline BCVA (P < 0.001). The BCVA of eyes with baseline BCVA of 20/25 or better declined at a rate of 2.8 ETDRS letters per year (P = 0.10), eyes with baseline BCVA between 20/25 and 20/70 declined at a rate of 2.3 ETDRS letters per year (P = 0.002), eyes with baseline BCVA between 20/70 and 20/200 declined at a rate of 0.8 ETDRS letters per year (P = 0.08), and eyes with baseline BCVA worse than 20/200 showed a significant improvement of 2.3 ETDRS letters per year (P < 0.001). Overall, 12.9% of eyes lost 1 line or more, and the risk of such BCVA loss was different by baseline BCVA level (P = 0.016). Smoking and vitamin A use was not associated significantly with baseline BCVA, nor with rate of BCVA loss over 1 year. CONCLUSIONS Change in BCVA in STGD1 patients over a 12-month period was small, but varied depending on baseline BCVA. Given the slow change during 1 year, BCVA is unlikely to be a sensitive outcome measure for STGD1 treatment trials with 1 year's duration.
Collapse
Affiliation(s)
- Xiangrong Kong
- School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Rupert W Strauss
- Department of Ophthalmology, Johannes Kepler University Linz, Linz, Austria; Department of Ophthalmology, Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michel Michaelides
- Department of Ophthalmology, Moorfields Eye Hospital, London, United Kingdom; UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - José-Alain Sahel
- Brain Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beatriz Munoz
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Mohamed Ahmed
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Ann M Ervin
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Sheila K West
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | | | - Hendrik P N Scholl
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland; Department of Ophthalmology, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
15
|
Aukrust I, Jansson RW, Bredrup C, Rusaas HE, Berland S, Jørgensen A, Haug MG, Rødahl E, Houge G, Knappskog PM. The intronic ABCA4 c.5461-10T>C variant, frequently seen in patients with Stargardt disease, causes splice defects and reduced ABCA4 protein level. Acta Ophthalmol 2017; 95:240-246. [PMID: 27775217 DOI: 10.1111/aos.13273] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/27/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE Despite being the third most common ABCA4 variant observed in patients with Stargardt disease, the functional effect of the intronic ABCA4 variant c.5461-10T>C is unknown. The purpose of this study was to investigate the molecular effect of this variant. METHODS Fibroblast samples from patients carrying the ABCA4 variant c.5461-10T>C were analysed by isolating total RNA, followed by real-time polymerase chain reaction (RT-PCR) using specific primers spanning the variant. For detection of ABCA4 protein, fibroblast samples were lysed and analysed by SDS-PAGE followed by immunoblotting using a monoclonal ABCA4 antibody. RESULTS The ABCA4 variant c.5461-10T>C causes a splicing defect resulting in the reduction of full-length mRNA in fibroblasts from patients and the presence of alternatively spliced mRNAs where exon 39-40 is skipped. A reduced level of full-length ABCA4 protein is observed compared to controls not carrying the variant. CONCLUSIONS This study describes the functional effect and the molecular mechanism of the pathogenic ABCA4 variant c.5461-10T>C. The variant is functionally important as it leads to splicing defects and a reduced level of ABCA4 protein.
Collapse
Affiliation(s)
- Ingvild Aukrust
- Center for Medical Genetics and Molecular Medicine; Haukeland University Hospital; Bergen Norway
| | - Ragnhild W. Jansson
- Department of Ophthalmology; Haukeland University Hospital; Bergen Norway
- Department of Clinical Medicine; University of Bergen; Bergen Norway
| | - Cecilie Bredrup
- Department of Ophthalmology; Haukeland University Hospital; Bergen Norway
| | - Hilde E. Rusaas
- Center for Medical Genetics and Molecular Medicine; Haukeland University Hospital; Bergen Norway
| | - Siren Berland
- Center for Medical Genetics and Molecular Medicine; Haukeland University Hospital; Bergen Norway
| | - Agnete Jørgensen
- Division of Child and Adolescent Health; Medical Genetics Department; University Hospital of North Norway; Tromsø Norway
| | - Marte G. Haug
- Department of Pathology and Medical Genetics; St. Olav's University Hospital; Trondheim Norway
| | - Eyvind Rødahl
- Department of Ophthalmology; Haukeland University Hospital; Bergen Norway
- Department of Clinical Medicine; University of Bergen; Bergen Norway
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine; Haukeland University Hospital; Bergen Norway
| | - Per M. Knappskog
- Center for Medical Genetics and Molecular Medicine; Haukeland University Hospital; Bergen Norway
- Department of Clinical Science; University of Bergen; Bergen Norway
| |
Collapse
|
16
|
Cornelis SS, Bax NM, Zernant J, Allikmets R, Fritsche LG, den Dunnen JT, Ajmal M, Hoyng CB, Cremers FPM. In Silico Functional Meta-Analysis of 5,962 ABCA4 Variants in 3,928 Retinal Dystrophy Cases. Hum Mutat 2017; 38:400-408. [PMID: 28044389 DOI: 10.1002/humu.23165] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022]
Abstract
Variants in the ABCA4 gene are associated with a spectrum of inherited retinal diseases (IRDs), most prominently with autosomal recessive (ar) Stargardt disease (STGD1) and ar cone-rod dystrophy. The clinical outcome to a large degree depends on the severity of the variants. To provide an accurate prognosis and to select patients for novel treatments, functional significance assessment of nontruncating ABCA4 variants is important. We collected all published ABCA4 variants from 3,928 retinal dystrophy cases in a Leiden Open Variation Database, and compared their frequency in 3,270 Caucasian IRD cases with 33,370 non-Finnish European control individuals. Next to the presence of 270 protein-truncating variants, 191 nontruncating variants were significantly enriched in the patient cohort. Furthermore, 30 variants were deemed benign. Assessing the homozygous occurrence of frequent variants in IRD cases based on the allele frequencies in control individuals confirmed the mild nature of the p.[Gly863Ala, Gly863del] variant and identified three additional mild variants (p.(Ala1038Val), c.5714+5G>A, and p.(Arg2030Gln)). The p.(Gly1961Glu) variant was predicted to act as a mild variant in most cases. Based on these data, in silico analyses, and American College of Medical Genetics and Genomics guidelines, we provide pathogenicity classifications on a five-tier scale from benign to pathogenic for all variants in the ABCA4-LOVD database.
Collapse
Affiliation(s)
- Stéphanie S Cornelis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nathalie M Bax
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York.,Department of Pathology & Cell Biology, Columbia University, New York, New York
| | - Lars G Fritsche
- Department of Public Health, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Johan T den Dunnen
- Departments of Clinical Genetics and Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Muhammad Ajmal
- Department of Biosciences, Faculty of Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Kong X, Strauss RW, Michaelides M, Cideciyan AV, Sahel JA, Muñoz B, West S, Scholl HPN. Visual Acuity Loss and Associated Risk Factors in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 2). Ophthalmology 2016; 123:1887-97. [PMID: 27378015 DOI: 10.1016/j.ophtha.2016.05.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To examine the association between characteristics of Stargardt disease and visual acuity (VA), to estimate the longitudinal rate of VA loss, and to identify risk factors for VA loss. DESIGN Retrospective, multicenter cohort study. PARTICIPANTS A total of 176 patients (332 eyes) with molecularly and clinically confirmed Stargardt disease enrolled from the United States and Europe. METHODS Standardized data report forms were used to collect retrospective data on participants' characteristics and best-corrected or presenting VA from medical charts. Linear models with generalized estimating equations were used to estimate the cross-sectional associations, and linear mixed effects models were used to estimate the longitudinal VA loss. MAIN OUTCOME MEASURES Yearly change in VA. RESULTS The median duration of observation was 3.6 years. At baseline, older age of symptom onset was associated with better VA, and a longer duration of symptoms was associated with worse VA. Longitudinal analysis estimated an average of 0.3 lines loss (P < 0.0001) per year overall, but the rate varied according to baseline VA: (1) eyes with baseline VA ≥20/25 (N = 53) declined at a rate of approximately 1.0 line per year; (2) eyes with VA between 20/25 and 20/70 (N = 65) declined at a rate of approximately 0.9 lines per year; (3) eyes with VA between 20/70 and 20/200 (N = 163) declined at a rate of 0.2 lines per year; and (4) eyes with VA worse than 20/200 (n = 49) improved at a rate of 0.5 lines per year. Older age of onset was associated with slower VA loss: Patients with onset age >30 years showed 0.4 lines slower change of VA per year (P = 0.01) compared with patients with onset age ≤14 years. CONCLUSIONS Given the overall slow rate of VA loss, VA is unlikely to be a sensitive outcome measure for treatment trials of Stargardt disease. However, given the faster decline in younger patients and those with no or mild visual impairment, VA may be a potential outcome measure for trials targeting such subgroups of patients. These observations will need to be assessed in a prospective study bearing in mind the inherent limitations of retrospective datasets.
Collapse
Affiliation(s)
- Xiangrong Kong
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland; Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Rupert W Strauss
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland; Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, Medical University Graz and Johannes Kepler University Linz, Linz, Austria
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - José-Alain Sahel
- Sorbonne Universités, University Pierre et Marie Curie Université de Paris 06, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - Beatriz Muñoz
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | - Sheila West
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | | | | |
Collapse
|
18
|
The Natural History of the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Studies. Ophthalmology 2016; 123:817-28. [DOI: 10.1016/j.ophtha.2015.12.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
|
19
|
Manifestaciones clínicas en 4 casos con enfermedad de Stargardt. REVISTA MEXICANA DE OFTALMOLOGÍA 2016. [DOI: 10.1016/j.mexoft.2015.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Abstract
PURPOSE OF REVIEW We are witnessing lightning-fast advances in the molecular diagnosis of inherited retinal dystrophies, mainly due to the widespread use of next-generation sequencing technologies. The purpose of this review is to highlight the breadth of findings from this in-depth testing approach, and to propose changes to our traditional testing and diagnostic paradigms. Lessons learned from modern molecular testing suggest that the previous concept of inherited retinal dystrophies as a group of 'single gene diseases' may require a significant update. RECENT FINDINGS All of the known retinal dystrophies genes can now be sequenced. In many cases, this nonhypothesis driven testing strategy is uncovering mutations in unsuspected genes, generating data that challenges established concepts of genetic mechanisms and provides insights regarding genes previously thought to be exclusively related to syndromic disease. Recent advances in testing have improved not only the breadth, but also the depth of genetic data. For example, deep intronic sequencing has uncovered many novel intronic mutations/variations in the ABCA4 gene. SUMMARY Currently, in approximately 50-60% of patients with nonsyndromic retinal dystrophy, the disease mechanism can be identified. The presence of pathogenic alleles in more than one gene is not uncommon. Retinal dystrophy, with relatively defined clinical presentations and a large but limited number of genes involved, is becoming a model for the next-generation study of molecular disease mechanisms.
Collapse
|