1
|
Yang Y, Zhang Y, Li Y, Zhou X, Honda K, Kang D, Wang M, Yang JH, Xia Z, Wei Y, Liu L, Hu R, Takaki T, Xing G. Complement classical and alternative pathway activation contributes to diabetic kidney disease progression: a glomerular proteomics on kidney biopsies. Sci Rep 2025; 15:495. [PMID: 39753879 PMCID: PMC11698715 DOI: 10.1038/s41598-024-84900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Increasing evidence points toward an essential role for complement activation in the pathogenesis of diabetic kidney disease (DKD). However, the precise molecular mechanisms remain unclear, and the pathway predominantly contributing to complement activation in DKD is of particular interest. In this study, the glomerular proteome, especially the profiles of the complement proteins, was analyzed in kidney biopsies from 40 DKD patients and 10 normal controls using laser microdissection-assisted liquid chromatography-tandem mass spectrometry (LMD-LC-MS/MS). The glomerular abundances of three proteins related to classical pathway (CP) (C1q, C1r, C1s), five proteins related to alternative pathway (AP) (CFB, CFH, CFHR1, CFHR3, CFHR5), one common protein related to CP and lectin pathway (LP) (C4), and six proteins related to terminal complement pathway (C3, C5, C6, C7, C8, C9) were significantly increased in DKD. Notably, none of the proteins unique to the lectin complement pathway, including mannose-binding lectin (MBL) and its associated proteins, were detected in DKD glomeruli. Furthermore, the glomerular complement proteins of CP and AP were positively correlated with glomerular pathological grades and proteinuria, and negatively correlated with eGFR in DKD patients. Our results highlight a critical role for complement activation of the CP and AP, rather than the LP, in DKD progression.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China
| | - Ying Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China
| | - Yuan Li
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China
| | - Xinjin Zhou
- Renal Path Diagnostics at Pathologists BioMedical Laboratories, Lewisville, TX, USA
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Dedong Kang
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Muxi Wang
- Boston University Medical Campus, Boston, USA
| | - Jing-Hua Yang
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China
| | - Lu Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China
| | - Ruimin Hu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China
| | - Takashi Takaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Guolan Xing
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Erqi District, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Ma J, Yiu WH, Tang SCW. Complement anaphylatoxins: Potential therapeutic target for diabetic kidney disease. Diabet Med 2024:e15427. [PMID: 39189098 DOI: 10.1111/dme.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diabetic kidney disease (DKD) is the most common cause of kidney failure, characterized by chronic inflammation and fibrosis. The complement system is increasingly implicated in the development and progression of diabetic nephropathy. The important complement anaphylatoxins C3a and C5a are key mediators of the innate immune system, which regulates cellular inflammation, oxidative stress, mitochondrial homeostasis and tissue fibrosis. This review summarizes the involvement of anaphylatoxins in the pathogenesis of diabetic kidney disease, highlights their important roles in the pathophysiologic changes of glomerulopathy, tubulointerstitial damage and immune cell infiltration, and discusses the modulatory effects of new anti-diabetic drugs acting on the complement system. Based on available clinical data and findings from the preclinical studies of complement blockade, anaphylatoxin-targeted therapeutics may become a promising approach for patients with DKD in the future.
Collapse
Affiliation(s)
- Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
3
|
Yan X, Zhang X, Li H, Zou Y, Lu W, Zhan M, Liang Z, Zhuang H, Ran X, Ma G, Lin X, Yang H, Huang Y, Wang H, Shen L. Application of Proteomics and Machine Learning Methods to Study the Pathogenesis of Diabetic Nephropathy and Screen Urinary Biomarkers. J Proteome Res 2024; 23:3612-3625. [PMID: 38949094 DOI: 10.1021/acs.jproteome.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide, causing significant health problems. Early diagnosis of the disease is quite inadequate. To screen urine biomarkers of DN and explore its potential mechanism, this study collected urine from 87 patients with type 2 diabetes mellitus (which will be classified into normal albuminuria, microalbuminuria, and macroalbuminuria groups) and 38 healthy subjects. Twelve individuals from each group were then randomly selected as the screening cohort for proteomics analysis and the rest as the validation cohort. The results showed that humoral immune response, complement activation, complement and coagulation cascades, renin-angiotensin system, and cell adhesion molecules were closely related to the progression of DN. Five overlapping proteins (KLK1, CSPG4, PLAU, SERPINA3, and ALB) were identified as potential biomarkers by machine learning methods. Among them, KLK1 and CSPG4 were positively correlated with the urinary albumin to creatinine ratio (UACR), and SERPINA3 was negatively correlated with the UACR, which were validated by enzyme-linked immunosorbent assay (ELISA). This study provides new insights into disease mechanisms and biomarkers for early diagnosis of DN.
Collapse
Affiliation(s)
- Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinglai Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Haiying Li
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, Guizhou 550002, China
| | - Yongdong Zou
- Center for Instrumental Analysis, Shenzhen University, Shenzhen 518071, China
| | - Wei Lu
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, Guizhou 550002, China
| | - Man Zhan
- Department of Endocrinology, Guiyang First People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xixiao Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hongbo Yang
- Center for Instrumental Analysis, Shenzhen University, Shenzhen 518071, China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hanghang Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
4
|
Buelli S, Imberti B, Morigi M. The Complement C3a and C5a Signaling in Renal Diseases: A Bridge between Acute and Chronic Inflammation. Nephron Clin Pract 2024; 148:712-723. [PMID: 38452744 DOI: 10.1159/000538241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
The complement system, a cornerstone of the innate immune defense, typically confers protection against pathogens. However, in various clinical scenarios the complement's defensive actions can harm host cells, exacerbating immune and inflammatory responses. The central components C3 and C5 undergo proteolytic cleavage during complement activation, yielding small active fragments C3a and C5a anaphylatoxins. Traditionally, these fragments were associated with inflammation via the specific receptors C3a receptor (R), C5aR1 and C5aR2. Recent insights, however, spotlight the excessive C3a/C3aR and C5a/C5aR1 signaling as culprits in diverse disorders of inflammatory and autoimmune etiology. This is particularly true for several kidney diseases, where the potential involvement of anaphylatoxins in renal damage is supported by the enhanced renal expression of their receptors and the high levels of C3a and C5a in both plasma and urine. Furthermore, the production of complement proteins in the kidney, with different renal cells synthesizing C3 and C5, significantly contributes to local tissue injury. In the present review, we discuss the different aspects of C3a/C3aR and C5a/C5aR signaling in acute and chronic kidney diseases and explore the therapeutic potential of emerging targeted drugs for future clinical applications.
Collapse
Affiliation(s)
- Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| |
Collapse
|
5
|
Miwa T, Sato S, Golla M, Song WC. Expansion of Anticomplement Therapy Indications from Rare Genetic Disorders to Common Kidney Diseases. Annu Rev Med 2024; 75:189-204. [PMID: 37669567 DOI: 10.1146/annurev-med-042921-102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Complement constitutes a major part of the innate immune system. The study of complement in human health has historically focused on infection risks associated with complement protein deficiencies; however, recent interest in the field has focused on overactivation of complement as a cause of immune injury and the development of anticomplement therapies to treat human diseases. The kidneys are particularly sensitive to complement injury, and anticomplement therapies for several kidney diseases have been investigated. Overactivation of complement can result from loss-of-function mutations in complement regulators; gain-of-function mutations in key complement proteins such as C3 and factor B; or autoantibody production, infection, or tissue stresses, such as ischemia and reperfusion, that perturb the balance of complement activation and regulation. Here, we provide a high-level review of the status of anticomplement therapies, with an emphasis on the transition from rare diseases to more common kidney diseases.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| |
Collapse
|
6
|
Lin J, Weng M, Zheng J, Nie K, Rao S, Zhuo Y, Wan J. Identification and validation of voltage-dependent anion channel 1-related genes and immune cell infiltration in diabetic nephropathy. J Diabetes Investig 2024; 15:87-105. [PMID: 37737517 PMCID: PMC10759719 DOI: 10.1111/jdi.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023] Open
Abstract
AIMS/INTRODUCTION This study investigated the roles of voltage-dependent anion channel 1-related differentially expressed genes (VRDEGs) in diabetic nephropathy (DN). MATERIALS AND METHODS We downloaded two datasets from patients with DN, namely, GSE30122 and GSE30529, from the Gene Expression Omnibus database. VRDEGs associated with DN were obtained from the intersection of voltage-dependent anion channel 1-related genes from the GeneCards database, and differentially expressed genes were screened according to group (DN/healthy) in the two datasets. The enriched pathways of the VRDEGs were analyzed. Hub genes were selected using a protein-protein interaction network, and their predictive value was verified through receiver operating characteristic curve analysis. The CIBERSORTx software examined hub genes and immune cell infiltration associations. The protein expression of hub genes was verified through immunohistochemistry in 16-week-old db/db mice for experimentation as a model of type 2 DN. Finally, potential drugs targeting hub genes that inhibit DN development were identified. RESULTS A total of 57 VRDEGs were identified. The two datasets showed high expression of the PI3K, Notch, transforming growth factor-β, interleukin-10 and interleukin-17 pathways in DN. Five hub genes (ITGAM, B2M, LYZ, C3 and CASP1) associated with DN were identified and verified. Immunohistochemistry showed that the five hub genes were highly expressed in db/db mice, compared with db/m mice. The infiltration of immune cells was significantly correlated with the five hub genes. CONCLUSIONS Five hub genes were significantly correlated with immune cell infiltration and might be crucial to DN development. This study provides insight into the mechanisms involved in the pathogenesis of DN.
Collapse
Affiliation(s)
- Jiaqun Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Mengjie Weng
- Department of Nephrology, Blood Purification Research Center, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Jing Zheng
- Department of Nephrology, Blood Purification Research Center, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Kun Nie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Siyi Rao
- Department of Nephrology, Blood Purification Research Center, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Yongjie Zhuo
- Department of Nephrology, Blood Purification Research Center, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Jianxin Wan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Fujian Clinical Research Center for Metabolic Chronic Kidney Disease, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
7
|
Liu MC, Li JL, Wang YF, Meng Y, Zheng GM, Cai Z, Shen C, Wang MD, Zhu XG, Chen YZ, Wang YL, Zhao WJ, Niu WQ, Wang YX. Association between serum complements and kidney function in patients with diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1195966. [PMID: 38047115 PMCID: PMC10690951 DOI: 10.3389/fendo.2023.1195966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Objective We aimed to explore the association between serum complements and kidney function of diabetic kidney disease (DKD) in Chinese patients. Methods This is a retrospective study involving 2,441 participants. DKD was diagnosed according to the Kidney Disease: Improving Global Outcomes (KDIGO) categories. Participants were classified as stages G1-G5 by KDIGO glomerular filtration rate (GFR) categories. Effect sizes are expressed as odds ratio (OR) with 95% confidence interval (CI). Results After balancing age, gender, systolic blood pressure (SBP), hemoglobin A1c (HbA1C), serum triglyceride (TG), and urinary albumin-to-creatinine ratio (UACR) between the G2-G5 and control groups, per 0.1 g/L increment in serum complement C3 was significantly associated with a 27.8% reduced risk of DKD at G5 stage (OR, 95% CI, P: 0.722, 0.616-0.847, <0.001) relative to the G1 stage. Conversely, per 0.1 g/L increment in serum complement C4 was associated with an 83.0-177.6% increased risk of G2-G5 stage (P<0.001). Serum complement C1q was not statistically significant compared to controls at all stages prior to or after propensity score matching. Conclusions Our results indicate that high concentrations of serum C4 were associated with the significantly elevated risk of kidney function deterioration across all stages, and reduced serum C3 levels with an increased risk of DKD stage G5.
Collapse
Affiliation(s)
- Meng-chao Liu
- The First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jia-lin Li
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yue-fen Wang
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuan Meng
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Gui-min Zheng
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhen Cai
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cun Shen
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Meng-di Wang
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiang-gang Zhu
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yang-zi Chen
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu-lin Wang
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wen-jing Zhao
- Department of Nephropathy, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wen-quan Niu
- Center for Evidence-Based Medicine, Capital Institute of Pediatrics, Beijing, China
| | - Yao-xian Wang
- The First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
8
|
Sengupta A, Al-Otaibi N, Hinkula J. Sex-Specific Immune Responses to Seasonal Influenza Vaccination in Diabetic Individuals: Implications for Vaccine Efficacy. J Immunol Res 2023; 2023:3111351. [PMID: 37881338 PMCID: PMC10597737 DOI: 10.1155/2023/3111351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 10/27/2023] Open
Abstract
Seasonal influenza vaccination has different implications on the immune response depending on the comorbidities. Diabetes is one such critical disease that increases the patient's susceptibility to influenza and suppresses vaccine efficacy and immunity. The sex of the individuals also plays a definitive role in the immune responses to both the vaccine and the infection. This study aims to understand the efficacy of the seasonal vaccine against influenza in diabetic groups and undergoing immune mechanisms in different sexes (females and males). In this study, we are reporting about a switching of the immune response of the infected and vaccinated diabetic females towards stronger Th1/Th17 responses with suppressed humoral immunity. They show increased cDC1, enhanced proinflammatory activities within T cells, CD8T activation, Th17 proliferation, and the majority of IgG2 antibody subtypes with reduced neutralization potential. Males with diabetes exhibit enhanced humoral Th2-immunity than the nondiabetic group. They exhibit higher cDC2, and DEC205 levels within them with an increase in plasma B lymphocytes, higher IgG1 subtypes in plasma cells, and influenza-hemagglutinin-specific IgG titer with stronger virus neutralization potential. Males with diabetes recovered better than the females as observed from the changes in their body weight. This study highlights the critical immune mechanisms and sex-specific swapping of their preferred immune response pathways against influenza after vaccination during diabetes. We propose a need for a sex-specific customized vaccine regimen to be implemented against influenza for individuals having diabetes to exploit the manifested strength and weakness in their protective immunity.
Collapse
Affiliation(s)
- Anirban Sengupta
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Noha Al-Otaibi
- King Abdulaziz City for Science and Technology (KACST), Riyad 11442, Saudi Arabia
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
9
|
Zhang Q, Ye J, Zhang Z, Hu Y, Wang X, Jiang W, Guo X, Chen L, Cheng S, Li J, Zhang L. Aristolocholic acid I promotes renal tubular epithelial fibrosis by upregulating matrix metalloproteinase-9 expression via activating the C3a/C3aR axis of macrophages. Toxicol Lett 2023; 381:27-35. [PMID: 37084829 DOI: 10.1016/j.toxlet.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Aristolochic acid I (AAI) can cause nephrotoxicity and is characterized by interstitial fibrosis. The C3a/C3aR axis of macrophages and matrix metalloproteinase-9 (MMP-9) play important roles in fibrosis, but whether they are involved in AAI-induced renal interstitial fibrosis and are related remains to be elucidated. In this study, we investigated whether C3a/C3aR axis of macrophages promotes renal interstitial fibrosis by regulating MMP-9 in aristolochic acid nephropathy (AAN). Intraperitoneal injection of AAI for 28 days successfully induced AAN in C57bl/6 mice. The content of C3a in the kidney of AAN mice was increased, and there was a significant distribution of macrophages in the renal tubules. The same results were observed in the in vitro experiment. We also explored the role and mechanism of macrophages after AAI administration in the epithelial-mesenchymal transformation (EMT) of renal tubular epithelial cells (RTECs) and found that AAI could activate the C3a/C3aR axis of macrophages to upregulate p65 expression in macrophages. p65 upregulated MMP-9 expression in macrophages not only directly but also by promoting the secretion if interleukin-6 by macrophages and then activating STAT3 in RTECs. The upregulation of MMP-9 expression could promote the EMT of RTECs. Taken together, our study demonstrated that the AAI-activated the C3a/C3aR axis of macrophages, which induced MMP-9 production, was one of the causes of renal interstitial fibrosis. Therefore, targeting the C3a/C3aR axis of macrophages is an effective therapeutic strategy for the prevention and treatment of renal interstitial fibrosis in AAN.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Ye
- School of Life Science, Nanjing University, Nanjing 210023, China
| | - Zhaofeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongkang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjuan Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinlong Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Langqun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siyu Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, China.
| | - Liang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
10
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Sun ZJ, Chang DY, Chen M, Zhao MH. Deficiency of CFB attenuates renal tubulointerstitial damage by inhibiting ceramide synthesis in diabetic kidney disease. JCI Insight 2022; 7:156748. [PMID: 36546481 PMCID: PMC9869976 DOI: 10.1172/jci.insight.156748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests the pathogenic role of immunity and metabolism in diabetic kidney disease (DKD). Herein, we aimed to investigate the effect of complement factor B (CFB) on lipid metabolism in the development of DKD. We found that in patients with diabetic nephropathy, the staining of Bb, CFB, C3a, C5a, and C5b-9 was markedly elevated in renal tubulointerstitium. Cfb-knockout diabetic mice had substantially milder tubulointerstitial injury and less ceramide biosynthesis. The in vitro study demonstrated that cytokine secretion, endoplasmic reticulum stress, oxidative stress, and cell apoptosis were ameliorated in HK-2 cells transfected with siRNA of CFB under high-glucose conditions. Exogenous ceramide supplementation attenuated the protective effect of CFB knockdown in HK-2 cells, while inhibiting ceramide synthases (CERS) with fumonisin B1 in CFB-overexpressing cells rescued the cell injury. CFB knockdown could downregulate the expression of NF-κB p65, which initiates the transcription of CERS3. Furthermore, C3 knockdown abolished CFB-mediated cytokine secretion, NF-κB signaling activation, and subsequently ceramide biosynthesis. Thus, CFB deficiency inhibited activation of the complement alternative pathway and attenuated kidney damage in DKD, especially tubulointerstitial injury, by inhibiting the NF-κB signaling pathway, further blocking the transcription of CERS, which regulates the biosynthesis of ceramide. CFB may be a promising therapeutic target of DKD.
Collapse
Affiliation(s)
- Zi-jun Sun
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Dong-yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ming-hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Peking University Institute of Nephrology, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
12
|
Tan SM, Snelson M, Østergaard JA, Coughlan MT. The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxid Redox Signal 2022; 37:781-801. [PMID: 34806406 PMCID: PMC9587781 DOI: 10.1089/ars.2021.0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The metabolic disorder, diabetes mellitus, results in microvascular complications, including diabetic kidney disease (DKD), which is partly believe to involve disrupted energy generation in the kidney, leading to injury that is characterized by inflammation and fibrosis. An increasing body of evidence indicates that the innate immune complement system is involved in the pathogenesis of DKD; however, the precise mechanisms remain unclear. Recent Advances: Complement, traditionally thought of as the prime line of defense against microbial intrusion, has recently been recognized to regulate immunometabolism. Studies have shown that the complement activation products, Complement C5a and C3a, which are potent pro-inflammatory mediators, can mediate an array of metabolic responses in the kidney in the diabetic setting, including altered fuel utilization, disrupted mitochondrial respiratory function, and reactive oxygen species generation. In diabetes, the lectin pathway is activated via autoreactivity toward altered self-surfaces known as danger-associated molecular patterns, or via sensing altered carbohydrate and acetylation signatures. In addition, endogenous complement inhibitors can be glycated, whereas diet-derived glycated proteins can themselves promote complement activation, worsening DKD, and lending support for environmental influences as an additional avenue for propagating complement-induced inflammation and kidney injury. Critical Issues: Recent evidence indicates that conventional renoprotective agents used in DKD do not target the complement, leaving this web of inflammatory stimuli intact. Future Directions: Future studies should focus on the development of novel pharmacological agents that target the complement pathway to alleviate inflammation, oxidative stress, and kidney fibrosis, thereby reducing the burden of microvascular diseases in diabetes. Antioxid. Redox Signal. 37, 781-801.
Collapse
Affiliation(s)
- Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Jakob A Østergaard
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Baker Heart & Diabetes Institute, Melbourne, Australia
| |
Collapse
|
13
|
Identification of Hub Genes Involved in Tubulointerstitial Injury in Diabetic Nephropathy by Bioinformatics Analysis and Experiment Verification. J Immunol Res 2022; 2022:7907708. [PMID: 35991124 PMCID: PMC9391162 DOI: 10.1155/2022/7907708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic nephropathy (DN) is the most important cause of end-stage renal disease with a poorer prognosis and high economic burdens of medical treatments. It is of great research value and clinical significance to explore potential gene targets of renal tubulointerstitial lesions in DN. To properly identify key genes associated with tubulointerstitial injury of DN, we initially performed a weighted gene coexpression network analysis of the dataset to screen out two nonconserved gene modules (dark orange and dark red). The regulation of oxidative stress-induced intrinsic apoptotic signaling pathway, PI3K-Akt signaling pathway, p38MAPK cascade, and Th1 and Th2 cell differentiation were primarily included in Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two modules. Next, 199 differentially expressed genes (DEGs) were identified via the limma package. Then, the GO annotation and KEGG pathways of the DEGs were primarily enriched in extracellular matrix (ECM) organization, epithelial cell migration, cell adhesion molecules (CAMs), NF-kappa B signaling pathway, and ECM-receptor interaction. Gene set enrichment analysis showed that in the DN group, the interaction of ECM-receptor, CAMs, the interaction of cytokine-cytokine receptor, and complement and coagulation cascade pathways were significantly activated. Eleven key genes, including ALB, ANXA1, ANXA2, C3, CCL2, CLU, EGF, FOS, PLG, TIMP1, and VCAM1, were selected by constructing a protein-protein interaction network, and expression validation, ECM-related pathways, and glomerular filtration rate correlation analysis were performed in the validated dataset. The upregulated expression of hub genes ANXA2 and FOS was verified by real-time quantitative PCR in HK-2 cells treated with high glucose. This study revealed potential regulatory mechanisms of renal tubulointerstitial damage and highlighted the crucial role of extracellular matrix in DN, which may promote the identification of new biomarkers and therapeutic targets.
Collapse
|
14
|
Abid F, Rubab Z, Fatima S, Qureshi A, Azhar A, Jafri A. In-silico analysis of interacting pathways through KIM-1 protein interaction in diabetic nephropathy. BMC Nephrol 2022; 23:254. [PMID: 35843953 PMCID: PMC9290293 DOI: 10.1186/s12882-022-02876-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Background Human Kidney Injury Molecule-1, also known as HAVCR-1 (Hepatitis A virus cellular receptor 1), belongs to the cell-surface protein of immunoglobulin superfamily involved in the phagocytosis by acting as scavenger receptor epithelial cells. The study focused on pinpointing the mechanisms and genes that interact with KIM-1. Methods This in-silico study was done from March 2019 to December 2019. The Enrichment and protein-protein interaction (PPI) network carefully choose proteins. In addition, the diagramed gene data sets were accomplished using FunRich version 3.1.3. It was done to unveil the proteins that may affect the regulation of HAVCR1 or may be regulated by this protein. These genes were then further considered in pathway analysis to discover the dysregulated pathways in diabetic nephropathy. The long list of differentially expressed genes is meaningless without pathway analysis. Results Critical pathways that are dysregulated in diabetic nephropathy patients have been identified. These include Immune System (Total = 237, P < 0.05), Innate Immune System (Total = 140, P < 0.05), Cytokine Signaling Immune system (Total = 116, P < 0.05), Adaptive Immune System (Total = 85) and Neutrophil degranulation (Total = 78). Conclusion The top 5 genes that are interacting directly with HIVCR1 include CASP3, CCL2, SPP1, B2M, and TIMP1 with degrees 161, 144, 108, 107, and 105 respectively for Immune system pathways (Innate Immune System, Cytokine Signaling Immune system, Adaptive Immune System and Neutrophil degranulation).
Collapse
Affiliation(s)
- F Abid
- Department Physiology, Jinnah Sindh Medical University, Karachi, Pakistan.
| | - Z Rubab
- Ziauddin Medical College-Ziauddin University, Karachi, Pakistan
| | - S Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - A Qureshi
- Department Physiology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - A Azhar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - A Jafri
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
15
|
Diao M, Wu Y, Yang J, Liu C, Xu J, Jin H, Wang J, Zhang J, Gao F, Jin C, Tian H, Xu J, Ou Q, Li Y, Xu G, Lu L. Identification of Novel Key Molecular Signatures in the Pathogenesis of Experimental Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 13:843721. [PMID: 35432190 PMCID: PMC9005898 DOI: 10.3389/fendo.2022.843721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/28/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is a long-term major microvascular complication of uncontrolled hyperglycemia and one of the leading causes of end-stage renal disease (ESDR). The pathogenesis of DKD has not been fully elucidated, and effective therapy to completely halt DKD progression to ESDR is lacking. This study aimed to identify critical molecular signatures and develop novel therapeutic targets for DKD. This study enrolled 10 datasets consisting of 93 renal samples from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). Networkanalyst, Enrichr, STRING, and Cytoscape were used to conduct the differentially expressed genes (DEGs) analysis, pathway enrichment analysis, protein-protein interaction (PPI) network construction, and hub gene screening. The shared DEGs of type 1 diabetic kidney disease (T1DKD) and type 2 diabetic kidney disease (T2DKD) datasets were performed to identify the shared vital pathways and hub genes. Strepotozocin-induced Type 1 diabetes mellitus (T1DM) rat model was prepared, followed by hematoxylin & eosin (HE) staining, and Oil Red O staining to observe the lipid-related morphological changes. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to validate the key DEGs of interest from a meta-analysis in the T1DKD rat. Using meta-analysis, 305 shared DEGs were obtained. Among the top 5 shared DEGs, Tmem43, Mpv17l, and Slco1a1, have not been reported relevant to DKD. Ketone body metabolism ranked in the top 1 in the KEGG enrichment analysis. Coasy, Idi1, Fads2, Acsl3, Oxct1, and Bdh1, as the top 10 down-regulated hub genes, were first identified to be involved in DKD. The qRT-PCR verification results of the novel hub genes were mostly consistent with the meta-analysis. The positive Oil Red O staining showed that the steatosis appeared in tubuloepithelial cells at 6 w after DM onset. Taken together, abnormal ketone body metabolism may be the key factor in the progression of DKD. Targeting metabolic abnormalities of ketone bodies may represent a novel therapeutic strategy for DKD. These identified novel molecular signatures in DKD merit further clinical investigation.
Collapse
Affiliation(s)
- Meng Diao
- Department of Ophthalmology, Shanghai Tongji Hospital of Tongji University, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yimu Wu
- Department of Ophthalmology, Shanghai Tongji Hospital of Tongji University, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jialu Yang
- Department of Ophthalmology, Shanghai Tongji Hospital of Tongji University, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Caiying Liu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jinyuan Xu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Hongchao Jin
- Business School and Science School, University of Auckland, Auckland, New Zealand
| | - Juan Wang
- Department of Human Genetics, Tongji University School of Medicine, Shanghai, China
| | - Jieping Zhang
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Haibin Tian
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jingying Xu
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Ying Li
- Department of Endocrinology, Tongji Hospital of Tongji University, Shanghai, China
- *Correspondence: Lixia Lu, ; Guotong Xu, ; Ying Li,
| | - Guotong Xu
- Department of Ophthalmology, Shanghai Tongji Hospital of Tongji University, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lixia Lu, ; Guotong Xu, ; Ying Li,
| | - Lixia Lu
- Department of Ophthalmology, Shanghai Tongji Hospital of Tongji University, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lixia Lu, ; Guotong Xu, ; Ying Li,
| |
Collapse
|
16
|
Chang DY, Li XQ, Chen M, Zhao MH. Dapagliflozin Ameliorates Diabetic Kidney Disease via Upregulating Crry and Alleviating Complement Over-activation in db/db Mice. Front Pharmacol 2021; 12:729334. [PMID: 34712135 PMCID: PMC8546210 DOI: 10.3389/fphar.2021.729334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022] Open
Abstract
Sodium-glucose cotransporter 2(SGLT2) inhibitors show prominent renal protective effect in diabetic kidney disease (DKD), anti-inflammatory effect being one of its key mechanisms. Over-activation of the complement system, a crucial part of innate immunity, plays an important role in DKD. We aimed to investigate the effect of SGLT2 inhibitors on alleviating complement over-activation in DKD. Db/db mice were randomly divided into two groups, with 7 mice in each group treated with dapagliflozin and vehicle respectively, and 7 mice in m/m mice group. Laboratory and renal pathological parameters were evaluated. Mouse proximal tubular epithelial cells (MPTECs) were cultured and treated with high glucose. Dapagliflozin and dimethyloxallyl glycine (DMOG) were added as conditional treatment. Dapagliflozin-treated db/db mice showed significantly lower urinary albumin than vehicle-treated ones. Besides typical glomerular and tubulointerstitial injury, both C3b and membrane attack complex (MAC) depositions were significantly attenuated in dapagliflozin-treated db/db mice. The expression of complement receptor type 1-related protein y (Crry), a key complement regulator which inhibits complement over-activation, was significantly upregulated by dapagliflozin. Dapagliflozin-mediated Crry upregulation was associated with inhibition of HIF-1α accumulation under high glucose. When HIF-1α expression was stabilized by DMOG, the protective effect of dapagliflozin via upregulating Crry was blocked. In conclusion, dapagliflozin could attenuate complement over-activation in diabetic mice via upregulating Crry, which is associated with the suppression of HIF-1α accumulation in MPTECs.
Collapse
Affiliation(s)
- Dong-Yuan Chang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Qian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Tao J, Zhao J, Qi XM, Wu YG. Complement-mediated M2/M1 macrophage polarization may be involved in crescent formation in lupus nephritis. Int Immunopharmacol 2021; 101:108278. [PMID: 34700131 DOI: 10.1016/j.intimp.2021.108278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022]
Abstract
The function of the complement and macrophage crosstalk during the formation of crescents in lupus nephritis has not yet been reported. This study therefore aimed to explore the association of crescents, complements, and M2 macrophages with clinical features in lupus nephritis. We assessed a Chinese cohort comprising 301 patients with lupus nephritis. Renal biopsy specimens were collected from 64 patients with proliferative lupus nephritis (class III/III + V or IV/IV + V). The renal deposition of cluster of differentiation (CD) 68, inducible nitric oxide synthase, CD163, and C3a receptor (C3aR) was evaluated by immunostaining. The associations among crescents, complements, and M2 macrophages were also analyzed. Next, the underlying mechanism was investigated in vitro using C3a-treated macrophages. We found that M2-phenotype macrophages (CD163+) were the dominant subpopulation in human lupus nephritis. Additionally, a significant association was observed among the CD163+ macrophages, crescents, and complement activation. C3aR co-localized with CD163 and correlated with crescents and could induce polarization of macrophages to an M2 phenotype. Overall, these results suggest that complement-mediated M2/M1 macrophage polarization may contribute to the formation of crescents in lupus nephritis.
Collapse
Affiliation(s)
- Juan Tao
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, No. 218, Jixi Rd., Hefei, Anhui 230022, PR China
| | - Jing Zhao
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, No. 218, Jixi Rd., Hefei, Anhui 230022, PR China
| | - Xiang-Ming Qi
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, No. 218, Jixi Rd., Hefei, Anhui 230022, PR China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital, Anhui Medical University, No. 218, Jixi Rd., Hefei, Anhui 230022, PR China.
| |
Collapse
|
18
|
Zhao J, Chen J, Li YY, Xia LL, Wu YG. Bruton's tyrosine kinase regulates macrophage‑induced inflammation in the diabetic kidney via NLRP3 inflammasome activation. Int J Mol Med 2021; 48:177. [PMID: 34278465 PMCID: PMC8354311 DOI: 10.3892/ijmm.2021.5010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
It has been previously reported that macrophages may be involved in diabetic nephropathy (DN) development. Furthermore, Bruton's tyrosine kinase (BTK) may participate in macrophage activation and lead to the release of inflammatory mediators. The main aim of the present study was to analyze the association between renal BTK expression and clinical indicators. Moreover, BTK knockout mice were used to establish a diabetic model for further research. The results demonstrated that BTK was activated in the kidneys of patients with DN and was associated with the progression of proteinuria, creatinine levels, estimated glomerular filtration rate and pathological changes in the kidneys of patients with DN. Furthermore, BTK knockout was observed to reduce urinary protein excretion, alleviate renal injury and decrease renal inflammation in diabetic mice. This protection may be attributed to BTK‑induced suppression of the activation of the Nod‑like receptor (NLR) family pyrin domain containing 3 inflammasome. Collectively, it has been demonstrated in the present study that BTK may be a potential target for DN treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Juan Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yuan-Yuan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ling-Ling Xia
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yong-Gui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
19
|
Komeno M, Pang X, Shimizu A, Molla MR, Yasuda-Yamahara M, Kume S, Rahman NIA, Soh JEC, Nguyen LKC, Ahmat Amin MKB, Kokami N, Sato A, Asano Y, Maegawa H, Ogita H. Cardio- and reno-protective effects of dipeptidyl peptidase III in diabetic mice. J Biol Chem 2021; 296:100761. [PMID: 33971198 PMCID: PMC8167299 DOI: 10.1016/j.jbc.2021.100761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus (DM) causes injury to tissues and organs, including to the heart and kidney, resulting in increased morbidity and mortality. Thus, novel potential therapeutics are continuously required to minimize DM-related organ damage. We have previously shown that dipeptidyl peptidase III (DPPIII) has beneficial roles in a hypertensive mouse model, but it is unknown whether DPPIII has any effects on DM. In this study, we found that intravenous administration of recombinant DPPIII in diabetic db/db mice for 8 weeks suppressed the DM-induced cardiac diastolic dysfunctions and renal injury without alteration of the blood glucose level. This treatment inhibited inflammatory cell infiltration and fibrosis in the heart and blocked the increase in albuminuria by attenuating the disruption of the glomerular microvasculature and inhibiting the effacement of podocyte foot processes in the kidney. The beneficial role of DPPIII was, at least in part, mediated by the cleavage of a cytotoxic peptide, named Peptide 2, which was increased in db/db mice compared with normal mice. This peptide consisted of nine amino acids, was a digested fragment of complement component 3 (C3), and had an anaphylatoxin-like effect determined by the Miles assay and chemoattractant analysis. The effect was dependent on its interaction with the C3a receptor and protein kinase C-mediated RhoA activation downstream of the receptor in endothelial cells. In conclusion, DPPIII plays a protective role in the heart and kidney in a DM animal model through cleavage of a peptide that is a part of C3.
Collapse
Affiliation(s)
- Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Xiaoling Pang
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan; Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Md Rasel Molla
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | | | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Nor Idayu A Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Le Kim Chi Nguyen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Nao Kokami
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
20
|
Gao S, Cui Z, Zhao MH. The Complement C3a and C3a Receptor Pathway in Kidney Diseases. Front Immunol 2020; 11:1875. [PMID: 32973774 PMCID: PMC7461857 DOI: 10.3389/fimmu.2020.01875] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of some kidney diseases is closely associated with complement activation, where the C3a/C3a receptor (C3aR) might play a crucial role. C3a/C3aR has dual roles and may exert anti-inflammatory or pro-inflammatory effects depending on different cell types and diseases. In the kidneys, C3aR is primarily expressed on the tubular epithelium and less in glomerular podocytes. C3aR expression is enhanced and the levels of C3a in the plasma and urine are increased in kidney diseases of several types, and are associated with disease progression and severity. The C3a/C3aR pathway facilitates the progression of glomerular and tubulointerstitial diseases, while it has opposite effects on urinary tract infections. Clinical trials targeting C3a/C3aR in kidney diseases are lacking. Here, we reviewed the studies on the C3a/C3aR pathway in kidney disease, with the aim of understanding in-depth its controversial roles and its potential therapeutic value.
Collapse
Affiliation(s)
- Shuang Gao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
21
|
Pentraxin-3 and adropin as inflammatory markers of early renal damage in type 2 diabetes patients. Int Urol Nephrol 2020; 52:2145-2152. [DOI: 10.1007/s11255-020-02568-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022]
|