1
|
Sun HY, Lin XY. Genetic perspectives on childhood monogenic diabetes: Diagnosis, management, and future directions. World J Diabetes 2023; 14:1738-1753. [PMID: 38222792 PMCID: PMC10784795 DOI: 10.4239/wjd.v14.i12.1738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/14/2023] Open
Abstract
Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| | - Xiao-Yan Lin
- Department of Endocrine and Metabolic Diseases, Yantaishan Hospital, Yantai 264003, Shandong Province, China
| |
Collapse
|
2
|
Bowman P, Patel KA, McDonald TJ, Holst JJ, Hartmann B, Leveridge M, Shields BM, Hammersley S, Spaull SR, Knight BA, Flanagan SE, Shepherd MH, Andrews RC, Hattersley AT. Incretin hormone responses to carbohydrate and protein/fat are preserved in adults with sulfonylurea-treated KCNJ11 neonatal diabetes. J Diabetes Investig 2023; 14:1378-1382. [PMID: 37602910 PMCID: PMC10688132 DOI: 10.1111/jdi.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are thought to be the main drivers of insulin secretion in individuals with sulfonylurea (SU)-treated KCNJ11 permanent neonatal diabetes. The aim of this study was to assess for the first time the incretin hormone response to carbohydrate and protein/fat in adults with sulfonylurea-treated KCNJ11 permanent neonatal diabetes compared with that of controls without diabetes. Participants were given a breakfast high in carbohydrate and an isocaloric breakfast high in protein/fat on two different mornings. Incremental area under the curve and total area under the curve (0-240 minutes) for total GLP-1 and GIP were compared between groups, using non-parametric statistical methods. Post-meal GLP-1 and GIP secretion were similar in cases and controls, suggesting this process is adenosine triphosphate-sensitive potassium channel-independent. Future research will investigate whether treatments targeting the incretin pathway are effective in individuals with KCNJ11 permanent neonatal diabetes who do not have good glycemic control on sulfonylurea alone.
Collapse
Affiliation(s)
- Pamela Bowman
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Kashyap A Patel
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Timothy J McDonald
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Jens J Holst
- Faculty of Health and Medical SciencesUniversity of CopenhagenKobenhavnDenmark
| | - Bolette Hartmann
- Faculty of Health and Medical SciencesUniversity of CopenhagenKobenhavnDenmark
| | - Maria Leveridge
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Beverley M Shields
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
| | - Suzie Hammersley
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Steve R Spaull
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Bridget A Knight
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Sarah E Flanagan
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
| | - Maggie H Shepherd
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Rob C Andrews
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
| | - Andrew T Hattersley
- University of Exeter Medical SchoolExeterUK
- Exeter NIHR Clinical Research FacilityExeterUK
- NIHR Exeter Biomedical Research Centre (BRC)ExeterUK
- Royal Devon University Healthcare NHS Foundation TrustExeterUK
| |
Collapse
|
3
|
Song X, Cao Y, Ye J, Dai W, Zhang S, Ye S. A new mutation c.685G>A:p.E229K in the KCNJ11 gene: A case report of maturity-onset diabetes of the young13. Medicine (Baltimore) 2022; 101:e30668. [PMID: 36181023 PMCID: PMC9524910 DOI: 10.1097/md.0000000000030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is an autosomal dominant monogenic diabetes. We report a pair of father and son diagnosed as MODY13 with a new mutation c.685G>A:p.E229K in the inwardly rectifying subfamily J, member 11 (KCNJ11) gene. CASE PRESENTATION A pair of father and son was examined after admission to the hospital and a whole exome test performed. Whole exome test showed that there was a mutation c.685G>A:p.E229K in the KCNJ11 gene encoding a potassium channel, KCNJ11. CONCLUSIONS The diagnosis of MODY13 requires genetic testing. After confirmation, medication and diet need to be adjusted to control blood glucose. The treatment plan was adjusted. After glimepiride was administered, symptoms of diabetes were effectively improved. According to our knowledge, this is the first reported mutation of c.685G>A:p.E229K in the KCNJ11 gene.
Collapse
Affiliation(s)
- Xinjie Song
- Department of Endocrinology, Second People’s Hospital of Hefei City, Hefei City, Anhui Province, China
| | - Yonghong Cao
- Department of Endocrinology, Second People’s Hospital of Hefei City, Hefei City, Anhui Province, China
- *Correspondence: Yonghong Cao, Department of Endocrinology, Second People’s Hospital of Hefei City, Intersection of Guangde Road and Leshui Road, Yaohai District, Hefei City, Anhui Province 230011, China (e-mail: )
| | - Jun Ye
- Department of Endocrinology, Second People’s Hospital of Hefei City, Hefei City, Anhui Province, China
| | - Wu Dai
- Department of Endocrinology, Second People’s Hospital of Hefei City, Hefei City, Anhui Province, China
| | - Suwan Zhang
- Department of Endocrinology, Second People’s Hospital of Hefei City, Hefei City, Anhui Province, China
| | - Shuai Ye
- Department of Endocrinology, Second People’s Hospital of Hefei City, Hefei City, Anhui Province, China
| |
Collapse
|
4
|
KCNJ11 and KCNQ1 Gene Polymorphisms and Placental Expression in Women with Gestational Diabetes Mellitus. Genes (Basel) 2022; 13:genes13081315. [PMID: 35893051 PMCID: PMC9331982 DOI: 10.3390/genes13081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Gestational diabetes mellitus (GDM) represents carbohydrate intolerance in pregnant women. The pathogenesis of GDM is very complex, but abnormalities in insulin production and secretion underlie the disease. Potassium channels play an important role in insulin production and secretion. The family of potassium channels includes (among others) the potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) and voltage-gated K+ channel (KCNQ1). The aim of the study was to examine the distribution of the KCNJ11 rs5219 and KCNQ1 rs151290 and rs2237892 gene polymorphisms in women with GDM and pregnant women with normal carbohydrate tolerance, to verify whether these polymorphisms are risk factors for GDM. This study included 204 Caucasian pregnant women with GDM and 207 pregnant women with normal glucose tolerance (NGT) from the West Pomeranian region of Poland. The diagnosis of GDM was based on a 75 g oral glucose tolerance test (OGTT) at 24–28 weeks gestation. There were no statistically significant differences in distribution of the KCNJ11 rs5219 and KCNQ1 rs151290 and rs2237892 gene polymorphisms between women with GDM and pregnant women with normal carbohydrate tolerance. Moreover, there were no statistically significant associations between the studied genotypes and the selected clinical parameters in women with GDM. The results of our study suggest that the KCNJ11 rs5219 and KCNQ1 rs2237892 and rs151290 gene polymorphisms are not significant risk factors associated with the development of GDM in our population. There were also no differences in the expression of KCNJ11 and KCNQ1 genes in the placenta of women with GDM and normal carbohydrate tolerance. However, an association between KCNJ11 gene expression in placenta and APGAR score in newborns was found.
Collapse
|
5
|
Bonetti S, Zusi C, Rinaldi E, Boselli ML, Csermely A, Malerba G, Trabetti E, Bonora E, Bonadonna R, Trombetta M. Role of monogenic diabetes genes on beta cell function in Italian patients with newly diagnosed type 2 diabetes. The Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 13. DIABETES & METABOLISM 2022; 48:101323. [DOI: 10.1016/j.diabet.2022.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
|
6
|
Barash G, Bassan H, Livne A, Benyamini L, Heyman E, Bowman P, Rachmiel M. Novel perspectives of super-high dose sulfonylurea and high-dose oral prednisolone in an infant with DEND syndrome due to V64M heterozygote KCNJ11 mutation. Acta Diabetol 2021; 58:1665-1672. [PMID: 34272607 DOI: 10.1007/s00592-021-01763-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022]
Abstract
AIMS To report a novel mutation associated with developmental delay, epilepsy, and neonatal diabetes-DEND Syndrome, responsive to a novel management combination. METHODS We describe the investigation, treatment, and genetic diagnosis of a newborn diagnosed with DEND syndrome. RESULTS The patient was found to be de-novo heterozygous for pathogenic KCNJ11 missense variant: c.190G > A, p. (Val64Met), associated with DEND syndrome, responsive to a combination of super high doses of sulfonylurea (SU) and oral high-dose steroids. A single case was reported so far due to this mutation, presenting with severe DEND syndrome, treated by insulin only. His phenotypic description and management during 18 months, demonstrates this mutation is responsive to super-high doses of SU combined with high dose 6 weeks steroids protocol. CONCLUSIONS We have identified a heterozygous missense mutation as the etiology for severe DEND syndrome in a one-day old neonate, presenting with asymptomatic hyperglycemia, responsive to a novel management combination.
Collapse
Affiliation(s)
- Galia Barash
- Pediatric Endocrinology and Diabetes Institute Shamir Medical Center, 70300, Zerifin, Israel
| | - Haim Bassan
- Pediatric Neurology and Development Center Shamir Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Livne
- Neonatal Intensive Care Unit Shamir Medical Center, Tel Aviv, Israel
| | | | - Eli Heyman
- Pediatric Neurology and Development Center Shamir Medical Center, Tel Aviv, Israel
| | | | - Marianna Rachmiel
- Pediatric Endocrinology and Diabetes Institute Shamir Medical Center, 70300, Zerifin, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Hajji S, Aljenaee K, Garrahy A, Byrne M. Successful transition from insulin to sulfonylurea, on second attempt, in a 24-year-old female with neonatal diabetes secondary to KCNJ11 gene mutation. BMJ Case Rep 2021; 14:14/4/e239973. [PMID: 33837025 PMCID: PMC8043004 DOI: 10.1136/bcr-2020-239973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Neonatal diabetes (NDM) is defined as diabetes that occurs in the first 6 months of life, the majority of cases are due to sporadic mutations. ATP-sensitive potassium channels located in the beta cells of the pancreas play a major role in insulin secretion and blood glucose homeostasis. Mutations that alter the function of these channels may lead to NDM. We report a case of a 26-year-old Irish woman who was diagnosed with NDM at the age of 4 weeks and treated as type 1 diabetes mellitus, with multiple daily injections of insulin with suboptimal glycaemic control and frequent episodes of hypoglycaemic. She underwent genetic testing for NDM and was diagnosed with a KCNJ11 gene mutation. She was transitioned to high dose glibenclamide at the age of 16 years, but the trial failed due to poor glycaemic control and patient preference, and she was restarted on insulin. At 24 years of age, she was successfully transitioned from insulin (total daily dose 50 units) to high dose sulfonylurea (SU) (glibenclamide 15 mg twice daily). This resulted in optimal control of blood glucose (HbA1C fell from 63 to 44 mmol/mol), lower rates of hypoglycaemic and better quality of life. This case demonstrates that a second trial of SU in later life may be successful.
Collapse
Affiliation(s)
- Sulaiman Hajji
- Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Khaled Aljenaee
- Endocrine and Diabetes, Saint James's Hospital, Dublin, Ireland
| | - Aoife Garrahy
- Endocrinology and Diabetes, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Maria Byrne
- Endocrinology, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Riddle MC, Philipson LH, Rich SS, Carlsson A, Franks PW, Greeley SAW, Nolan JJ, Pearson ER, Zeitler PS, Hattersley AT. Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a Diabetes Care Editors' Expert Forum. Diabetes Care 2020; 43:3117-3128. [PMID: 33560999 PMCID: PMC8162450 DOI: 10.2337/dci20-0065] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Individualization of therapy based on a person's specific type of diabetes is one key element of a "precision medicine" approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
Collapse
Affiliation(s)
- Matthew C Riddle
- Division of Endocrinology, Diabetes, & Clinical Nutrition, Oregon Health & Science University, Portland, OR
| | - Louis H Philipson
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Annelie Carlsson
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skåne University Hospital, Lund, Sweden
| | - Paul W Franks
- Harvard T.H. Chan School of Public Health, Boston, MA.,Lund University Diabetes Center, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL.,Kovler Diabetes Center, The University of Chicago, Chicago, IL
| | - John J Nolan
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ewan R Pearson
- Division of Population Health and Genomics, Ninewells Hospital and School of Medicine, University of Dundee, Dundee, Scotland, U.K
| | - Philip S Zeitler
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|