1
|
Tam BM, Burns P, Chiu CN, Moritz OL. Synchronized Photoactivation of T4K Rhodopsin Causes a Chromophore-Dependent Retinal Degeneration That Is Moderated by Interaction with Phototransduction Cascade Components. J Neurosci 2024; 44:e0453242024. [PMID: 39089885 PMCID: PMC11376340 DOI: 10.1523/jneurosci.0453-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Multiple mutations in the Rhodopsin gene cause sector retinitis pigmentosa in humans and a corresponding light-exacerbated retinal degeneration (RD) in animal models. Previously we have shown that T4K rhodopsin requires photoactivation to exert its toxic effect. Here we further investigated the mechanisms involved in rod cell death caused by T4K rhodopsin in mixed male and female Xenopus laevis In this model, RD was prevented by rearing animals in constant darkness but surprisingly also in constant light. RD was maximized by light cycles containing at least 1 h of darkness and 20 min of light exposure, light intensities >750 lux, and by a sudden light onset. Under conditions of frequent light cycling, RD occurred rapidly and synchronously, with massive shedding of ROS fragments into the RPE initiated within hours and subsequent death and phagocytosis of rod cell bodies. RD was minimized by reduced light levels, pretreatment with constant light, and gradual light onset. RD was prevented by genetic ablation of the retinal isomerohydrolase RPE65 and exacerbated by ablation of phototransduction components GNAT1, SAG, and GRK1. Our results indicate that photoactivated T4K rhodopsin is toxic, that cell death requires synchronized photoactivation of T4K rhodopsin, and that toxicity is mitigated by interaction with other rod outer segment proteins regardless of whether they participate in activation or shutoff of phototransduction. In contrast, RD caused by P23H rhodopsin does not require photoactivation of the mutant protein, as it was exacerbated by RPE65 ablation, suggesting that these phenotypically similar disorders may require different treatment strategies.
Collapse
Affiliation(s)
- Beatrice M Tam
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Paloma Burns
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Colette N Chiu
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British Columbia V5Z 3N9, Canada
| |
Collapse
|
2
|
DeBoer CMT, Rasmussen DK, Franco JA, Mahajan VB. Emerging Oral Pharmaceuticals for Dry Age-Related Macular Degeneration: Mechanism of Action, Current Clinical Status, and Future Directions. Ophthalmic Surg Lasers Imaging Retina 2024; 55:528-534. [PMID: 38917394 DOI: 10.3928/23258160-20240430-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Dry age-related macular degeneration (AMD) has been historically managed with lifestyle modifications, monitoring for conversion to wet AMD, and vitamins. Recently there has been a flurry of research focused on discovering new targets to prevent worsening of dry AMD. In 2023, the US Food and Drug Administration approved the first two intravitreal complement inhibitors to slow the rate of geographic atrophy progression. However, serial intravitreal injections for a chronic progressive disease are burdensome for patients and have procedural risks. Therefore, there is significant research to discover novel oral medications to manage dry AMD. Several oral medications are currently in phase 2 and 3 clinical trials for dry AMD, whereas others have had recent readouts on their clinical trials and efficacy. The purpose of this review is to describe the therapeutic pathways currently being investigated and to provide an update on the clinical status of novel oral medications for the management of dry AMD. [Ophthalmic Surg Lasers Imaging Retina 2024;55:528-534.].
Collapse
|
3
|
Ghenciu LA, Hațegan OA, Stoicescu ER, Iacob R, Șișu AM. Emerging Therapeutic Approaches and Genetic Insights in Stargardt Disease: A Comprehensive Review. Int J Mol Sci 2024; 25:8859. [PMID: 39201545 PMCID: PMC11354485 DOI: 10.3390/ijms25168859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Stargardt disease, one of the most common forms of inherited retinal diseases, affects individuals worldwide. The primary cause is mutations in the ABCA4 gene, leading to the accumulation of toxic byproducts in the retinal pigment epithelium (RPE) and subsequent photoreceptor cell degeneration. Over the past few years, research on Stargardt disease has advanced significantly, focusing on clinical and molecular genetics. Recent studies have explored various innovative therapeutic approaches, including gene therapy, stem cell therapy, and pharmacological interventions. Gene therapy has shown promise, particularly with adeno-associated viral (AAV) vectors capable of delivering the ABCA4 gene to retinal cells. However, challenges remain due to the gene's large size. Stem cell therapy aims to replace degenerated RPE and photoreceptor cells, with several clinical trials demonstrating safety and preliminary efficacy. Pharmacological approaches focus on reducing toxic byproduct accumulation and modulating the visual cycle. Precision medicine, targeting specific genetic mutations and pathways, is becoming increasingly important. Novel techniques such as clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 offer potential for directly correcting genetic defects. This review aims to synthesize recent advancements in understanding and treating Stargardt disease. By highlighting breakthroughs in genetic therapies, stem cell treatments, and novel pharmacological strategies, it provides a comprehensive overview of emerging therapeutic options.
Collapse
Affiliation(s)
- Laura Andreea Ghenciu
- Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, Vasile Goldis Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania
| | - Emil Robert Stoicescu
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timișoara, Mihai Viteazul Boulevard No. 1, 300222 Timișoara, Romania; (E.R.S.); (R.I.)
- Department of Radiology and Medical Imaging, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Roxana Iacob
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timișoara, Mihai Viteazul Boulevard No. 1, 300222 Timișoara, Romania; (E.R.S.); (R.I.)
- Department of Anatomy and Embriology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, 300041 Timișoara, Romania;
| | - Alina Maria Șișu
- Department of Anatomy and Embriology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, 300041 Timișoara, Romania;
| |
Collapse
|
4
|
Mizobuchi K, Hayashi T, Tanaka K, Kuniyoshi K, Murakami Y, Nakamura N, Torii K, Mizota A, Sakai D, Maeda A, Kominami T, Ueno S, Kusaka S, Nishiguchi KM, Ikeda Y, Kondo M, Tsunoda K, Hotta Y, Nakano T. Genetic and Clinical Features of ABCA4-Associated Retinopathy in a Japanese Nationwide Cohort. Am J Ophthalmol 2024; 264:36-43. [PMID: 38499139 DOI: 10.1016/j.ajo.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE To clarify the genetic and clinical features of Japanese patients with ABCA4-associated retinopathy. DESIGN Retrospective, multicenter cohort study. METHODS Patients with retinal degeneration and biallelic ABCA4 variants were recruited from 13 different hospitals. Whole exome sequencing analysis was used for genetic testing. Comprehensive ophthalmic examinations were performed on matched patients. The primary outcome measure was identifying multimodal retinal imaging findings associated with disease progression. RESULTS This study included 63 patients: 19 with missense/missense, 23 with missense/truncation, and 21 with truncation/truncation genotypes. In total, 62 variants were identified, including 29 novel variants. Six patients had a mild phenotype characterized by foveal-sparing or preserved foveal structure, including 4 with missense/missense and 2 with missense/truncation genotypes. The p.Arg212His variant was the most frequent in patients with mild phenotypes (4/12 alleles). Clinical findings showed a disease duration-dependent worsening of the phenotypic stage. Patients with the truncation/truncation genotype exhibited rapid retinal degeneration within a few years and definite fundus autofluorescence imaging patterns, including hyper autofluorescence at the macula and few or no flecks. CONCLUSIONS Our results indicate that missense/missense or missense/truncation genotypes, including the p.Arg212His variant, are associated with a relatively mild phenotype. In contrast, the truncation/truncation genotype causes rapid and severe retinal degeneration in Japanese patients with ABCA4-associated retinopathy. These data are vital in predicting patient prognosis, guiding genetic counseling, and stratifying patients for future clinical trials.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Katsushika Medical Center (T.H.), The Jikei University School of Medicine, Tokyo, Japan.
| | - Koji Tanaka
- Division of Ophthalmology, Department of Visual Sciences (K.T.), Nihon University School of Medicine, Nihon University Hospital, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology (K.K., S.K.), Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Yusuke Murakami
- Department of Ophthalmology (Y.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Natsuko Nakamura
- Department of Ophthalmology (N.N.), The University of Tokyo, Tokyo, Japan
| | - Kaoruko Torii
- Department of Ophthalmology (K.T., Y.H.), Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Mizota
- Department of Ophthalmology (A.M.), Teikyo University, Tokyo, Japan
| | - Daiki Sakai
- Department of Ophthalmology (D.S., A.M.), Kobe City Eye Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology (D.S., A.M.), Kobe City Eye Hospital, Kobe, Japan
| | - Taro Kominami
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shinji Ueno
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan; Department of Ophthalmology (S.U.), Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Shunji Kusaka
- Department of Ophthalmology (K.K., S.K.), Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology (T.K., S.U., K.M.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology (Y.I.), Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mineo Kondo
- Department of Ophthalmology (M.K.), Mie University Graduate School of Medicine, Mie, Japan
| | - Kazushige Tsunoda
- Division of Vision Research (K.T.), National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology (K.T., Y.H.), Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tadashi Nakano
- Department of Ophthalmology (K.M., T.H., T.N.), The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Brar AS, Parameswarappa DC, Takkar B, Narayanan R, Jalali S, Mandal S, Fujinami K, Padhy SK. Gene Therapy for Inherited Retinal Diseases: From Laboratory Bench to Patient Bedside and Beyond. Ophthalmol Ther 2024; 13:21-50. [PMID: 38113023 PMCID: PMC10776519 DOI: 10.1007/s40123-023-00862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
This comprehensive review provides a thorough examination of inherited retinal diseases (IRDs), encompassing their classification, genetic underpinnings, and the promising landscape of gene therapy trials. IRDs, a diverse group of genetic conditions causing vision loss through photoreceptor cell death, are explored through various angles, including inheritance patterns, gene involvement, and associated systemic disorders. The focal point is gene therapy, which offers hope for halting or even reversing the progression of IRDs. The review highlights ongoing clinical trials spanning retinal cell replacement, neuroprotection, pharmacological interventions, and optogenetics. While these therapies hold tremendous potential, they face challenges like timing optimization, standardized assessment criteria, inflammation management, vector refinement, and raising awareness among vision scientists. Additionally, translating gene therapy success into widespread adoption and addressing cost-effectiveness are crucial challenges to address. Continued research and clinical trials are essential to fully harness gene therapy's potential in treating IRDs and enhancing the lives of affected individuals.
Collapse
Affiliation(s)
- Anand Singh Brar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India
| | - Deepika C Parameswarappa
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Raja Narayanan
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Subhadra Jalali
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, 500034, India
| | - Sohini Mandal
- Dr Rajendra Prasad Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, 152-8902, Japan
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, 751024, India.
| |
Collapse
|
6
|
Marino R, Sappington R, Feligioni M. Retinoprotective compounds, current efficacy, and future prospective. Neural Regen Res 2023; 18:2619-2622. [PMID: 37449599 DOI: 10.4103/1673-5374.373662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Retinal dysfunction is the most common cause of vision loss in several retinal disorders. It has been estimated a great increase in these pathologies that are becoming more globally widespread and numerous over time, also supported by the life expectancy increment. Among different types of retinopathies, we can account some that share causes, symptoms, and treatment including diabetic retinopathy, age-related macular degeneration, glaucoma, and retinitis pigmentosa. Molecular changes, environmental factors, and genetic predisposition might be some of the main causes that drive retinal tissue to chronic inflammation and neurodegeneration in these retinopathies. The treatments available on the market contain compounds that efficiently ameliorate some of the important clinical features of these pathologies like stabilization of the intraocular pressure, reduction of eye inflammation, control of eye oxidative stress which are considered the major molecular mechanisms related to retinal dysfunction. Indeed, the most commonly used drugs are anti-inflammatories, such as corticosteroids, antioxidant, hypotonic molecules and natural neuroprotective compounds. Unfortunately, these drugs, which are fundamental to treating disease symptoms, are not capable to cure the pathologies and so they are not life-changing for patients. This review provided an overview of current treatments on the market, but more interestingly, wants to be a quick window on the new treatments that are now in clinical trials. Additionally, it has been here highlighted that the recent technical enhancement of the investigation methods to identify the various retinopathies causes might be used as a sort of "precise medicine" approach to tailor the identification of molecular pathways involved and potentially study a dedicated treatment for each patient. This approach includes the use of cutting-edge technologies like gene therapy and metabolomics.
Collapse
Affiliation(s)
- Rachele Marino
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Rebecca Sappington
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center; Department of Ophthalmology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome; Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
7
|
Wang L, Shah SM, Mangwani-Mordani S, Gregori NZ. Updates on Emerging Interventions for Autosomal Recessive ABCA4-Associated Stargardt Disease. J Clin Med 2023; 12:6229. [PMID: 37834872 PMCID: PMC10573680 DOI: 10.3390/jcm12196229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Autosomal recessive Stargardt disease (STGD1) is an inherited retinal degenerative disease associated with a mutated ATP-binding cassette, subfamily A, member 4 (ABCA4) gene. STGD1 is the most common form of juvenile macular degeneration with onset in late childhood to early or middle adulthood and causes progressive, irreversible visual impairment and blindness. No effective treatment is currently available. In the present article, we review the most recent updates in clinical trials targeting the management of STGD1, including gene therapy, small molecule therapy, and stem cell therapy. In gene therapy, dual adeno-associated virus and non-viral vectors have been successful in delivering the human ABCA4 gene in preclinical studies. For pharmaceutical therapies ALK-001, deuterated vitamin A shows promise with preliminary data for phase 2 trial, demonstrating a decreased atrophy growth rate after two years. Stem cell therapy using human pluripotent stem cell-derived retinal pigment epithelium cells demonstrated long-term safety three years after implantation and visual acuity improvements in the first two years after initiation of therapy. Many other treatment options have ongoing investigations and clinical trials. While multiple potential interventions have shown promise in attenuating disease progression, further exploration is necessary to demonstrate treatment safety and efficacy.
Collapse
Affiliation(s)
- Liang Wang
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.W.); (S.M.S.)
| | - Serena M. Shah
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (L.W.); (S.M.S.)
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Simran Mangwani-Mordani
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Ninel Z. Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
8
|
Bassetto M, Zaluski J, Li B, Zhang J, Badiee M, Kiser PD, Tochtrop GP. Tuning the Metabolic Stability of Visual Cycle Modulators through Modification of an RPE65 Recognition Motif. J Med Chem 2023; 66:8140-8158. [PMID: 37279401 PMCID: PMC10824489 DOI: 10.1021/acs.jmedchem.3c00461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the eye, the isomerization of all-trans-retinal to 11-cis-retinal is accomplished by a metabolic pathway termed the visual cycle that is critical for vision. RPE65 is the essential trans-cis isomerase of this pathway. Emixustat, a retinoid-mimetic RPE65 inhibitor, was developed as a therapeutic visual cycle modulator and used for the treatment of retinopathies. However, pharmacokinetic liabilities limit its further development including: (1) metabolic deamination of the γ-amino-α-aryl alcohol, which mediates targeted RPE65 inhibition, and (2) unwanted long-lasting RPE65 inhibition. We sought to address these issues by more broadly defining the structure-activity relationships of the RPE65 recognition motif via the synthesis of a family of novel derivatives, which were tested in vitro and in vivo for RPE65 inhibition. We identified a potent secondary amine derivative with resistance to deamination and preserved RPE65 inhibitory activity. Our data provide insights into activity-preserving modifications of the emixustat molecule that can be employed to tune its pharmacological properties.
Collapse
Affiliation(s)
- Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bowen Li
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jianye Zhang
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
| | - Mohsen Badiee
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California - Irvine, Irvine, California 92697, United States
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, California 92697, United States
- Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
9
|
Raimondi R, D'Esposito F, Sorrentino T, Tsoutsanis P, De Rosa FP, Stradiotto E, Barone G, Rizzato A, Allegrini D, Costagliola C, Romano MR. How to Set Up Genetic Counselling for Inherited Macular Dystrophies: Focus on Genetic Characterization. Int J Mol Sci 2023; 24:ijms24119722. [PMID: 37298674 DOI: 10.3390/ijms24119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Inherited macular dystrophies refer to a group of degenerative conditions that predominantly affect the macula in the spectrum of inherited retinal dystrophies. Recent trends indicate a clear need for genetic assessment services in tertiary referral hospitals. However, establishing such a service can be a complex task due to the diverse skills required and multiple professionals involved. This review aims to provide comprehensive guidelines to enhance the genetic characterization of patients and improve counselling efficacy by combining updated literature with our own experiences. Through this review, we hope to contribute to the establishment of state-of-the-art genetic counselling services for inherited macular dystrophies.
Collapse
Affiliation(s)
- Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW1 5QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Panos Tsoutsanis
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
| | | | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Eye Center, Humanitas Gavazzeni-Castelli, 24125 Bergamo, Italy
| |
Collapse
|
10
|
DeBoer C, Agrawal R, Rahimy E. Novel oral medications for retinal disease: an update on clinical development. Curr Opin Ophthalmol 2023; 34:203-210. [PMID: 36943473 PMCID: PMC10065955 DOI: 10.1097/icu.0000000000000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW Intravitreal and periocular injections for retinal disease provide a targeted delivery of medication to the eye. However, given risks of injections, including endophthalmitis, pain and treatment burden for both patients and retina specialists, there has been significant interest and effort in developing oral medications for the management of retinal disease. This article provides clinical and preclinical details of new oral medications in the pipeline for management of retinal disease. RECENT FINDINGS Several new oral medications show clinical and preclinical promise for the management of retinal disease, including macular degeneration, diabetic retinopathy and Stargardt disease. SUMMARY Oral medications provide promise for treating retinal disease, possibly increasing compliance, and reducing side effects of intravitreal or periocular injections. However, difficulties in this approach include systemic side effects and efficacy targeting the eye. There are multiple medications that are currently under investigation with the potential to act as stand-alone treatment or as an adjunct treatment for management of retinal diseases such as diabetic retinopathy, macular degeneration and Stargardt disease.
Collapse
Affiliation(s)
- Charles DeBoer
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Rajat Agrawal
- Retina Global, Laguna Hills, California, United States
| | - Ehsan Rahimy
- Byers Eye Institute, Stanford University, Palo Alto, California, United States
- Department of Ophthalmology, Palo Alto Medical Foundation, Palo Alto, California, United States
| |
Collapse
|
11
|
Jiang X, Mahroo OA. Human retinal dark adaptation tracked in vivo with the electroretinogram: insights into processes underlying recovery of cone- and rod-mediated vision. J Physiol 2022; 600:4603-4621. [PMID: 35612091 PMCID: PMC9796346 DOI: 10.1113/jp283105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023] Open
Abstract
The substantial time taken for regaining visual sensitivity (dark adaptation) following bleaching exposures has been investigated for over a century. Psychophysical studies yielded the classic biphasic curve representing recovery of cone-driven and rod-driven vision. The electroretinogram (ERG) permits direct assessment of recovery at the level of the retina (photoreceptors, bipolar cells), with the first report over 70 years ago. Over the last two decades, ERG studies of dark adaptation have generated insights into underlying physiological processes. After large bleaches, rod photoreceptor circulating current, estimated from the rod-isolated bright-flash ERG a-wave, takes 30 min to recover, indicating that products of bleaching, thought to be free opsin (unbound to 11-cis-retinal), continue to activate phototransduction, shutting off rod circulating current. In contrast, cone current, assessed with cone-driven bright-flash ERG a-waves, recovers within 100 ms following similar exposures, suggesting that free opsin is less able to shut off cone current. The cone-driven dim-flash a-wave can be used to track recovery of cone photopigment, showing regeneration is 'rate-limited' rather than first order. Recoveries of the dim-flash ERG b-wave are consistent also with rate-limited rod photopigment regeneration (where free opsin, desensitising the visual system as an 'equivalent background', is removed by rate-limited delivery of 11-cis-retinal). These findings agree with psychophysical and retinal densitometry studies, although there are unexplained points of divergence. Post-bleach ERG recovery has been explored in age-related macular degeneration and in trials of visual cycle inhibitors for retinal diseases. ERG tracking of dark adaptation may prove useful in future clinical contexts.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Institute of OphthalmologyUniversity College LondonLondonUK,Retinal and Genetics ServicesMoorfields Eye HospitalLondonUK,Section of OphthalmologyKing's College LondonLondonUK,Department of Twin Research and Genetic EpidemiologyKing's College London, St Thomas’ Hospital CampusLondonUK
| | - Omar A. Mahroo
- Institute of OphthalmologyUniversity College LondonLondonUK,Retinal and Genetics ServicesMoorfields Eye HospitalLondonUK,Section of OphthalmologyKing's College LondonLondonUK,Department of Twin Research and Genetic EpidemiologyKing's College London, St Thomas’ Hospital CampusLondonUK,PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Sun D, Sun W, Gao SQ, Lehrer J, Naderi A, Wei C, Lee S, Schilb AL, Scheidt J, Hall RC, Traboulsi EI, Palczewski K, Lu ZR. Effective gene therapy of Stargardt disease with PEG-ECO/ pGRK1-ABCA4-S/MAR nanoparticles. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:823-835. [PMID: 36159595 PMCID: PMC9463552 DOI: 10.1016/j.omtn.2022.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023]
Abstract
Stargardt disease (STGD) is the most common form of inherited retinal genetic disorders and is often caused by mutations in ABCA4. Gene therapy has the promise to effectively treat monogenic retinal disorders. However, clinically approved adeno-associated virus (AAV) vectors do not have a loading capacity for large genes, such as ABCA4. Self-assembly nanoparticles composed of (1-aminoethyl)iminobis[N-(oleoylcysteinyl-1-amino-ethyl)propionamide (ECO; a multifunctional pH-sensitive/ionizable amino lipid) and plasmid DNA produce gene transfection comparable with or better than the AAV2 capsid. Stable PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles produce specific and prolonged expression of ABCA4 in the photoreceptors of Abca4 -/- mice and significantly inhibit accumulation of toxic A2E in the eye. Multiple subretinal injections enhance gene expression and therapeutic efficacy with an approximately 69% reduction in A2E accumulation in Abca4 -/- mice after 3 doses. Very mild inflammation was observed after multiple injections of the nanoparticles. PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles are a promising non-viral mediated gene therapy modality for STGD type 1 (STGD1).
Collapse
Affiliation(s)
- Da Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Song-Qi Gao
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jonathan Lehrer
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amirreza Naderi
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Cheng Wei
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Sangjoon Lee
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Andrew L. Schilb
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Josef Scheidt
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ryan C. Hall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Elias I. Traboulsi
- Department of Pediatric Ophthalmology and Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44106, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, Departments of Physiology and Biophysics, Chemistry, and Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Singh H, Raja A, Shekhar N, Chauhan A, Prakash A, Avti P, Medhi B. Computational attributes of protein kinase-C gamma C2-domain & virtual screening for small molecules: elucidation from meta-dynamics simulations & free-energy calculations. J Biomol Struct Dyn 2022:1-12. [DOI: 10.1080/07391102.2022.2077447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anupam Raja
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nishant Shekhar
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Li B, Tochtrop GP. Rapid Access to γ-Amino-α-aryl Alcohol Scaffolds via an Enamine-Based Heck Coupling. J Org Chem 2022; 87:3851-3855. [PMID: 35175038 DOI: 10.1021/acs.joc.1c03056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The γ-amino-α-aryl alcohol is a key functional group for the design of inhibitors directed toward a critical family of metabolic enzymes. Here we report the transformation of simple aryl halides to a highly functionalized benzyl (3-oxo-3-arylpropyl)carbamate intermediate that can rapidly be converted to a high value γ-amino-α-aryl alcohol. This chemistry is realized through a two-step process involving an enamine-based Heck coupling (EBHC) followed by a one-pot catalytic Cbz-deprotection and ketone reduction of EBHC products.
Collapse
Affiliation(s)
- Bowen Li
- Case Western Reserve University, Department of Chemistry, Cleveland, Ohio 44106, United States
| | - Gregory P Tochtrop
- Case Western Reserve University, Department of Chemistry, Cleveland, Ohio 44106, United States
| |
Collapse
|
15
|
Martinez Velazquez LA, Ballios BG. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. Int J Mol Sci 2021; 22:ijms222111542. [PMID: 34768969 PMCID: PMC8583900 DOI: 10.3390/ijms222111542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.
Collapse
Affiliation(s)
| | - Brian G. Ballios
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
- Correspondence:
| |
Collapse
|
16
|
Al-Khuzaei S, Broadgate S, Foster CR, Shah M, Yu J, Downes SM, Halford S. An Overview of the Genetics of ABCA4 Retinopathies, an Evolving Story. Genes (Basel) 2021; 12:1241. [PMID: 34440414 PMCID: PMC8392661 DOI: 10.3390/genes12081241] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stargardt disease (STGD1) and ABCA4 retinopathies (ABCA4R) are caused by pathogenic variants in the ABCA4 gene inherited in an autosomal recessive manner. The gene encodes an importer flippase protein that prevents the build-up of vitamin A derivatives that are toxic to the RPE. Diagnosing ABCA4R is complex due to its phenotypic variability and the presence of other inherited retinal dystrophy phenocopies. ABCA4 is a large gene, comprising 50 exons; to date > 2000 variants have been described. These include missense, nonsense, splicing, structural, and deep intronic variants. Missense variants account for the majority of variants in ABCA4. However, in a significant proportion of patients with an ABCA4R phenotype, a second variant in ABCA4 is not identified. This could be due to the presence of yet unknown variants, or hypomorphic alleles being incorrectly classified as benign, or the possibility that the disease is caused by a variant in another gene. This underlines the importance of accurate genetic testing. The pathogenicity of novel variants can be predicted using in silico programs, but these rely on databases that are not ethnically diverse, thus highlighting the need for studies in differing populations. Functional studies in vitro are useful towards assessing protein function but do not directly measure the flippase activity. Obtaining an accurate molecular diagnosis is becoming increasingly more important as targeted therapeutic options become available; these include pharmacological, gene-based, and cell replacement-based therapies. The aim of this review is to provide an update on the current status of genotyping in ABCA4 and the status of the therapeutic approaches being investigated.
Collapse
Affiliation(s)
- Saoud Al-Khuzaei
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | | | - Mital Shah
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
| | - Jing Yu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Susan M. Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.A.-K.); (M.S.)
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Level 6 John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; (S.B.); (J.Y.)
| |
Collapse
|
17
|
Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules 2021; 11:1179. [PMID: 34439845 PMCID: PMC8393614 DOI: 10.3390/biom11081179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being the most prevalent cause of inherited blindness in children, Stargardt disease is yet to achieve the same clinical trial success as has been achieved for other inherited retinal diseases. With an early age of onset and continual progression of disease over the life course of an individual, Stargardt disease appears to lend itself to therapeutic intervention. However, the aetiology provides issues not encountered with the likes of choroideremia and X-linked retinitis pigmentosa and this has led to a spectrum of treatment strategies that approach the problem from different aspects. These include therapeutics ranging from small molecules and anti-sense oligonucleotides to viral gene supplementation and cell replacement. The advancing development of CRISPR-based molecular tools is also likely to contribute to future therapies by way of genome editing. In this we review, we consider the most recent pre-clinical and clinical trial data relating to the different strategies being applied to the problem of generating a treatment for the large cohort of Stargardt disease patients worldwide.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
18
|
Blum E, Zhang J, Zaluski J, Einstein DE, Korshin EE, Kubas A, Gruzman A, Tochtrop GP, Kiser PD, Palczewski K. Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. J Med Chem 2021; 64:8287-8302. [PMID: 34081480 DOI: 10.1021/acs.jmedchem.1c00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recycling of all-trans-retinal to 11-cis-retinal through the visual cycle is a fundamental metabolic pathway in the eye. A potent retinoid isomerase (RPE65) inhibitor, (R)-emixustat, has been developed and tested in several clinical trials; however, it has not received regulatory approval for use in any specific retinopathy. Rapid clearance of this drug presents challenges to maintaining concentrations in eyes within a therapeutic window. To address this pharmacokinetic inadequacy, we rationally designed and synthesized a series of emixustat derivatives with strategically placed fluorine and deuterium atoms to slow down the key metabolic transformations known for emixustat. Crystal structures and quantum chemical analysis of RPE65 in complex with the most potent emixustat derivatives revealed the structural and electronic bases for how fluoro substituents can be favorably accommodated within the active site pocket of RPE65. We found a close (∼3.0 Å) F-π interaction that is predicted to contribute ∼2.4 kcal/mol to the overall binding energy.
Collapse
Affiliation(s)
- Eliav Blum
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Jianye Zhang
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States
| | - Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - David E Einstein
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Edward E Korshin
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Philip D Kiser
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States.,Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Research Service, VA Long Beach Healthcare System, Long Beach, California 90822, United States
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, California 92697, United States.,Department of Physiology and Biophysics, University of California, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|