1
|
Suanno G, Genna VG, Maurizi E, Dieh AA, Griffith M, Ferrari G. Cell therapy in the cornea: The emerging role of microenvironment. Prog Retin Eye Res 2024; 102:101275. [PMID: 38797320 DOI: 10.1016/j.preteyeres.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The cornea is an ideal testing field for cell therapies. Its highly ordered structure, where specific cell populations are sequestered in different layers, together with its accessibility, has allowed the development of the first stem cell-based therapy approved by the European Medicine Agency. Today, different techniques have been proposed for autologous and allogeneic limbal and non-limbal cell transplantation. Cell replacement has also been attempted in cases of endothelial cell decompensation as it occurs in Fuchs dystrophy: injection of cultivated allogeneic endothelial cells is now in advanced phases of clinical development. Recently, stromal substitutes have been developed with excellent integration capability and transparency. Finally, cell-derived products, such as exosomes obtained from different sources, have been investigated for the treatment of severe corneal diseases with encouraging results. Optimization of the success rate of cell therapies obviously requires high-quality cultured cells/products, but the role of the surrounding microenvironment is equally important to allow engraftment of transplanted cells, to preserve their functions and, ultimately, lead to restoration of tissue integrity and transparency of the cornea.
Collapse
Affiliation(s)
- Giuseppe Suanno
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Eleonora Maurizi
- Centre for Regenerative Medicine ''S. Ferrari'', University of Modena and Reggio Emilia, Modena, Italy
| | - Anas Abu Dieh
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - May Griffith
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada.
| | - Giulio Ferrari
- Vita-Salute San Raffaele University, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
2
|
Yao Q, Wu H, Ren H, Cao J, Shao Y, Liu G, Lu P. Inhibition of Experimental Corneal Neovascularization by the Tight Junction Protein ZO-1. J Ocul Pharmacol Ther 2024; 40:379-388. [PMID: 39172123 DOI: 10.1089/jop.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Purpose: To explore the effects of the tight junction protein zonula occludens 1 (ZO-1) on experimental corneal neovascularization (CNV). Methods: CNV models were established in the left eyes of BALB/c mice using NaOH. Anti-ZO-1 neutralizing antibody was topically applied to the burnt corneas after modeling thrice a day for 1 week. CD31 expression was analyzed to calculate the ratio of CNV number to area using a corneal whole-mount fluorescent immunohistochemical assay. Messenger ribonucleic acid (mRNA) and protein expression levels of ZO-1, vascular endothelial growth factor (VEGF), interleukin (IL)-1β, IL-6, IL-8, IL-18, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), phosphorylated protein kinase C (pPKC), and clusterin in burned corneas were detected by reverse transcriptase polymerase chain reaction (PCR) and western blot analyses. Infiltration of neutrophils, macrophages, and progenitor cells was examined by flow cytometry. Results: CNV was obviously greater in 45 s than in 15 s alkali injury group. In another experiment, CNV was obviously greater in the ZO-1 antibody group than in the vehicle-treated group. Corneal mRNA and protein expression levels of VEGF, IL-1β, IL-6, IL-8, IL-18, and MCP-1 were significantly higher in the ZO-1 antibody group than in the control group. Infiltration of neutrophils, macrophages, and progenitor cells was significantly greater in the ZO-1 antibody group than in the control group. TNF-α expression was much higher in 45 s than in 15 s alkali injury group. However, protein expression of pPKC and clusterin was much lower in 45 s than in 15 s alkali injury group. Conclusions: Anti-ZO-1 neutralizing antibody-treated mice exhibited enhanced alkali-induced CNV through enhanced intracorneal infiltration of progenitor and inflammatory cells.
Collapse
Affiliation(s)
- Qingying Yao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongya Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hang Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiufa Cao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Shao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Attico E, Galaverni G, Torello A, Bianchi E, Bonacorsi S, Losi L, Manfredini R, Lambiase A, Rama P, Pellegrini G. Comparison between Cultivated Oral Mucosa and Ocular Surface Epithelia for COMET Patients Follow-Up. Int J Mol Sci 2023; 24:11522. [PMID: 37511281 PMCID: PMC10380900 DOI: 10.3390/ijms241411522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Total bilateral Limbal Stem Cell Deficiency is a pathologic condition of the ocular surface due to the loss of corneal stem cells. Cultivated oral mucosa epithelial transplantation (COMET) is the only autologous successful treatment for this pathology in clinical application, although abnormal peripheric corneal vascularization often occurs. Properly characterizing the regenerated ocular surface is needed for a reliable follow-up. So far, the univocal identification of transplanted oral mucosa has been challenging. Previously proposed markers were shown to be co-expressed by different ocular surface epithelia in a homeostatic or perturbated environment. In this study, we compared the transcriptome profile of human oral mucosa, limbal and conjunctival cultured holoclones, identifying Paired Like Homeodomain 2 (PITX2) as a new marker that univocally distinguishes the transplanted oral tissue from the other epithelia. We validated PITX2 at RNA and protein levels to investigate 10-year follow-up corneal samples derived from a COMET-treated aniridic patient. Moreover, we found novel angiogenesis-related factors that were differentially expressed in the three epithelia and instrumental in explaining the neovascularization in COMET-treated patients. These results will support the follow-up analysis of patients transplanted with oral mucosa and provide new tools to understand the regeneration mechanism of transplanted corneas.
Collapse
Affiliation(s)
- Eustachio Attico
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Galaverni
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Torello
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Susanna Bonacorsi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lorena Losi
- Unit of Pathology, Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Paolo Rama
- SC Ophathalmology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| |
Collapse
|
4
|
Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, Bonini S. Corneal angiogenic privilege and its failure. Exp Eye Res 2021; 204:108457. [PMID: 33493471 PMCID: PMC10760381 DOI: 10.1016/j.exer.2021.108457] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
The cornea actively maintains its own avascular status to preserve its ultimate optical function. This corneal avascular state is also defined as "corneal angiogenic privilege", which results from a critical and sensitive balance between anti-angiogenic and pro-angiogenic mechanisms. In our review, we aim to explore the complex equilibrium among multiple mediators which prevents neovascularization in the resting cornea, as well as to unveil the evolutive process which leads to corneal angiogenesis in response to different injuries.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy.
| | - Daniele Gaudenzi
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Jia Yin
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Merle Fernandes
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India
| | - Reza Dana
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
5
|
Binotti WW, Koseoglu ND, Nosé RM, Kenyon KR, Hamrah P. Novel Parameters to Assess the Severity of Corneal Neovascularization Using Anterior Segment Optical Coherence Tomography Angiography. Am J Ophthalmol 2021; 222:206-217. [PMID: 32822670 DOI: 10.1016/j.ajo.2020.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 08/11/2020] [Indexed: 01/23/2023]
Abstract
PURPOSE Assessment of anterior segment-optical coherence tomography angiography (AS-OCTA) to determine severity of corneal neovascularization (CoNV). DESIGN Retrospective, cross-sectional, single-center study. METHODS Patients of various CoNV etiologies were selected and classified into mild, moderate, and severe. Their AS-OCTA images were measured for CoNV anterior limit, CoNV posterior limit, CoNV thickness, CoNV depth%, CoNV vessel density, CoNV area, and CoNV volume. Further, AS-OCTA parameters were correlated to clinical parameters, such as classification, a numerical severity scale, vascular clock hours, and best-corrected visual acuity (BCVA). RESULTS A total of 19 mild, 10 moderate, and 6 severe CoNV eyes were included with no significant age-gender differences. CoNV depth% and volume increased from mild to moderate (9.3 ± 1.1% to 17.7 ± 3.3%, P = .030, and 0.2 ± 0.1 mm3 to 1.0 ± 0.3 mm3, P = .025, respectively) and from moderate to severe CoNV (44.6 ± 5.3%, P < .001, and 2.0 ± 0.3 mm3, P = .014, respectively). CoNV area and posterior limit increased from mild to moderate (1.7 ± 0.3 mm2 to 4.6 ± 0.7 mm2, P = .001, and 217.7 ± 16.8 μm to 349.1 ± 54.9 μm, P = .048, respectively), not from moderate to severe (P = .999 and P = .403, respectively). CoNV thickness increased from moderate to severe (218.2 ± 46.6 μm to 340.2 ± 8.7 μm, P = .020), but not from mild to moderate. CoNV area and volume showed good correlations to CoNV staging (r = 0.703 and r = 0.771, respectively; P < .001) and severity scale (r = 0.794 and r = 0.712, respectively; P < .001). CoNV area showed good correlation to clock hours (r = 0.749, P < .001). CoNV depth and volume showed good correlation to BCVA (r = 0.744 and r = 0.722, respectively; P < .001). CoNV anterior limit and vessel density showed no significant correlations (P ≥ .05). CONCLUSIONS Severe CoNV shows greater CoNV posterior limit, thickness, depth%, area, and volume on AS-OCTA compared to mild. CoNV volume and depth strongly correlate to BCVA. AS-OCTA provides novel, quantitative, and noninvasive parameters for assessing CoNV severity.
Collapse
|
6
|
Di Zazzo A, Lee SM, Sung J, Niutta M, Coassin M, Mashaghi A, Inomata T. Variable Responses to Corneal Grafts: Insights from Immunology and Systems Biology. J Clin Med 2020; 9:E586. [PMID: 32098130 PMCID: PMC7074162 DOI: 10.3390/jcm9020586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal grafts interact with their hosts via complex immunobiological processes that sometimes lead to graft failure. Prediction of graft failure is often a tedious task due to the genetic and nongenetic heterogeneity of patients. As in other areas of medicine, a reliable prediction method would impact therapeutic decision-making in corneal transplantation. Valuable insights into the clinically observed heterogeneity of host responses to corneal grafts have emerged from multidisciplinary approaches, including genomics analyses, mechanical studies, immunobiology, and theoretical modeling. Here, we review the emerging concepts, tools, and new biomarkers that may allow for the prediction of graft survival.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Sang-Mok Lee
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Korea;
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon 21388, Korea
| | - Jaemyoung Sung
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA;
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| | - Matteo Niutta
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| |
Collapse
|
7
|
Nominato LF, Dias AC, Dias LC, Fantucci MZ, Mendes da Silva LEC, Murashima ADA, Rocha EM. Prevention of Corneal Neovascularization by Adenovirus Encoding Human Vascular Endothelial Growth Factor Soluble Receptor (s-VEGFR1) in Lacrimal Gland. Invest Ophthalmol Vis Sci 2019; 59:6036-6044. [PMID: 30574658 DOI: 10.1167/iovs.17-22322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aims of this study were (1) to determine the efficacy of adenovirus vector serotype 5 (Ad) encoding human soluble VEGF receptor 1 (s-VEGFR1) gene transfer to the lacrimal gland (LG); (2) to investigate whether expression of s-VEGFR1 prevents corneal neovascularization (CNV) induced by alkali burns; and (3) to evaluate the safety of the procedure. Methods AdVEGFR1 vectors (25 μL, 1 × 1010 pfu/mL) were injected in the right LGs of rats and were compared with AdNull vector (25 μL, 1 × 1010 pfu/mL) or 25 μL of saline (Control) before cornea alkali burns with 1 M NaOH. After 7 days, CNV was documented at the slit lamp. Tear secretion was measured with phenol red threads. The animals were tested for s-VEGFR1 mRNA and protein in the LG by quantitative (q)PCR and immunohistochemistry staining, respectively. qPCR was used to compare the mRNA levels of IL-1β, IL-6, and TNF-α in the LG and ipsilateral trigeminal ganglion (TG). Results Ad-VEGFR1 transfected 83% (10/12) of the rats. VEGFR1 was present in LG acinar cells. CNV was prevented in 9 of 12 animals in the Ad-VEGFR1 group, compared with the Ad-Null (3:10) and Control groups (1:10) (P = 0.0317). The tear secretion and cytokine mRNA levels in the LG and TG were similar in all three groups (P > 0.05). Conclusions Adenoviral vector gene transfer was safe for LG structure and function. The LG as the target tissue showed local expression of human s-VEGFR1, and CNV was prevented in most of the eyes exposed to alkali burns.
Collapse
Affiliation(s)
- Luis Fernando Nominato
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Ana Carolina Dias
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Lara Cristina Dias
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Marina Zilio Fantucci
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | - Adriana de Andrade Murashima
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
8
|
Liu CH, Wang Z, Sun Y, Chen J. Animal models of ocular angiogenesis: from development to pathologies. FASEB J 2017; 31:4665-4681. [PMID: 28739642 DOI: 10.1096/fj.201700336r] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Pathological angiogenesis in the eye is an important feature in the pathophysiology of many vision-threatening diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration, as well as corneal diseases with abnormal angiogenesis. Development of reproducible and reliable animal models of ocular angiogenesis has advanced our understanding of both the normal development and the pathobiology of ocular neovascularization. These models have also proven to be valuable experimental tools with which to easily evaluate potential antiangiogenic therapies beyond eye research. This review summarizes the current available animal models of ocular angiogenesis. Models of retinal and choroidal angiogenesis, including oxygen-induced retinopathy, laser-induced choroidal neovascularization, and transgenic mouse models with deficient or spontaneous retinal/choroidal neovascularization, as well as models with induced corneal angiogenesis, are widely used to investigate the molecular and cellular basis of angiogenic mechanisms. Theoretical concepts and experimental protocols of these models are outlined, as well as their advantages and potential limitations, which may help researchers choose the most suitable models for their investigative work.-Liu, C.-H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies.
Collapse
Affiliation(s)
- Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhongxiao Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Zhang L, Li G, Sessa R, Kang GJ, Shi M, Ge S, Gong AJ, Wen Y, Chintharlapalli S, Chen L. Angiopoietin-2 Blockade Promotes Survival of Corneal Transplants. Invest Ophthalmol Vis Sci 2017; 58:79-86. [PMID: 28061513 PMCID: PMC5231909 DOI: 10.1167/iovs.16-20485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Corneal transplantation remains the last hope for vision restoration, and lymphangiogenesis (LG) is a primary mediator of transplant rejection. This study was to investigate the specific role of angiopoietin-2 (Ang-2) in transplantation-associated LG and graft rejection. Methods Orthotopic corneal transplantation was performed between fully mismatched C57BL/6 (donor) and BALB/c (recipient) mice to assess the effects of Ang-2 blockade via neutralizing antibody. Grafts were evaluated in vivo by ophthalmic slit-lamp biomicroscopy and anterior segment optical coherence tomography (OCT) up to 8 weeks after surgery. Additionally, whole-mount corneas were analyzed for lymphatic and blood vessels and macrophages by immunofluorescent microscopy, and draining lymph nodes were assessed for donor-derived cells by flow cytometry. Results Anti-Ang-2 treatment significantly suppressed LG and graft rejection. In this study, we achieved 75% suppression of LG and 80% graft survival. Our approach also inhibited donor-derived cell trafficking to draining lymph nodes and affected macrophage morphologic phenotypes in the grafted corneas. Additionally, Ang-2 blockade also reduced central corneal thickening, a parameter strongly associated with graft rejection. Conclusions Ang-2 is critically involved in corneal transplant rejection and anti-Ang-2 treatment significantly improves the outcomes of corneal grafts. Moreover, we have shown that anterior segment OCT offers a new tool to monitor murine corneal grafts in vivo. This study not only reveals new mechanisms for transplant rejection, but also offers a novel strategy to treat it.
Collapse
Affiliation(s)
- Liwei Zhang
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States 3Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangyu Li
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Roberto Sessa
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Gyeong Jin Kang
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Meng Shi
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States 3Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shaokui Ge
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Anna Jiang Gong
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Ying Wen
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Sudhakar Chintharlapalli
- Angiogenesis & Tumor Microenvironment Biology, Eli Lilly and Company, Indianapolis, Indiana, United States
| | - Lu Chen
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| |
Collapse
|