1
|
Bowyer C, Fletcher S. We need a global agreement to safeguard human health from plastic pollution. BMJ 2025; 388:q2890. [PMID: 39746705 DOI: 10.1136/bmj.q2890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Murphy D. Plastics pollution: Talks collapse after oil producers resist limits. BMJ 2024; 387:q2727. [PMID: 39631872 DOI: 10.1136/bmj.q2727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
|
3
|
Baklan D, Bilousova A, Wesolowski M. UV Resistance and Wetting of PLA Webs Obtained by Solution Blow Spinning. Polymers (Basel) 2024; 16:2428. [PMID: 39274061 PMCID: PMC11397645 DOI: 10.3390/polym16172428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
In this work, the resistance of polylactide-based non-wovens produced by solution blow spinning to environmental factors was investigated. An average contact angle of up to 136° was achieved with an average fiber diameter of 340 nm at the optimal material density and nozzle-substrate distance. When exposed to ultraviolet (UV) radiation, the polylactide non-wovens rapidly lose their hydrophobic properties due to changes in surface morphology resulting from fiber melting. It was demonstrated that the influence of surface structural features on hydrophobicity is greater than that of the material itself. The stability of the wetting properties under UV irradiation was assessed using the derivative parameters of the Owens-Wendt technique, which can serve as an additional method for estimating surface polarity.
Collapse
Affiliation(s)
- Denys Baklan
- Department of Chemical Technology of Composite Materials, Chemical Technology Faculty, Igor Sikorsky Kyiv Polytechnic Institute, Beresteiskyi Ave. 37, 03056 Kyiv, Ukraine
| | - Anna Bilousova
- Department of Chemical Technology of Composite Materials, Chemical Technology Faculty, Igor Sikorsky Kyiv Polytechnic Institute, Beresteiskyi Ave. 37, 03056 Kyiv, Ukraine
| | - Miroslaw Wesolowski
- Department of Structural Mechanics, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Technology, ul. Sniadeckich 2, 75-453 Koszalin, Poland
| |
Collapse
|
4
|
Enache AC, Grecu I, Samoila P. Polyethylene Terephthalate (PET) Recycled by Catalytic Glycolysis: A Bridge toward Circular Economy Principles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2991. [PMID: 38930360 PMCID: PMC11205646 DOI: 10.3390/ma17122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Plastic pollution has escalated into a critical global issue, with production soaring from 2 million metric tons in 1950 to 400.3 million metric tons in 2022. The packaging industry alone accounts for nearly 44% of this production, predominantly utilizing polyethylene terephthalate (PET). Alarmingly, over 90% of the approximately 1 million PET bottles sold every minute end up in landfills or oceans, where they can persist for centuries. This highlights the urgent need for sustainable management and recycling solutions to mitigate the environmental impact of PET waste. To better understand PET's behavior and promote its management within a circular economy, we examined its chemical and physical properties, current strategies in the circular economy, and the most effective recycling methods available today. Advancing PET management within a circular economy framework by closing industrial loops has demonstrated benefits such as reduced landfill waste, minimized energy consumption, and conserved raw resources. To this end, we identified and examined various strategies based on R-imperatives (ranging from 3R to 10R), focusing on the latest approaches aimed at significantly reducing PET waste by 2040. Additionally, a comparison of PET recycling methods (including primary, secondary, tertiary, and quaternary recycling, along with the concepts of "zero-order" and biological recycling techniques) was envisaged. Particular attention was paid to the heterogeneous catalytic glycolysis, which stands out for its rapid reaction time (20-60 min), high monomer yields (>90%), ease of catalyst recovery and reuse, lower costs, and enhanced durability. Accordingly, the use of highly efficient oxide-based catalysts for PET glycolytic degradation is underscored as a promising solution for large-scale industrial applications.
Collapse
Affiliation(s)
| | | | - Petrisor Samoila
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.-C.E.); (I.G.)
| |
Collapse
|
5
|
Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, Kumar V, Muzammil K, Mani Sankar M. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. CHEMOSPHERE 2024; 352:141417. [PMID: 38340992 DOI: 10.1016/j.chemosphere.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.
Collapse
Affiliation(s)
- J R Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - G Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - M Mani Sankar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|