1
|
Salavitabar A, Zampi JD, Thomas C, Zanaboni D, Les A, Lowery R, Yu S, Whiteside W. Augmented Reality Visualization of 3D Rotational Angiography in Congenital Heart Disease: A Comparative Study to Standard Computer Visualization. Pediatr Cardiol 2024; 45:1759-1766. [PMID: 37725124 DOI: 10.1007/s00246-023-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
Augmented reality (AR) visualization of 3D rotational angiography (3DRA) provides 3D representations of cardiac structures with full visualization of the procedural environment. The purpose of this study was to evaluate the feasibility of converting 3DRAs of congenital heart disease patients to AR models, highlight the workflow for 3DRA optimization for AR visualization, and assess physicians' perceptions of their use. This single-center study prospectively evaluated 30 retrospectively-acquired 3DRAs that were converted to AR, compared to Computer Models (CM). Median patient age 6.5 years (0.24-38.8) and weight 20.6 kg (3.4-107.0). AR and CM quality were graded highly. RV pacing was associated with higher quality of both model types (p = 0.02). Visualization and identification of structures were graded as "very easy" in 81.1% (n = 73) and 67.8% (n = 61) of AR and CM, respectively. Fifty-nine (66%) grades 'Agreed' or 'Strongly Agreed' that AR models provided superior appreciation of 3D relationships; AR was found to be least beneficial in visualization of aortic arch obstruction. AR models were thought to be helpful in identifying pathology and assisting in interventional planning in 85 assessments (94.4%). There was significant potential seen in the opportunity for patient/family counseling and trainee/staff education with AR models. It is feasible to convert 3D models of 3DRAs into AR models, which are of similar image quality as compared to CM. AR models provided additional benefits to visualization of 3D relationships in most anatomies. Future directions include integration of interventional simulation, peri-procedural counseling of patients and families, and education of trainees and staff with AR models.
Collapse
Affiliation(s)
- Arash Salavitabar
- Cardiac Catheterization & Interventional Therapies, The Heart Center, Nationwide Children's Hospital, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH, 43205, USA.
| | - Jeffrey D Zampi
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Courtney Thomas
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Dominic Zanaboni
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Andrea Les
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Ray Lowery
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Sunkyung Yu
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| | - Wendy Whiteside
- University of Michigan Congenital Heart Center, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Yu F, Zhou F, Hao Q, Cao W, Xie L, Xu X, Zhen P, Song S, Liu Z, Song S, Li S, Zhong M, Li R, Tan Y, Zhang Q, Wei Q, Tong J. Knowledge, attitude, and practice of inpatients with cardiovascular disease regarding obstructive sleep apnea. Sci Rep 2024; 14:25905. [PMID: 39472645 PMCID: PMC11522412 DOI: 10.1038/s41598-024-77546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
There is a significant interrelationship between cardiovascular disease and obstructive sleep apnea (OSA), as they share common risk factors and comorbidities. This study aimed to investigate the knowledge, attitude, and practice (KAP) of inpatients with cardiovascular disease towards OSA. This cross-sectional study was conducted between January, 2022 and January, 2023 at Zhongda Hospital Affiliated to Southeast University among inpatients with cardiovascular disease using a self-administered questionnaire. A self-designed questionnaire was used to assess KAP, and the STOP-Bang questionnaire was applied to evaluate participants' OSA risk. Spearman correlation and path analyses were conducted to explore relationships among KAP scores and high OSA risk. Subgroup analyses were conducted within the high-risk population identified by the STOP-Bang questionnaire. In a study analyzing 591 questionnaires, 66.33% were males. Mean scores were 6.81 ± 4.903 for knowledge, 26.84 ± 4.273 for attitude, and 14.46 ± 2.445 for practice. Path analysis revealed high risk of OSA positively impacting knowledge (β = 2.351, P < 0.001) and practice (β = 0.598, P < 0.001) towards OSA. Knowledge directly affected attitude (β = 0.544) and practice (β = 0.139), while attitude influenced practice (β = 0.266). Among high OSA risk individuals, knowledge directly impacted attitude (β = 0.645) and practice (β = 0.133). Knowledge indirectly influenced practice via attitude (β = 0.197). Additionally, attitude directly affected practice (β = 0.305). These findings provide insights into the interplay between OSA risk, knowledge, attitude, and practice. Inpatients with cardiovascular disease demonstrated inadequate knowledge, moderate attitude, and practice towards OSA. The findings highlighting the need for targeted educational interventions to improve awareness and management of OSA.
Collapse
Affiliation(s)
- Fuchao Yu
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
- Southeast University, Nanjing, 210009, China
| | - Fangping Zhou
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Qing Hao
- Southeast University, Nanjing, 210009, China
| | - Wu Cao
- Southeast University, Nanjing, 210009, China
| | - Liang Xie
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Xuan Xu
- Southeast University, Nanjing, 210009, China
| | | | | | - Zhuyuan Liu
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Sifan Song
- Southeast University, Nanjing, 210009, China
| | - Shengnan Li
- Southeast University, Nanjing, 210009, China
| | - Min Zhong
- Southeast University, Nanjing, 210009, China
| | - Runqian Li
- Southeast University, Nanjing, 210009, China
| | - Yanyi Tan
- Southeast University, Nanjing, 210009, China
| | - Qiang Zhang
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Qin Wei
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Jiayi Tong
- Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Krishnaswamy A, Kassab J, Harb SC. Beyond Simple Visualization: A New Reality for Structural Heart Interventions? J Am Heart Assoc 2024; 13:e036238. [PMID: 39041623 DOI: 10.1161/jaha.124.036238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Affiliation(s)
| | - Joseph Kassab
- Heart and Vascular Institute, Cleveland Clinic Cleveland OH USA
| | - Serge C Harb
- Heart and Vascular Institute, Cleveland Clinic Cleveland OH USA
| |
Collapse
|
4
|
Opotowsky AR, Khairy P, Diller G, Kasparian NA, Brophy J, Jenkins K, Lopez KN, McCoy A, Moons P, Ollberding NJ, Rathod RH, Rychik J, Thanassoulis G, Vasan RS, Marelli A. Clinical Risk Assessment and Prediction in Congenital Heart Disease Across the Lifespan: JACC Scientific Statement. J Am Coll Cardiol 2024; 83:2092-2111. [PMID: 38777512 DOI: 10.1016/j.jacc.2024.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 05/25/2024]
Abstract
Congenital heart disease (CHD) comprises a range of structural anomalies, each with a unique natural history, evolving treatment strategies, and distinct long-term consequences. Current prediction models are challenged by generalizability, limited validation, and questionable application to extended follow-up periods. In this JACC Scientific Statement, we tackle the difficulty of risk measurement across the lifespan. We appraise current and future risk measurement frameworks and describe domains of risk specific to CHD. Risk of adverse outcomes varies with age, sex, genetics, era, socioeconomic status, behavior, and comorbidities as they evolve through the lifespan and across care settings. Emerging technologies and approaches promise to improve risk assessment, but there is also need for large, longitudinal, representative, prospective CHD cohorts with multidimensional data and consensus-driven methodologies to provide insight into time-varying risk. Communication of risk, particularly with patients and their families, poses a separate and equally important challenge, and best practices are reviewed.
Collapse
Affiliation(s)
- Alexander R Opotowsky
- Adult Congenital Heart Disease Program, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Paul Khairy
- Adult Congenital Heart Centre, Montreal Heart Institute, Montréal, Quebec, Canada
| | - Gerhard Diller
- Department of Cardiology III, University Hospital Münster, Münster, Germany
| | - Nadine A Kasparian
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Heart and Mind Wellbeing Center, Cincinnati, Ohio, USA; Heart Institute and Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Brophy
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebec, Canada
| | - Kathy Jenkins
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Keila N Lopez
- Department of Pediatrics, Section of Cardiology, Texas Children's Hospital & Baylor College of Medicine, Houston, Texas, USA
| | - Alison McCoy
- Vanderbilt Clinical Informatics Core, Department of Biomedical Informatics, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Philip Moons
- KU Leuven Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Institute of Health and Care Sciences, University of Gothenburg, Gothenburg, Sweden; Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Nicholas J Ollberding
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rahul H Rathod
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jack Rychik
- Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George Thanassoulis
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, Quebec, Canada
| | - Ramachandran S Vasan
- School of Public Health, University of Texas, San Antonio, Texas, USA; Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ariane Marelli
- McGill Adult Unit for Congenital Heart Disease Excellence, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
SUN ZH. Cardiovascular computed tomography in cardiovascular disease: An overview of its applications from diagnosis to prediction. J Geriatr Cardiol 2024; 21:550-576. [PMID: 38948894 PMCID: PMC11211902 DOI: 10.26599/1671-5411.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cardiovascular computed tomography angiography (CTA) is a widely used imaging modality in the diagnosis of cardiovascular disease. Advancements in CT imaging technology have further advanced its applications from high diagnostic value to minimising radiation exposure to patients. In addition to the standard application of assessing vascular lumen changes, CTA-derived applications including 3D printed personalised models, 3D visualisations such as virtual endoscopy, virtual reality, augmented reality and mixed reality, as well as CT-derived hemodynamic flow analysis and fractional flow reserve (FFRCT) greatly enhance the diagnostic performance of CTA in cardiovascular disease. The widespread application of artificial intelligence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease. Clinical value of CTA has extended from the initial diagnosis to identification of vulnerable lesions, and prediction of disease extent, hence improving patient care and management. In this review article, as an active researcher in cardiovascular imaging for more than 20 years, I will provide an overview of cardiovascular CTA in cardiovascular disease. It is expected that this review will provide readers with an update of CTA applications, from the initial lumen assessment to recent developments utilising latest novel imaging and visualisation technologies. It will serve as a useful resource for researchers and clinicians to judiciously use the cardiovascular CT in clinical practice.
Collapse
Affiliation(s)
- Zhong-Hua SUN
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth 6012, Australia
| |
Collapse
|
6
|
d’Aiello AF, Schianchi L, Bevilacqua F, Ferrero P, Micheletti A, Negura DG, Pasqualin G, Chessa M. Holography-guided procedural planning for modifying Venus P-valve implantation technique in patients with left pulmonary artery stents: a case-series. Front Cardiovasc Med 2024; 11:1378924. [PMID: 38803661 PMCID: PMC11129635 DOI: 10.3389/fcvm.2024.1378924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Venus P-valve™ (Venus Medtech, Hangzhou, China) is a self-expandable bioprosthetic valve that can be transcatheter-implanted in native right ventricular outflow tract (RVOT) patients. Valve implantation is technically challenging. Due to the implantation technique, left pulmonary artery (LPA) stents represent a relative contraindication to Venus P-valve. In this case series, we describe our experience in implanting Venus P-valve in patients with previous LPA stents and the use of holographic models to facilitate procedural planning. Methods and results From January to October 2023, 17 patients were scheduled for Venus P-Valve implantation. 16/17 (94%) patients were successfully implanted. 3/16 (18.7%) patients underwent Venus P-valve implantation with LPA stents. All patients underwent pre-operative CT scan. CT data set were employed to create three-dimensional (3D) holographic models (Artiness, Milan, Italy) of the entire heart, which were useful to plan valve implantation with a modified technique. Procedural success rate was 100%. No procedural complications occurred. All three patients presented good haemodynamic and angiographic results at discharge and follow-up visits. Conclusion This case-series underscores the feasibility of Venus P-valve implantation in patients with previous LPA stents. The use of holographic models facilitated procedural planning in these challenging anatomical scenarios.
Collapse
Affiliation(s)
- Angelo Fabio d’Aiello
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Laura Schianchi
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Francesca Bevilacqua
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Paolo Ferrero
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Angelo Micheletti
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Diana Gabriela Negura
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Giulia Pasqualin
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Massimo Chessa
- Adult Congenital Heart Disease (ACHD) Unit, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Karni-Visel Y, Dekel R, Sadeh Y, Sherman L, Katz U. "You Have to Find a Way for This Child to Be at the Center": Pediatric Cardiologists' Views on Triadic Communication in Consultations on Congenital Heart Defects. HEALTH COMMUNICATION 2024:1-12. [PMID: 38557305 DOI: 10.1080/10410236.2024.2329422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Congenital heart defects (CHDs) are present at birth and require ongoing management of personal, family, and medical aspects of care, including communication between family and medical staff. Effective communication is considered one of the main objectives of patient-centered care. Communication in pediatric medicine is especially challenging because it includes children and their parent(s), and children's cognitive and communication skills are still developing. Based on the model of behavior in pediatric communication , this study focused on pediatric cardiologists' views of the roles of children, parents, and physicians in the triadic encounter and their experiences in communicating information on pediatric CHDs in medical encounters. Semi-structured interviews were conducted with 17 experienced pediatric cardiologists and cardiac surgeons (five women and 12 men) at three medical centers in Israel. The grounded theory approach was used to identify three main categories: (1) the positioning (centrality) of the child in the setting (ideal vs. actual situation), (2) addressing parents' emotional needs, and (3) the physician's role as mediator between parent(s) and child. In each category, three elements are discussed: The physician's agenda, obstacles and challenges, and the physician's practical methods. Physicians strongly support children's involvement in triadic encounters yet face challenges in effectively integrating them into the information exchange process during cardiology consultations. Struggling to balance the principles of patient- and family-centered care, and without clear guidelines, they rely on their personal beliefs and experiences to formulate communication strategies that address parents' and children's needs.
Collapse
Affiliation(s)
- Yael Karni-Visel
- The Louis and Gabi Weisfeld School of Social Work, Bar-Ilan University
| | - Rachel Dekel
- The Louis and Gabi Weisfeld School of Social Work, Bar-Ilan University
| | - Yaara Sadeh
- School of Social Work, University of Haifa
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center at Tel HaShomer
| | - Liat Sherman
- Pediatric Heart Institute, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center at Tel HaShomer
| | - Uriel Katz
- Pediatric Heart Institute, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center at Tel HaShomer
- Sackler School of Medicine, Tel-Aviv University
| |
Collapse
|
8
|
Iqbal N, Fletcher J, Bassett P, Hart A, Lung P, Tozer P. Exploring methods of improving patient understanding and communication in a complex anal fistula clinic: results from a randomized controlled feasibility study. Colorectal Dis 2024; 26:518-526. [PMID: 38235831 DOI: 10.1111/codi.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
AIM Patient understanding of disease can guide decision-making in the management of anal fistula. This prospective feasibility study aimed to assess the acceptability and methods of assessing the impact of viewing realistic models on patients with anal fistula. METHODS New referrals to a tertiary clinic participated in this single-centre, parallel-group randomized controlled study. Baseline characteristics, Decisional Conflict Scale and understanding of disease were assessed pre-consultation. Participants were randomized to a standard consultation, where disease and treatment options were explained using magnetic resonance images and drawn diagrams, or a similar consultation supplemented with an appropriate generic three-dimensional (3D) printed model. Understanding of disease and proposed surgery, Decisional Conflict Scale and ratings of visual aids were assessed post-consultation, along with 3D model feedback. RESULTS All 52 patients who were approached agreed to be randomized (25 standard, 27 3D consultation). Understanding of disease increased post-consultation in both groups. Post-consultation decisional conflict (0, no; 100, high decisional conflict) was low (median 27 post-standard vs. 24 post-3D consultation). Patients scored highly on measures assessing understanding of proposed surgery. 3D models were rated highly, with 96% of patients wanting to see them again in future consultations. CONCLUSIONS Three-dimensional printed fistula models are a welcome addition to outpatient consultations with results suggesting that understanding of surgery is improved. A future trial should be powered to detect whether 3D models result in a significant improvement in understanding beyond traditional methods of explanation and explore the conditions in which models have their maximal utility. CLINICALTRIALS GOV REGISTRATION ID This study was registered on ClinicalTrials.gov (ID: NCT04069728). Registered on 23 August 2019.
Collapse
Affiliation(s)
- Nusrat Iqbal
- Robin Phillips' Fistula Research Unit, St Mark's Hospital, Harrow, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Jordan Fletcher
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Colorectal Surgery, St Mark's Hospital, Harrow, UK
| | - Paul Bassett
- Statsconsultancy Ltd, Longwood Lane, Amersham, UK
| | - Ailsa Hart
- Robin Phillips' Fistula Research Unit, St Mark's Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Phillip Lung
- Robin Phillips' Fistula Research Unit, St Mark's Hospital, Harrow, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Phil Tozer
- Robin Phillips' Fistula Research Unit, St Mark's Hospital, Harrow, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
9
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
10
|
Marella NT, Gil AM, Fan W, Aristizabal CA, Asrani P, Harrington JK, Channing A, Setton M, Shah AM, Levasseur S, Glickstein J, Farooqi KM. 3D-Printed Cardiac Models for Fetal Counseling: A Pilot Study and Novel Approach to Improve Communication. Pediatr Cardiol 2023; 44:1800-1807. [PMID: 37199756 PMCID: PMC10193324 DOI: 10.1007/s00246-023-03177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
A fetal cardiology consultation involves using two-dimensional drawings to explain the cardiac anatomy which can result in inherent variation in how the congenital heart disease (CHD) is conveyed. In this pilot study, we incorporated three-dimensional printed (3DP) models into fetal counseling to demonstrate feasibility and evaluate the impact on parental knowledge, understanding, and anxiety. Parents with a prenatal diagnosis of a muscular ventricular septal defect (VSD) and/or coarctation of aorta were enrolled. Providers were randomized into a Model or Drawing Group and crossed after six months. Parents completed a survey after the consultation which evaluated knowledge of the CHD lesion, expectant surgical management, self-rated understanding, attitude towards the visualization tool, and anxiety. Twenty-nine patients enrolled over a 12 month period. Twelve consultations were done for coarctation of aorta, 13 for VSD, and four for coarctation with a VSD. Both Model and Drawing groups scored similarly in self-reported understanding and confidence, helpfulness of and improvement in communication with the visualization tool. The Model group had higher scores on questions related to the CHD anatomy and surgical intervention [5 [4-5] versus 4 [3.5-5]], p = 0.23 although this didn't reach statistical significance. For the majority (83%) of consultations, the cardiologist agreed that the 3D model improved communication. In this pilot study, we demonstrate the use of 3DP cardiac models during prenatal CHD counseling is feasible and produces results related to parental understanding and knowledge that are equal to and possibly better than the current standard of care.
Collapse
Affiliation(s)
- Nicole Toscana Marella
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
- Division of Pediatric Cardiology, Children's National Hospital, Washington, DC, USA
| | - Adriana Montes Gil
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Weijia Fan
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Priyanka Asrani
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Jamie K Harrington
- Division of Pediatric Cardiology, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Channing
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Matan Setton
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Amee M Shah
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Stéphanie Levasseur
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Julie Glickstein
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA
| | - Kanwal M Farooqi
- Division of Pediatric Cardiology, NewYork-Presbyterian/Columbia University Irving Medical Center, 3959 Broadway, CHN-2, New York, NY, 10023, USA.
| |
Collapse
|
11
|
Jimenez JE, Shaffer AD, Hammersley E, Ghodadra A, Stapleton AL. Use of patient-specific 3D printed models in pre-operative counseling for pediatric skull base surgery. Int J Pediatr Otorhinolaryngol 2023; 171:111655. [PMID: 37459769 DOI: 10.1016/j.ijporl.2023.111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Pediatric cranial base pathology is anatomically complex and surgical treatment is oftentimes difficult to conceptualize for patients and their families. Three-dimensional (3D) models of the sinuses and cranial base have the potential to enhance patient understanding in numerous domains. Our objective is to assess the use of 3D models in pre-operative parental and patient counseling prior to endoscopic endonasal skull base surgery in the pediatric population. METHODS A survey was designed to assess parent and patient-perceived utility of 3D-printed models in surgical counseling prior to pediatric skull base surgery. RESULTS A total of 10 patients were included. The median age was 9 years (range = 5 months-15 years). Pathology included juvenile nasopharyngeal angiofibroma (JNA) (N = 4), fibrous dysplasia of the maxilla and sphenoid (N = 1), juvenile ossifying fibroma (N = 1), nasal dermoid (N = 2, one with intracranial extension), encephalocele (N = 1), and parapharyngeal ectopic glial tissue (N = 1). Nearly all parents agreed or strongly agreed that 3D printed models were helpful in explaining the patient's skull base pathology (N = 10), surgical plan (N = 10), and possible complications (N = 9). All parents strongly agreed that 3D models should be used routinely in pre-operative counseling for endoscopic endonasal surgery. According to a majority of parents, patients older than 4 years old found the models helpful in understanding their pathology (75%) and surgery (88%). CONCLUSION By allowing direct three-dimensional visualization of the target pathology, 3D models serve as a useful adjunct in enhancing patient comprehension of the pathologic entity, planned surgery, and potential complications prior to pediatric endoscopic endonasal skull base surgery.
Collapse
Affiliation(s)
- Joaquin E Jimenez
- Department of Otolaryngology, University of Pittsburgh Medical Center, UPMC Eye & Ear Institute, 203 Lothrop Street, Suite 519, Pittsburgh, PA, 15213, United States.
| | - Amber D Shaffer
- Department of Otolaryngology, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Faculty Pavilion, 7th Floor, Pittsburgh, PA, 15224, United States.
| | - Elliott Hammersley
- 3D Printing Program, Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite E204, Pittsburgh, PA, 15213, United States.
| | - Anish Ghodadra
- 3D Printing Program, Department of Radiology, University of Pittsburgh Medical Center, 200 Lothrop Street, Suite E204, Pittsburgh, PA, 15213, United States
| | - Amanda L Stapleton
- Department of Otolaryngology, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Faculty Pavilion, 7th Floor, Pittsburgh, PA, 15224, United States.
| |
Collapse
|
12
|
Bhandari S, Yadav V, Ishaq A, Sanipini S, Ekhator C, Khleif R, Beheshtaein A, Jhajj LK, Khan AW, Al Khalifa A, Naseem MA, Bellegarde SB, Nadeem MA. Trends and Challenges in the Development of 3D-Printed Heart Valves and Other Cardiac Implants: A Review of Current Advances. Cureus 2023; 15:e43204. [PMID: 37565179 PMCID: PMC10411854 DOI: 10.7759/cureus.43204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
This article provides a comprehensive review of the current trends and challenges in the development of 3D-printed heart valves and other cardiac implants. By providing personalized solutions and pushing the limits of regenerative medicine, 3D printing technology has revolutionized the field of cardiac healthcare. The use of several organic and synthetic polymers in 3D printing heart valves is explored in this article, with emphasis on both their benefits and drawbacks. In cardiac tissue engineering, stem cells are essential, and their potential to lessen immunological rejection and thrombogenic consequences is highlighted. In the clinical applications section, the article emphasizes the importance of 3D printing in preoperative planning. Surgery results are enhanced when surgeons can visualize and assess the size and placement of implants using patient-specific anatomical models. Customized implants that are designed to match the anatomy of a particular patient reduce the likelihood of complications and enhance postoperative results. The development of physiologically active cardiac implants, made possible by 3D bioprinting, shows promise by eliminating the need for artificial valves. In conclusion, this paper highlights cutting-edge research and the promise of 3D-printed cardiac implants to improve patient outcomes and revolutionize cardiac treatment.
Collapse
Affiliation(s)
| | - Vikas Yadav
- Internal Medicine, Pt. B.D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, IND
| | - Aqsa Ishaq
- Internal Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Rafeef Khleif
- Medicine, Xavier University School of Medicine, Aruba, ABW
| | - Alee Beheshtaein
- Internal Medicine, Xavier University School of Medicine, Chicago, USA
| | - Loveleen K Jhajj
- Internal Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | | | - Ahmed Al Khalifa
- Medicine, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah, SAU
| | | | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
13
|
Pascoe AR, Raviskanthan S, Mortensen PW, Lee AG. Three-Dimensional Printed Brain Model of a Patient With Alexia Without Agraphia Syndrome. J Neuroophthalmol 2023; 43:e55-e57. [PMID: 35439229 DOI: 10.1097/wno.0000000000001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Alexis R Pascoe
- Department of Ophthalmology (ARP, AGL), University of Texas Medical Branch, Galveston, Texas; Department of Ophthalmology (SR, PWM, AGL), Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas; Departments of Ophthalmology, Neurology, and Neurosurgery (AGL), Weill Cornell Medicine, New York, New York; University of Texas MD Anderson Cancer Center (AGL), Houston, Texas; Texas A and M College of Medicine (AGL), Bryan, Texas; and Department of Ophthalmology (AGL), The University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | | |
Collapse
|
14
|
Huang J, Wang H, Yang Y, Chen Q, Hu J, Shi H, Zhou Q. 3D printing of foetal vascular rings: feasibility and applicability. BMC Pregnancy Childbirth 2023; 23:355. [PMID: 37194003 DOI: 10.1186/s12884-023-05683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Vascular rings (VRs) exhibit complex and diverse forms that are difficult to conceptualize using traditional two-dimensional (2D) schematic. Inexperienced medical students and parents who lack a medical technology background face significant challenges in understanding VRs. The purpose of this research is to develop three-dimensional (3D) printing models of VRs to provide new technical imaging support for medical education and parental consultation. METHODS This study included 42 fetuses diagnosed as VRs. Foetal echocardiography, modeling and 3D printing were performed, and the dimensional accuracy of models was analyzed. The value of 3D printing in the teaching of VRs was analyzed based on comparing the test results before and after the teaching intervention of 48 medical students and the satisfaction survey. A brief survey was conducted to 40 parents to assess the value of the 3D printed model in prenatal consultations. RESULTS Forty models of VRs were successfully obtained, which reproduced the anatomical shape of the VRs space with high dimensional accuracy. No differences in the prelecture test results were noted between the 3D printing group and the 2D image group. After the lecture, the knowledge of both groups improved, but the postlecture score and the change in the prelecture versus postlecture score were greater in the 3D printing group, and the subjective satisfaction survey feedback in the 3D printing group was also better (P < 0.05). Similar results were observed from the parental questionnaire, the vast majority of parents have an enthusiastic and positive attitude towards the use of 3D printed models and suggest using them in future prenatal consultations. CONCLUSIONS Three-dimensional printing technology providing a new tool for effectively displaying different types of foetal VRs. This tool helps physicians and families understand the complex structure of foetal great vessels, positively impacting medical instruction and prenatal counselling.
Collapse
Affiliation(s)
- Jia Huang
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hao Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuanting Yang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Chen
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiaqi Hu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua Shi
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
15
|
Asif A, Shearn AIU, Turner MS, Ordoñez MV, Sophocleous F, Mendez-Santos A, Valverde I, Angelini GD, Caputo M, Hamilton MCK, Biglino G. Assessment of post-infarct ventricular septal defects through 3D printing and statistical shape analysis. JOURNAL OF 3D PRINTING IN MEDICINE 2023; 7:3DP3. [PMID: 36911812 PMCID: PMC9990116 DOI: 10.2217/3dp-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Post-infarct ventricular septal defect (PIVSD) is a serious complication of myocardial infarction. We evaluated 3D-printing models in PIVSD clinical assessment and the feasibility of statistical shape modeling for morphological analysis of the defects. METHODS Models (n = 15) reconstructed from computed tomography data were evaluated by clinicians (n = 8). Statistical shape modeling was performed on 3D meshes to calculate the mean morphological configuration of the defects. RESULTS Clinicians' evaluation highlighted the models' utility in displaying defects for interventional/surgical planning, education/training and device development. However, models lack dynamic representation. Morphological analysis was feasible and revealed oval-shaped (n = 12) and complex channel-like (n = 3) defects. CONCLUSION 3D-PIVSD models can complement imaging data for teaching and procedural planning. Statistical shape modeling is feasible in this scenario.
Collapse
Affiliation(s)
- Ashar Asif
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Andrew IU Shearn
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
- Bristol Heart Institute, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Mark S Turner
- Bristol Heart Institute, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Maria V Ordoñez
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
- Bristol Heart Institute, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Froso Sophocleous
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
- Bristol Heart Institute, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Ana Mendez-Santos
- Pediatric Cardiology Unit, Hospital Virgen del Rocio and Institute of Biomedicine of Seville (IBIS), Seville, E-41013, Spain
| | - Israel Valverde
- Pediatric Cardiology Unit, Hospital Virgen del Rocio and Institute of Biomedicine of Seville (IBIS), Seville, E-41013, Spain
- School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, SE1 7EH, UK
| | - Gianni D Angelini
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
- Bristol Heart Institute, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Massimo Caputo
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
- Bristol Heart Institute, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Mark CK Hamilton
- Department of Clinical Radiology, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
| | - Giovanni Biglino
- Bristol Medical School, University of Bristol, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
- Bristol Heart Institute, Bristol Royal Infirmary, Upper Maudlin St, Bristol, BS2 8HW, UK
- National Heart and Lung Institute, Guy Scadding Building, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
16
|
3D-Printed Models for Multidisciplinary Discussion of Congenital Heart Diseases. J Card Surg 2023. [DOI: 10.1155/2023/8899573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Background. Congenital heart defects (CHDs) are complex three-dimensional (3D) lesions with variable anatomies that present therapeutic challenges. The application of a patient-specific3D-printed model in preoperative planning and communication in medical practice can contribute to a complete understanding of the intracardiac and vascular anatomy. This study aimed to prospectively investigate the clinical value of a 3D CHD model in multidisciplinary discussions. Methods. Between August 2019 and April 2021, 19 patients with complex CHDs before surgery were prospectively enrolled in this study. Eight to 14 medical specialists participated in multidisciplinary discussions using patient-specific 3D models. A subjective satisfaction questionnaire, comprising 12 questions to be answered on a 10-point scale, was distributed. Results. Twenty 3D-printed anatomic models of 19 patients were used. The median age and weight of the enrolled patients were 0.8 years (range, 5 days to 43 years) and 9.6 kg (range, 2.8–54 kg), respectively. The most common underlying disease was a double outlet of the right ventricle. The mean scores for understanding spatial orientation, ease of communication between clinicians during discussions, prediction of surgical complications, and information additional to conventional 2D imaging were 9.4 ± 1.1, 9.4 ± 0.9, 9.0 ± 1.1, and 9.2 ± 0.4, respectively. The competency and comfort scores for each patient’s surgical plan increased significantly after using the 3D-printed model (from 6.2 ± 1.6 to 9.2 ± 0.9,
< 0.001 and from 6.3 ± 1.6 to 9.2 ± 0.8,
< 0.001, respectively). Conclusions. Patient-specific 3D models, for patients with complex CHDs, improved the understanding of the disease and facilitated multidisciplinary discussions and surgical decision-making. However, because outcomes were mainly evaluated by subjective reports, the possibility of other unknown factors affecting the outcomes should be considered. Trial Registration. This trial is registered with D-1904-031-1024.
Collapse
|
17
|
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020319. [PMID: 36832448 PMCID: PMC9955978 DOI: 10.3390/children10020319] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Three-dimensional (3D) printing technology has become increasingly used in the medical field, with reports demonstrating its superior advantages in both educational and clinical value when compared with standard image visualizations or current diagnostic approaches. Patient-specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D flat screens. Additionally, the added value of using 3D-printed models is especially apparent in congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for medical students or graduates, clinical applications such as pre-operative planning and simulation of congenital heart surgical procedures, and communication between physicians and patients/parents of patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives on future research directions for the application of 3D printing technology into pediatric cardiology practice are highlighted.
Collapse
|
18
|
Karsenty C, Hadeed K, Djeddai C, Lateyron J, Guitarte A, Vincent R, DeBarros N, Combes N, Briot J, Dulac Y, Yrondi A, Acar P. Impact of 3D-printed models in meetings with parents of children undergoing interventional cardiac catheterisation. Front Pediatr 2023; 10:947340. [PMID: 36699296 PMCID: PMC9869040 DOI: 10.3389/fped.2022.947340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Background Paediatric interventional catheterisation has consistently improved in recent decades, with often highly successful outcomes. However, progress is still required in terms of the information delivered to parents and how parental anxiety is managed. Aim To investigate the impact of cardiac printed models on improving parental understanding and alleviating anxiety before interventional catheterisation. Methods The parents of children undergoing interventional cardiac catheterisation were prospectively enrolled in the study. A questionnaire highlighting knowledge and understanding of the condition and cardiac catheterisation per se was scored on a scale of 1-30. The State-Trait Anxiety Inventory (STAI), which generates current anxiety scores, was also used before and after the pre-catheterisation meeting. The "printing group" received an explanation of catheterisation using the device and a three-dimensional (3D) model, while the "control group" received an explanation using only the device and a manual drawing. Results In total, 76 parents of 50 children were randomly assigned to a "control group" (n = 38) or "printing group" (n = 38). The groups were comparable at baseline. The level of understanding and knowledge improved after the "control group" and "printing group" meetings (+5.5±0.8 and +10.2±0.8; p < 0.0001 and p < 0.0001, respectively). A greater improvement was documented in the "printing group" compared to the "control group" (p < 0.0001). The STAI score also improved after the explanation was given to both groups (-1.8±0.6 and -5.6±1.0; p < 0.0001 and p < 0.0001). The greatest improvement was noted in the "printing group" (p = 0.0025). Most of the parents (35/38 from the "printing group") found the models to be extremely useful. Conclusion 3D-printed models improve parental knowledge and understanding of paediatric cardiac catheterisation, thereby reducing anxiety levels.
Collapse
Affiliation(s)
- Clément Karsenty
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
- Institut Des Maladies Métaboliques Et Cardiovasculaires (Institute of Metabolic and Cardiovascular Diseases), University of Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France
- Department of Cardiology, Clinique Pasteur (Pasteur Clinic), Toulouse, France
| | - Khaled Hadeed
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| | - Camelia Djeddai
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| | - Julie Lateyron
- Department of Psychiatry, Marchant Hospital, Toulouse, France
| | - Aitor Guitarte
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| | - Remi Vincent
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| | - Nathalie DeBarros
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| | - Nicolas Combes
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
- Department of Cardiology, Clinique Pasteur (Pasteur Clinic), Toulouse, France
| | - Jerome Briot
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| | - Yves Dulac
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| | - Antoine Yrondi
- Department of Psychiatry, University Hospital, Toulouse, France
| | - Philippe Acar
- Department of Paediatric Cardiology, University Hospital, Toulouse, France
| |
Collapse
|
19
|
Jacob J, Stunden C, Zakani S. Exploring the value of three-dimensional printing and virtualization in paediatric healthcare: A multi-case quality improvement study. Digit Health 2023; 9:20552076231159988. [PMID: 36865771 PMCID: PMC9972041 DOI: 10.1177/20552076231159988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Background Three-dimensional printing is being utilized in clinical medicine to support activities including surgical planning, education, and medical device fabrication. To better understand the impacts of this technology, a survey was implemented with radiologists, specialist physicians, and surgeons at a tertiary care hospital in Canada, examining multidimensional value and considerations for uptake. Objectives To examine how three-dimensional printing can be integrated into the paediatric context and highlight areas of impact and value to the healthcare system using Kirkpatrick's Model. Secondarily, to explore the perspective of clinicians utilizing three-dimensional models and how they make decisions about whether or not to use the technology in patient care. Methods A post-case survey. Descriptive statistics are provided for Likert-style questions, and a thematic analysis was conducted to identify common patterns in open-ended responses. Results In total, 37 respondents were surveyed across 19 clinical cases, providing their perspectives on model reaction, learning, behaviour, and results. We found surgeons and specialists to consider the models more beneficial than radiologists. Results further showed that the models were more helpful when used to assess the likelihood of success or failure of clinical management strategies, and for intraoperative orientation. We demonstrate that three-dimensional printed models could improve perioperative metrics, including a reduction in operating room time, but with a reciprocal effect on pre-procedural planning time. Clinicians who shared the models with patients and families thought it increased understanding of the disease and surgical procedure, and had no effect on their consultation time. Conclusions Three-dimensional printing and virtualization were used in preoperative planning and for communication among the clinical care team, trainees, patients, and families. Three-dimensional models provide multidimensional value to clinical teams, patients, and the health system. Further investigation is warranted to assess value in other clinical areas, across disciplines, and from a health economics and outcomes perspective.
Collapse
Affiliation(s)
- John Jacob
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
- Bayes Business School, City, University of London, London, UK
| | - Chelsea Stunden
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| | - Sima Zakani
- Faculty of Medicine, Department of Paediatrics, University of British
Columbia, Vancouver, BC, Canada
- Digital Lab, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
20
|
Capelli C, Bertolini M, Schievano S. 3D-printed and computational models: a combined approach for patient-specific studies. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
21
|
Fidvi S, Holder J, Li H, Parnes GJ, Shamir SB, Wake N. Advanced 3D Visualization and 3D Printing in Radiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1406:103-138. [PMID: 37016113 DOI: 10.1007/978-3-031-26462-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Since the discovery of X-rays in 1895, medical imaging systems have played a crucial role in medicine by permitting the visualization of internal structures and understanding the function of organ systems. Traditional imaging modalities including Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound (US) present fixed two-dimensional (2D) images which are difficult to conceptualize complex anatomy. Advanced volumetric medical imaging allows for three-dimensional (3D) image post-processing and image segmentation to be performed, enabling the creation of 3D volume renderings and enhanced visualization of pertinent anatomic structures in 3D. Furthermore, 3D imaging is used to generate 3D printed models and extended reality (augmented reality and virtual reality) models. A 3D image translates medical imaging information into a visual story rendering complex data and abstract ideas into an easily understood and tangible concept. Clinicians use 3D models to comprehend complex anatomical structures and to plan and guide surgical interventions more precisely. This chapter will review the volumetric radiological techniques that are commonly utilized for advanced 3D visualization. It will also provide examples of 3D printing and extended reality technology applications in radiology and describe the positive impact of advanced radiological image visualization on patient care.
Collapse
Affiliation(s)
- Shabnam Fidvi
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA.
| | - Justin Holder
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| | - Hong Li
- Department of Radiology, Jacobi Medical Center, Bronx, NY, USA
| | | | | | - Nicole Wake
- GE Healthcare, Aurora, OH, USA
- Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, NY, USA
| |
Collapse
|
22
|
Magagna P, Xodo A, Menegolo M, Campana C, Ghiotto L, Salvador L, Grego F. Applications of Three-Dimensional Printing in the Management of Complex Aortic Diseases. AORTA (STAMFORD, CONN.) 2022; 10:242-248. [PMID: 36539116 PMCID: PMC9767784 DOI: 10.1055/s-0042-1750410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of three-dimensional (3D) printing is gaining considerable success in many medical fields, including surgery; however, the spread of this innovation in cardiac and vascular surgery is still limited. This article reports our pilot experience with this technology, applied as an additional tool for 20 patients treated for complex vascular or cardiac surgical diseases. We have analyzed the feasibility of a "3D printing and aortic diseases project," which helps to obtain a more complete approach to these conditions. 3D models have been used as a resource to improve preoperative planning and simulation, both for open and endovascular procedures; furthermore, real 3D aortic models were used to develop doctor-patients communication, allowing better knowledge and awareness of their disease and of the planned surgical procedure. A 3D printing project seems feasible and applicable as an adjunctive tool in the diagnostic-therapeutic path of complex aortic diseases, with the need for future studies to verify the results.
Collapse
Affiliation(s)
- Paolo Magagna
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Andrea Xodo
- Vascular and Endovascular Surgery Division, Padova University, School of Medicine, Padova, Italy,Address for correspondence Andrea Xodo, MD Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Vascular and Endovascular Surgery Division, Padova UniversityVia Giustiniani 2, Padova 35128Italy
| | - Mirko Menegolo
- Vascular and Endovascular Surgery Division, Padova University, School of Medicine, Padova, Italy
| | - Carlo Campana
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Luciano Ghiotto
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Loris Salvador
- Operative Unit of Cardiac Surgery, AULSS8 Berica, “San Bortolo” Hospital, Vicenza, Italy
| | - Franco Grego
- Vascular and Endovascular Surgery Division, Padova University, School of Medicine, Padova, Italy
| |
Collapse
|
23
|
Sun Z, Wee C. 3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine. MICROMACHINES 2022; 13:1575. [PMID: 36295929 PMCID: PMC9610217 DOI: 10.3390/mi13101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
3D printing has shown great promise in medical applications with increased reports in the literature. Patient-specific 3D printed heart and vascular models replicate normal anatomy and pathology with high accuracy and demonstrate superior advantages over the standard image visualizations for improving understanding of complex cardiovascular structures, providing guidance for surgical planning and simulation of interventional procedures, as well as enhancing doctor-to-patient communication. 3D printed models can also be used to optimize CT scanning protocols for radiation dose reduction. This review article provides an overview of the current status of using 3D printing technology in cardiovascular disease. Limitations and barriers to applying 3D printing in clinical practice are emphasized while future directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Cleo Wee
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia
| |
Collapse
|
24
|
Tejo-Otero A, Valls-Esteve A, Fenollosa-Artés F, Siles-Hinojosa A, Nafria B, Ayats M, Buj-Corral I, Otero MC, Rubio-Palau J, Munuera J, Krauel L. Patient comprehension of oncologic surgical procedures using 3D printed surgical planning prototypes. ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Valverde I, Gomez G, Byrne N, Anwar S, Silva Cerpa MA, Martin Talavera M, Pushparajah K, Velasco Forte MN. Criss-cross heart three-dimensional printed models in medical education: A multicenter study on their value as a supporting tool to conventional imaging. ANATOMICAL SCIENCES EDUCATION 2022; 15:719-730. [PMID: 34008341 DOI: 10.1002/ase.2105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The utility of three-dimensional (3D) printed models for medical education in complex congenital heart disease (CHD) is sparse and limited. The purpose of this study was to evaluate the utility of 3D printed models for medical education in criss-cross hearts covering a wide range of participants with different levels of knowledge and experience, from medical students, clinical fellows up to senior medical personnel. Study participants were enrolled from four dedicated imaging workshops developed between 2016 and 2019. The study design was a non-randomized cross-over study to evaluate 127 participants' level of understanding of the criss-cross heart anatomy. This was evaluated using the scores obtained following teaching with conventional images (echocardiography and magnetic resonance imaging) versus a 3D printed model learning approach. A significant improvement in anatomical knowledge of criss-cross heart anatomy was observed when comparing conventional imaging test scores to 3D printed model tests [76.9% (61.5%-87.8%) vs. 84.6% (76.9%-96.2%), P < 0.001]. The increase in the questionnaire marks was statistically significant across all academic groups (consultants in pediatric cardiology, fellows in pediatric cardiology, and medical students). Ninety-four percent (120) and 95.2% (121) of the participants agreed or strongly agreed, respectively, that 3D models helped them to better understand the medical images. Participants scored their overall satisfaction with the 3D printed models as 9.1 out of 10 points. In complex CHD such as criss-cross hearts, 3D printed replicas improve the understanding of cardiovascular anatomy. They enhanced the teaching experience especially when approaching medical students.
Collapse
Affiliation(s)
- Israel Valverde
- Pediatric Cardiology Unit, Hospital Virgen del Rocio, Seville, Spain
- Cardiovascular Pathology Unit and Fabrication Laboratory, Institute of Biomedicine of Seville, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | - Gorka Gomez
- Cardiovascular Pathology Unit and Fabrication Laboratory, Institute of Biomedicine of Seville, Seville, Spain
| | - Nick Byrne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shafkat Anwar
- Division of Cardiology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | | | | | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | - Maria Nieves Velasco Forte
- Cardiovascular Pathology Unit and Fabrication Laboratory, Institute of Biomedicine of Seville, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Pediatric Cardiology, University of Bristol, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
26
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
27
|
Combining patient-specific, digital 3D models with tele-education for adolescents with CHD. Cardiol Young 2022; 32:912-917. [PMID: 34392874 DOI: 10.1017/s1047951121003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Adolescents with CHD require transition to specialised adult-centred care. Previous studies have shown that adolescents' knowledge of their medical condition is correlated with transition readiness. Three-dimensional printed models of CHD have been used to educate medical trainees and patients, although no studies have focused on adolescents with CHD. This study investigates the feasibility of combining patient-specific, digital 3D heart models with tele-education interventions to improve the medical knowledge of adolescents with CHD. METHODS Adolescent patients with CHD, aged between 13 and 18 years old, were enrolled and scheduled for a tele-education session. Patient-specific digital 3D heart models were created using images from clinically indicated cardiac magnetic resonance studies. The tele-education session was performed using commercially available, web-conferencing software (Zoom, Zoom Video Communications Inc.) and a customised software (Cardiac Review 3D, Indicated Inc.) incorporating an interactive display of the digital 3D heart model. Medical knowledge was assessed using pre- and post-session questionnaires that were scored by independent reviewers. RESULTS Twenty-two adolescents completed the study. The average age of patients was 16 years old (standard deviation 1.5 years) and 56% of patients identified as female. Patients had a variety of cardiac defects, including tetralogy of Fallot, transposition of great arteries, and coarctation of aorta. Post-intervention, adolescents' medical knowledge of their cardiac defects and cardiac surgeries improved compared to pre-intervention (p < 0.01). CONCLUSIONS Combining patient-specific, digital 3D heart models with tele-education sessions can improve adolescents' medical knowledge and may assist with transition to adult-centred care.
Collapse
|
28
|
Borgeat K, Shearn AIU, Payne JR, Hezzell M, Biglino G. Three-Dimensional Printed Models of the Heart Represent an Opportunity for Inclusive Learning. JOURNAL OF VETERINARY MEDICAL EDUCATION 2022; 49:346-352. [PMID: 33950795 DOI: 10.3138/jvme-2020-0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) printed models of anatomic structures offer an alternative to studying manufactured, "idealized" models or cadaveric specimens. The utility of 3D printed models of the heart for clinical veterinary students learning echocardiographic anatomy is unreported. This study aimed to assess the feasibility and utility of 3D printed models of the canine heart as a supplementary teaching aid in final-year vet students. We hypothesized that using 3D printed cardiac models would improve test scores and feedback when compared with a control group. Students (n = 31) were randomized to use either a video guide to echocardiographic anatomy alongside 3D printed models (3DMs) or video only (VO). Prior to a self-directed learning session, students answered eight extended matching questions as a baseline knowledge assessment. They then undertook the learning session and provided feedback (Likert scores and free text). Students repeated the test within 1 to 3 days. Changes in test scores and feedback were compared between 3DM and VO groups, and between track and non-track rotation students. The 3DM group had increased test scores in the non-track subgroup. Track students' test scores in the VO group increased, but not in the 3DM group. Students in the 3DM group had a higher completion rate, and more left free-text feedback. Feedback from 3DM was almost universally positive, and students believed more strongly that these should be used for future veterinary anatomy teaching. In conclusion, these pilot data suggest that 3D printed canine cardiac models are feasible to produce and represent an inclusive learning opportunity, promoting student engagement.
Collapse
|
29
|
Illi J, Bernhard B, Nguyen C, Pilgrim T, Praz F, Gloeckler M, Windecker S, Haeberlin A, Gräni C. Translating Imaging Into 3D Printed Cardiovascular Phantoms. JACC Basic Transl Sci 2022; 7:1050-1062. [PMID: 36337920 PMCID: PMC9626905 DOI: 10.1016/j.jacbts.2022.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
3D printed patient specific phantoms can visualize complex cardiovascular anatomy Common imaging modalities for 3D printing are CCT and CMR Material jetting/PolyJet and stereolithography are widely used printing techniques Standardized validation is warranted to compare different 3D printing technologies
Translation of imaging into 3-dimensional (3D) printed patient-specific phantoms (3DPSPs) can help visualize complex cardiovascular anatomy and enable tailoring of therapy. The aim of this paper is to review the entire process of phantom production, including imaging, materials, 3D printing technologies, and the validation of 3DPSPs. A systematic review of published research was conducted using Embase and MEDLINE, including studies that investigated 3DPSPs in cardiovascular medicine. Among 2,534 screened papers, 212 fulfilled inclusion criteria and described 3DPSPs as a valuable adjunct for planning and guiding interventions (n = 108 [51%]), simulation of physiological or pathological conditions (n = 19 [9%]), teaching of health care professionals (n = 23 [11%]), patient education (n = 3 [1.4%]), outcome prediction (n = 6 [2.8%]), or other purposes (n = 53 [25%]). The most common imaging modalities to enable 3D printing were cardiac computed tomography (n = 131 [61.8%]) and cardiac magnetic resonance (n = 26 [12.3%]). The printing process was conducted mostly by material jetting (n = 54 [25.5%]) or stereolithography (n = 43 [20.3%]). The 10 largest studies that evaluated the geometric accuracy of 3DPSPs described a mean bias <±1 mm; however, the validation process was very heterogeneous among the studies. Three-dimensional printed patient-specific phantoms are highly accurate, used for teaching, and applied to guide cardiovascular therapy. Systematic comparison of imaging and printing modalities following a standardized validation process is warranted to allow conclusions on the optimal production process of 3DPSPs in the field of cardiovascular medicine.
Collapse
|
30
|
|
31
|
Traynor G, Shearn AIU, Milano EG, Ordonez MV, Velasco Forte MN, Caputo M, Schievano S, Mustard H, Wray J, Biglino G. The use of 3D-printed models in patient communication: a scoping review. JOURNAL OF 3D PRINTING IN MEDICINE 2022; 6:13-23. [PMID: 35211330 PMCID: PMC8852361 DOI: 10.2217/3dp-2021-0021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
3D models have been used as an asset in many clinical applications and a variety of disciplines, and yet the available literature studying the use of 3D models in communication is limited. This scoping review has been conducted to draw conclusions on the current evidence and learn from previous studies, using this knowledge to inform future work. Our search strategy revealed 269 papers, 19 of which were selected for final inclusion and analysis. When assessing the use of 3D models in doctor-patient communication, there is a need for larger studies and studies including a long-term follow up. Furthermore, there are forms of communication that are yet to be researched and provide a niche that may be beneficial to explore.
Collapse
Affiliation(s)
- Gemma Traynor
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| | - Andrew IU Shearn
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| | - Elena G Milano
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | | | | | - Massimo Caputo
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
- University Hospitals Bristol & Weston, NHS Foundation Trust, Bristol, BS1 3NU, UK
| | - Silvia Schievano
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
- Institute of Cardiovascular Science, University College London, London, WC1E 6DD, UK
| | - Hannah Mustard
- University Hospitals Bristol & Weston, NHS Foundation Trust, Bristol, BS1 3NU, UK
| | - Jo Wray
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | - Giovanni Biglino
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
- National Heart & Lung Institute, Imperial College London, London, SW3 6LY, UK
- Author for correspondence: Tel.: +44 117 342 3287;
| |
Collapse
|
32
|
Bastawrous S, Wu L, Liacouras PC, Levin DB, Ahmed MT, Strzelecki B, Amendola MF, Lee JT, Coburn J, Ripley B. Establishing 3D Printing at the Point of Care: Basic Principles and Tools for Success. Radiographics 2022; 42:451-468. [PMID: 35119967 DOI: 10.1148/rg.210113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the medical applications of three-dimensional (3D) printing increase, so does the number of health care organizations in which adoption or expansion of 3D printing facilities is under consideration. With recent advancements in 3D printing technology, medical practitioners have embraced this powerful tool to help them to deliver high-quality patient care, with a focus on sustainability. The use of 3D printing in the hospital or clinic at the point of care (POC) has profound potential, but its adoption is not without unanticipated challenges and considerations. The authors provide the basic principles and considerations for building the infrastructure to support 3D printing inside the hospital. This process includes building a business case; determining the requirements for facilities, space, and staff; designing a digital workflow; and considering how electronic health records may have a role in the future. The authors also discuss the supported applications and benefits of medical 3D printing and briefly highlight quality and regulatory considerations. The information presented is meant to be a practical guide to assist radiology departments in exploring the possibilities of POC 3D printing and expanding it from a niche application to a fixture of clinical care. An invited commentary by Ballard is available online. ©RSNA, 2022.
Collapse
Affiliation(s)
- Sarah Bastawrous
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Lei Wu
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Peter C Liacouras
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Dmitry B Levin
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Mohamed Tarek Ahmed
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Brian Strzelecki
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Michael F Amendola
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James T Lee
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James Coburn
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Beth Ripley
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| |
Collapse
|
33
|
Lie HC, Juvet LK, Street RL, Gulbrandsen P, Mellblom AV, Brembo EA, Eide H, Heyn L, Saltveit KH, Strømme H, Sundling V, Turk E, Menichetti J. Effects of Physicians' Information Giving on Patient Outcomes: a Systematic Review. J Gen Intern Med 2022; 37:651-663. [PMID: 34355348 PMCID: PMC8858343 DOI: 10.1007/s11606-021-07044-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Providing diagnostic and treatment information to patients is a core clinical skill, but evidence for the effectiveness of different information-giving strategies is inconsistent. This systematic review aimed to investigate the reported effects of empirically tested communication strategies for providing information on patient-related outcomes: information recall and (health-related) behaviors. METHODS The databases MEDLINE, Embase, PsycINFO (Ovid), Cochrane Central Register of Controlled Trials, and relevant bibliographies were systematically searched from the inception to April 24, 2020, without restrictions, for articles testing information-giving strategies for physicians (PROSPERO ID: CRD42019115791). Pairs of independent reviewers identified randomized controlled studies with a low risk of selection bias as from the Cochrane risk of bias 2 tool. Main outcomes were grouped into patient information recall and behavioral outcomes (e.g., alcohol consumption, weight loss, participation in screening). Due to high heterogeneity in the data on effects of interventions, these outcomes were descriptively reported, together with studies', interventions', and information-giving strategies' characteristics. PRISMA guidelines were followed. RESULTS Seventeen of 9423 articles were included. Eight studies, reporting 10 interventions, assessed patient information recall: mostly conducted in experimental settings and testing a single information-giving strategy. Four of the ten interventions reported significant increase in recall. Nine studies assessed behavioral outcomes, mostly in real-life clinical settings and testing multiple information-giving strategies simultaneously. The heterogeneity in this group of studies was high. Eight of the nine interventions reported a significant positive effect on objectively and subjectively measured patients' behavioral outcomes. DISCUSSION Using specific framing strategies for achieving specific communication goals when providing information to patients appears to have positive effects on information recall and patient health-related behaviors. The heterogeneity observed in this group of studies testifies the need for a more consistent methodological and conceptual agenda when testing medical information-giving strategies. TRIAL REGISTRATION PROSPERO registration number: CRD42019115791.
Collapse
Affiliation(s)
- Hanne C Lie
- Department of Behavioral Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lene K Juvet
- Centre for Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway.,Norvegian Institute of Public Health, Oslo, Norway
| | - Richard L Street
- Department of Communication, Texas A&M University, College Station, TX, USA
| | - Pål Gulbrandsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Health Services Research (HØKH) Centre, Akershus University Hospital, Lørenskog, Norway
| | - Anneli V Mellblom
- Department of Behavioral Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.,Regional Centre for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway
| | - Espen Andreas Brembo
- Centre for Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway
| | - Hilde Eide
- Centre for Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway
| | - Lena Heyn
- Centre for Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway
| | - Kristina H Saltveit
- Department of Behavioral Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hilde Strømme
- Library of Medicine and Science, University of Oslo, Oslo, Norway
| | - Vibeke Sundling
- Centre for Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway.,Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway
| | - Eva Turk
- Centre for Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway.,Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Julia Menichetti
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway. .,Health Services Research (HØKH) Centre, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
34
|
Caregiver Preferences for Three-Dimensional Printed or Augmented Reality Craniosynostosis Skull Models: A Cross-Sectional Survey. J Craniofac Surg 2021; 33:151-155. [PMID: 34967521 DOI: 10.1097/scs.0000000000008134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Recent advances in three-dimensional (3D) printing and augmented reality (AR) have expanded anatomical modeling possibilities for caregiver craniosynostosis education. The purpose of this study is to characterize caregiver preferences regarding these visual models and determine the impact of these models on caregiver understanding of craniosynostosis. METHODS The authors constructed 3D-printed and AR craniosynostosis models, which were randomly presented in a cross-sectional survey. Caregivers rated each model's utility in learning about craniosynostosis, learning about skull anatomy, viewing an abnormal head shape, easing anxiety, and increasing trust in the surgeon in comparison to a two-dimensional (2D) diagram. Furthermore, caregivers were asked to identify the fused suture on each model and indicate their preference for generic versus patient-specific models. RESULTS A total of 412 craniosynostosis caregivers completed the survey (mean age 33 years, 56% Caucasian, 51% male). Caregivers preferred interactive, patient-specific 3D-printed or AR models over 2D diagrams (mean score difference 3D-printed to 2D: 0.16, P < 0.05; mean score difference AR to 2D: 0.17, P < 0.01) for learning about craniosynostosis, with no significant difference in preference between 3D-printed and AR models. Caregiver detection accuracy of the fused suture on the sagittal model was 19% higher with the 3D-printed model than with the AR model (P < 0.05) and 17% higher with the 3D-printed model than with the 2D diagram (P < 0.05). CONCLUSIONS Our findings indicate that craniosynostosis caregivers prefer 3D-printed or AR models over 2D diagrams in learning about craniosynostosis. Future craniosynostosis skull models with increased user interactivity and patient-specific components can better suit caregiver preferences.
Collapse
|
35
|
Zablah JE, Rodriguez SA, Lorenz A, Morgan GJ. Cardiac catheterization laboratory and the role in effective patient education: A model approach. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Kiraly L, Shah NC, Abdullah O, Al-Ketan O, Rowshan R. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery-A Multidisciplinary Team-Learning Experience. Biomolecules 2021; 11:1703. [PMID: 34827702 PMCID: PMC8615737 DOI: 10.3390/biom11111703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) virtual modeling and printing advances individualized medicine and surgery. In congenital cardiac surgery, 3D virtual models and printed prototypes offer advantages of better understanding of complex anatomy, hands-on preoperative surgical planning and emulation, and improved communication within the multidisciplinary team and to patients. We report our single center team-learning experience about the realization and validation of possible clinical benefits of 3D-printed models in surgical planning of complex congenital cardiac surgery. CT-angiography raw data were segmented into 3D-virtual models of the heart-great vessels. Prototypes were 3D-printed as rigid "blood-volume" and flexible "hollow". The accuracy of the models was evaluated intraoperatively. Production steps were realized in the framework of a clinical/research partnership. We produced 3D prototypes of the heart-great vessels for 15 case scenarios (nine males, median age: 11 months) undergoing complex intracardiac repairs. Parity between 3D models and intraoperative structures was within 1 mm range. Models refined diagnostics in 13/15, provided new anatomic information in 9/15. As a team-learning experience, all complex staged redo-operations (13/15; Aristotle-score mean: 10.64 ± 1.95) were rehearsed on the 3D models preoperatively. 3D-printed prototypes significantly contributed to an improved/alternative operative plan on the surgical approach, modification of intracardiac repair in 13/15. No operative morbidity/mortality occurred. Our clinical/research partnership provided coverage for the extra time/labor and material/machinery not financed by insurance. 3D-printed models provided a team-learning experience and contributed to the safety of complex congenital cardiac surgeries. A clinical/research partnership may open avenues for bioprinting of patient-specific implants.
Collapse
Affiliation(s)
- Laszlo Kiraly
- Division of Pediatric Cardiac Surgery, Cardiac Sciences, Sheikh Khalifa Medical City, Abu Dhabi P.O. Box 51900, United Arab Emirates
- Department of Public Health, Semmelweis University, H-1085 Budapest, Hungary
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital System, 1E Kent Ridge Road, NUHS Tower Block, Level 9, Singapore 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 8, Singapore 119228, Singapore
| | - Nishant C. Shah
- Division of Pediatric Cardiology, Cardiac Sciences, Sheikh Khalifa Medical City, Abu Dhabi P.O. Box 51900, United Arab Emirates;
| | - Osama Abdullah
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (O.A.); (O.A.-K.); (R.R.)
| | - Oraib Al-Ketan
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (O.A.); (O.A.-K.); (R.R.)
| | - Reza Rowshan
- Core Technology Platform Operations, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates; (O.A.); (O.A.-K.); (R.R.)
| |
Collapse
|
37
|
Three-dimensional printing to plan intracardiac operations. JTCVS Tech 2021; 9:101-108. [PMID: 34647075 PMCID: PMC8500990 DOI: 10.1016/j.xjtc.2021.02.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
|
38
|
Feasibility and accuracy of printed models of complex cardiac defects in small infants from cardiac computed tomography. Pediatr Radiol 2021; 51:1983-1990. [PMID: 34129069 DOI: 10.1007/s00247-021-05110-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Three-dimensional (3-D) printed models are increasingly used to enhance understanding of complex anatomy in congenital heart disease. OBJECTIVE To assess feasibility and accuracy of 3-D printed models obtained from cardiac CT scans in young children with complex congenital heart diseases. MATERIALS AND METHODS We included children with conotruncal heart anomalies who were younger than 2 years and had a cardiac CT scan in the course of their follow-up. We used cardiac CT scan datasets to generate 3-D models. To assess the models' accuracy, we compared four diameters for each child between the CT images and the printed models, including the largest diameters (Dmax) of ventricular septal defects and aortic annulus and their minimal diameters (Dmin). RESULTS We obtained images from 14 children with a mean age of 5.5 months (range 1-24 months) and a mean weight of 6.7 kg (range 3.4-14.5 kg). We generated 3-D models for all children. Mean measurement difference between CT images and 3-D models was 0.13 mm for Dmin and 0.12 mm for Dmax for ventricular septal defect diameters, and it was 0.16 mm for Dmin and -0.13 mm for Dmax for aortic annulus diameter, indicating a non-clinically significant difference. CONCLUSION Three-dimensional printed models could be feasibly generated from cardiac CT scans in a small pediatric population with complex congenital heart diseases. This technique is highly accurate and reliably reflects the same structural dimensions when compared to CT source images.
Collapse
|
39
|
Sommer KN, Bhurwani MMS, Tutino V, Siddiqui A, Davies J, Snyder K, Levy E, Mokin M, Ionita CN. Use of patient specific 3D printed neurovascular phantoms to simulate mechanical thrombectomy. 3D Print Med 2021; 7:32. [PMID: 34568987 PMCID: PMC8474770 DOI: 10.1186/s41205-021-00122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/11/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The ability of the patient specific 3D printed neurovascular phantoms to accurately replicate the anatomy and hemodynamics of the chronic neurovascular diseases has been demonstrated by many studies. Acute occurrences, however, may still require further development and investigation and therefore we studied acute ischemic stroke (AIS). The efficacy of endovascular procedures such as mechanical thrombectomy (MT) for the treatment of large vessel occlusion (LVO), can be improved by testing the performance of thrombectomy devices and techniques using patient specific 3D printed neurovascular models. METHODS 3D printed phantoms were connected to a flow loop with physiologically relevant flow conditions, including input flow rate and fluid temperature. A simulated blood clot was introduced into the model and placed in the proximal Middle Cerebral Artery (MCA) region. Clot location, composition, length, and arterial angulation were varied and MTs were simulated using stent retrievers. Device placement relative to the clot and the outcome of the thrombectomy were recorded for each situation. Digital subtraction angiograms (DSA) were captured before and after LVO simulation. Recanalization outcome was evaluated using DSA as either 'no recanalization' or 'recanalization'. Forty-two 3DP neurovascular phantom benchtop experiments were performed. RESULTS Clot angulation within the MCA region had the most significant impact on the MT outcome, with a p-value of 0.016. Other factors such as clot location, clot composition, and clot length correlated weakly with the MT outcome. CONCLUSIONS This project allowed us to gain knowledge of how such characteristics influence thrombectomy success and can be used in making clinical decisions when planning the procedure and selecting specific thrombectomy tools and approaches.
Collapse
Affiliation(s)
- Kelsey N. Sommer
- grid.273335.30000 0004 1936 9887Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228 USA ,grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA
| | - Mohammad Mahdi Shiraz Bhurwani
- grid.273335.30000 0004 1936 9887Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228 USA ,grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA
| | - Vincent Tutino
- grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Neurosurgery, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, 14208 USA
| | - Adnan Siddiqui
- grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Neurosurgery, University at Buffalo, Buffalo, NY 14208 USA
| | - Jason Davies
- grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Neurosurgery, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Biomedical Informatics, University at Buffalo, Buffalo, 14208 USA
| | - Kenneth Snyder
- grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Neurosurgery, University at Buffalo, Buffalo, NY 14208 USA
| | - Elad Levy
- grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Neurosurgery, University at Buffalo, Buffalo, NY 14208 USA
| | - Maxim Mokin
- grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33620 USA
| | - Ciprian N. Ionita
- grid.273335.30000 0004 1936 9887Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14228 USA ,grid.273335.30000 0004 1936 9887Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY 14208 USA ,grid.273335.30000 0004 1936 9887Department of Neurosurgery, University at Buffalo, Buffalo, NY 14208 USA
| |
Collapse
|
40
|
Bertolini M, Rossoni M, Colombo G. Operative Workflow from CT to 3D Printing of the Heart: Opportunities and Challenges. Bioengineering (Basel) 2021; 8:bioengineering8100130. [PMID: 34677203 PMCID: PMC8533410 DOI: 10.3390/bioengineering8100130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023] Open
Abstract
Medical images do not provide a natural visualization of 3D anatomical structures, while 3D digital models are able to solve this problem. Interesting applications based on these models can be found in the cardiovascular field. The generation of a good-quality anatomical model of the heart is one of the most complex tasks in this context. Its 3D representation has the potential to provide detailed spatial information concerning the heart’s structure, also offering the opportunity for further investigations if combined with additive manufacturing. When investigated, the adaption of printed models turned out to be beneficial in complex surgical procedure planning, for training, education and medical communication. In this paper, we will illustrate the difficulties that may be encountered in the workflow from a stack of Computed Tomography (CT) to the hand-held printed heart model. An important goal will consist in the realization of a heart model that can take into account real wall thickness variability. Stereolithography printing technology will be exploited with a commercial rigid resin. A flexible material will be tested too, but results will not be so satisfactory. As a preliminary validation of this kind of approach, print accuracy will be evaluated by directly comparing 3D scanner acquisitions to the original Standard Tessellation Language (STL) files.
Collapse
|
41
|
Karsenty C, Guitarte A, Dulac Y, Briot J, Hascoet S, Vincent R, Delepaul B, Vignaud P, Djeddai C, Hadeed K, Acar P. The usefulness of 3D printed heart models for medical student education in congenital heart disease. BMC MEDICAL EDUCATION 2021; 21:480. [PMID: 34496844 PMCID: PMC8424617 DOI: 10.1186/s12909-021-02917-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/28/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Three-dimensional (3D) printing technology enables the translation of 2-dimensional (2D) medical imaging into a physical replica of a patient's individual anatomy and may enhance the understanding of congenital heart defects (CHD). We aimed to evaluate the usefulness of a spectrum of 3D-printed models in teaching CHD to medical students. RESULTS We performed a prospective, randomized educational procedure to teach fifth year medical students four CHDs (atrial septal defect (ASD, n = 74), ventricular septal defect (VSD, n = 50), coarctation of aorta (CoA, n = 118) and tetralogy of Fallot (ToF, n = 105)). Students were randomized into printing groups or control groups. All students received the same 20 min lecture with projected digital 2D images. The printing groups also manipulated 3D printed models during the lecture. Both groups answered an objective survey (Multiple-choice questionnaire) twice, pre- and post-test, and completed a post-lecture subjective survey. Three hundred forty-seven students were included and both teaching groups for each CHD were comparable in age, sex and pre-test score. Overall, objective knowledge improved after the lecture and was higher in the printing group compared to the control group (16.3 ± 2.6 vs 14.8 ± 2.8 out of 20, p < 0.0001). Similar results were observed for each CHD (p = 0.0001 ASD group; p = 0.002 VSD group; p = 0.0005 CoA group; p = 0.003 ToF group). Students' opinion of their understanding of CHDs was higher in the printing group compared to the control group (respectively 4.2 ± 0.5 vs 3.8 ± 0.4 out of 5, p < 0.0001). CONCLUSION The use of 3D printed models in CHD lectures improve both objective knowledge and learner satisfaction for medical students. The practice should be mainstreamed.
Collapse
Affiliation(s)
- Clement Karsenty
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France.
- Institut Des Maladies Métaboliques Et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, 1, Avenue Jean Poulhès-BP84225, Toulouse, France.
| | - Aitor Guitarte
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Yves Dulac
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Jerome Briot
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Sebastien Hascoet
- Department of Pediatric and Adult Congenital Heart Diseases, Marie Lannelongue Hospital, Groupe Hospitalier Saint Joseph Reference Center of Complex Congenital Heart Diseases M3C, Le Plessis Robinson, France
| | - Remi Vincent
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Benoit Delepaul
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Paul Vignaud
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Camelia Djeddai
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Khaled Hadeed
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| | - Philippe Acar
- Pediatric cardiology unit, Children Hospital, CHU Toulouse, 330 Avenue de Grande Bretagne TSA 70034, 31059, Toulouse cedex 9, France
| |
Collapse
|
42
|
Awori J, Friedman SD, Chan T, Howard C, Seslar S, Soriano BD, Buddhe S. 3D models improve understanding of congenital heart disease. 3D Print Med 2021; 7:26. [PMID: 34471999 PMCID: PMC8411549 DOI: 10.1186/s41205-021-00115-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction Understanding congenital heart disease (CHD) is vital for medical personnel and parents of affected children. While traditional 2D schematics serve as the typical approach used, several studies have shown these models to be limiting in understanding complex structures. Recent world-emphasis has shifted to 3D printed models as a complement to 2D imaging to bridge knowledge and create new opportunities for experiential learning. We sought to systematically compare 3D digital and physical models for medical personnel and parent education compared to traditional methods. Methods 3D printed and digital models were made out of MRI and CT data for 20 common CHD. Fellows and nurse practitioners used these models to explore intra-cardiac pathologies following traditional teaching. The models were also used for parent education in outpatient settings after traditional education. The participants were then asked to fill out a Likert scale questionnaire to assess their understanding and satisfaction with different teaching techniques. These ratings were compared using paired t-tests and Pearson’s correlation. Results Twenty-five medical personnel (18 fellows; 2 nurses; 4 nurse practitioners and one attending) and twenty parents participated in the study. The diagnosis varied from simple mitral valve pathology to complex single ventricle palliation. Parent and medical personnel perceived understanding with digital models was significantly higher than traditional (p = 0.01). Subjects also felt that physical models were overall more useful than digital ones (p = 0.001). Physicians using models for parent education also perceived the models to be useful, not significantly impacting their clinical workflow. Conclusions 3D models, both digital and printed, enhance medical personnel and parental perceived understanding of CHD. Supplementary Information The online version contains supplementary material available at 10.1186/s41205-021-00115-7.
Collapse
Affiliation(s)
- Jonathan Awori
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA.
| | - Seth D Friedman
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Titus Chan
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Christopher Howard
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Steve Seslar
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Brian D Soriano
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Sujatha Buddhe
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|
43
|
Hilt AD, Hierck BP, Eijkenduijn J, Wesselius FJ, Albayrak A, Melles M, Schalij MJ, Scherptong RWC. Development of a patient-oriented Hololens application to illustrate the function of medication after myocardial infarction. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:511-520. [PMID: 36713611 PMCID: PMC9707881 DOI: 10.1093/ehjdh/ztab053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
Aims Statin treatment is one of the hallmarks of secondary prevention after myocardial infarction. Adherence to statins tends to be difficult and can be improved by patient education. Novel technologies such as mixed reality (MR) expand the possibilities to support this process. To assess if an MR medication-application supports patient education focused on function of statins after myocardial infarction. Methods and results A human-centred design-approach was used to develop an MR statin tool for Microsoft HoloLens™. Twenty-two myocardial infarction patients were enrolled; 12 tested the application, 10 patients were controls. Clinical, demographic, and qualitative data were obtained. All patients performed a test on statin knowledge. To test if patients with a higher tendency to become involved in virtual environments affected test outcome in the intervention group, validated Presence- and Immersive Tendency Questionnaires (PQ and ITQ) were used. Twenty-two myocardial infarction patients (ST-elevation myocardial infarction, 18/22, 82%) completed the study. Ten out of 12 (83%) patients in the intervention group improved their statin knowledge by using the MR application (median 8 points, IQR 8). Test improvement was mainly the result of increased understanding of statin mechanisms in the body and secondary preventive effects. A high tendency to get involved and focused in virtual environments was moderately positive correlated with better test improvement (r = 0.57, P < 0.05). The median post-test score in the control group was poor (median 6 points, IQR 4). Conclusions An MR statin education application can be applied effectively in myocardial infarction patients to explain statin function and importance.
Collapse
Affiliation(s)
- Alexander D Hilt
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Beerend P Hierck
- Leiden University Medical Center, Center for Innovation of Medical Education, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Leiden University, Teachers Academy, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Joep Eijkenduijn
- Faculty of Technical Medicine, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
| | - Fons J Wesselius
- Faculty of Technical Medicine, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
| | - Armagan Albayrak
- Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
| | - Marijke Melles
- Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The Netherlands
- Department of Public and Occupational Health, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1118, 1081 HV Amsterdam, The Netherlands
| | - Martin J Schalij
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Roderick W C Scherptong
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
44
|
Cernica D, Benedek I, Polexa S, Tolescu C, Benedek T. 3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients. Life (Basel) 2021; 11:910. [PMID: 34575059 PMCID: PMC8468787 DOI: 10.3390/life11090910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing complexity of cardiovascular interventions requires advanced peri-procedural imaging and tailored treatment. Three-dimensional printing technology represents one of the most significant advances in the field of cardiac imaging, interventional cardiology or cardiovascular surgery. Patient-specific models may provide substantial information on intervention planning in complex cardiovascular diseases, and volumetric medical imaging from CT or MRI can be translated into patient-specific 3D models using advanced post-processing applications. 3D printing and additive manufacturing have a great variety of clinical applications targeting anatomy, implants and devices, assisting optimal interventional treatment and post-interventional evaluation. Although the 3D printing technology still lacks scientific evidence, its benefits have been shown in structural heart diseases as well as for treatment of complex arrhythmias and corrective surgery interventions. Recent development has enabled transformation of conventional 3D printing into complex 3D functional living tissues contributing to regenerative medicine through engineered bionic materials such hydrogels, cell suspensions or matrix components. This review aims to present the most recent clinical applications of 3D printing in cardiovascular medicine, highlighting also the potential for future development of this revolutionary technology in the medical field.
Collapse
Affiliation(s)
- Daniel Cernica
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Imre Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Stefania Polexa
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Cosmin Tolescu
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Theodora Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| |
Collapse
|
45
|
Hopfner C, Jakob A, Tengler A, Grab M, Thierfelder N, Brunner B, Thierij A, Haas NA. Design and 3D printing of variant pediatric heart models for training based on a single patient scan. 3D Print Med 2021; 7:25. [PMID: 34463879 PMCID: PMC8406574 DOI: 10.1186/s41205-021-00116-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/15/2021] [Indexed: 11/24/2022] Open
Abstract
Background 3D printed models of pediatric hearts with congenital heart disease have been proven helpful in simulation training of diagnostic and interventional catheterization. However, anatomically accurate 3D printed models are traditionally based on real scans of clinical patients requiring specific imaging techniques, i.e., CT or MRI. In small children both imaging technologies are rare as minimization of radiation and sedation is key. 3D sonography does not (yet) allow adequate imaging of the entire heart for 3D printing. Therefore, an alternative solution to create variant 3D printed heart models for teaching and hands-on training has been established. Methods In this study different methods utilizing image processing and computer aided design software have been established to overcome this shortage and to allow unlimited variations of 3D heart models based on single patient scans. Patient-specific models based on a CT or MRI image stack were digitally modified to alter the original shape and structure of the heart. Thereby, 3D hearts showing various pathologies were created. Training models were adapted to training level and aims of hands-on workshops, particularly for interventional cardiology. Results By changing the shape and structure of the original anatomy, various training models were created of which four examples are presented in this paper: 1. Design of perimembranous and muscular ventricular septal defect on a heart model with patent ductus arteriosus, 2. Series of heart models with atrial septal defect showing the long-term hemodynamic effect of the congenital heart defect on the right atrial and ventricular wall, 3. Implementation of simplified heart valves and addition of the myocardium to a right heart model with pulmonary valve stenosis, 4. Integration of a constructed 3D model of the aortic valve into a pulsatile left heart model with coarctation of the aorta. All presented models have been successfully utilized and evaluated in teaching or hands-on training courses. Conclusions It has been demonstrated that non-patient-specific anatomical variants can be created by modifying existing patient-specific 3D heart models. This way, a range of pathologies can be modeled based on a single CT or MRI dataset. Benefits of designed 3D models for education and training purposes have been successfully applied in pediatric cardiology but can potentially be transferred to simulation training in other medical fields as well.
Collapse
Affiliation(s)
- Carina Hopfner
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany.
| | - Andre Jakob
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Anja Tengler
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Maximilian Grab
- Department of Cardiac Surgery, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Nikolaus Thierfelder
- Department of Cardiac Surgery, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Barbara Brunner
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Alisa Thierij
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Nikolaus A Haas
- Department of Pediatric Cardiology and Pediatric Intensive Care, LMU Klinikum, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
46
|
Deng X, He S, Huang P, Luo J, Yang G, Zhou B, Xiao Y. A three-dimensional printed model in preoperative consent for ventricular septal defect repair. J Cardiothorac Surg 2021; 16:229. [PMID: 34380540 PMCID: PMC8359557 DOI: 10.1186/s13019-021-01604-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background The 3D printing technology in congenital cardiac surgery has been widely utilized to improve patients’ understanding of their disease. However, there has been no randomized controlled study on its usefulness in surgical consent for congenital heart disease repair. Methods A randomized controlled study was performed during consent process in which guardians of candidates for ventricular septal defect repair were given detailed explanation of the anatomy, indication for surgery and potential complication and risks using 3D print ventricular septal defect model (n = 20) versus a conventional 2D diagram (n = 20). A questionnaire was finished by each guardian of the patients. Data collected from questionnaires as well as medical records were statistically analyzed. Results Statistically significant improvements in ratings of understanding of ventricular septal defect anatomy (p = 0.02), and of the surgical procedure and potential complications (p = 0.02) were noted in the group that used the 3D model, though there was no difference in overall ratings of the consent process (p = 0.09). There was no difference in questionnaire score between subjects with different education levels. The clinical outcomes, as represented by the duration of intensive care unit stay, intubation duration was comparable between the two groups. Conclusions The results indicated that it was an effective tool which may be used to consent for congenital heart surgery. Different education levels do not affect guardians’ understanding in consent. The impact of 3D printing used in this scenario on long term outcomes remains to be defined.
Collapse
Affiliation(s)
- Xicheng Deng
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China.
| | - Siping He
- Department of Radiology, Hunan Children's Hospital, Changsha, 410007, China
| | - Peng Huang
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| | - Jinwen Luo
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| | - Guangxian Yang
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| | - Bing Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, 410007, Hunan, China
| | - Yunbin Xiao
- Heart Center, Hunan Children's Hospital, No. 86 Ziyuan Road, Changsha, 410007, China
| |
Collapse
|
47
|
Menichetti J, Lie HC, Mellblom AV, Brembo EA, Eide H, Gulbrandsen P, Heyn L, Saltveit KH, Strømme H, Sundling V, Turk E, Juvet LK. Tested communication strategies for providing information to patients in medical consultations: A scoping review and quality assessment of the literature. PATIENT EDUCATION AND COUNSELING 2021; 104:1891-1903. [PMID: 33516591 DOI: 10.1016/j.pec.2021.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES To systematize the scientific knowledge of empirically tested strategies for verbally providing medical information in patient-physician consultations. METHODS A scoping review searching for terms related to physician, information, oral communication, and controlled study. Four pairs of reviewers screened articles. For each selected study, we assessed the quality and summarized aspects on participants, study, intervention, and outcomes. Information provision strategies were inductively classified by types and main categories. RESULTS After screening 9422 articles, 39 were included. The methodological quality was moderate. We identified four differently used categories of strategies for providing information: cognitive aid (n = 13), persuasive (n = 8), relationship- (n = 3), and objectivity-oriented strategies (n = 4); plus, one "mixed" category (n = 11). Strategies were rarely theoretically derived. CONCLUSIONS Current research of tested strategies for verbally providing medical information is marked by great heterogeneity in methods and outcomes, and lack of theory-driven approaches. The list of strategies could be used to analyse real life communication. PRACTICE IMPLICATIONS Findings may aid the harmonization of future efforts to develop empirically-based information provision strategies to be used in clinical and teaching settings.
Collapse
Affiliation(s)
- Julia Menichetti
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hanne C Lie
- Department of Behavioral Medicine, University of Oslo, Oslo, Norway.
| | - Anneli V Mellblom
- Department of Behavioral Medicine, University of Oslo, Oslo, Norway; Regional Centre for Child and Adolescent Mental Health, Eastern and Southern Norway (RBUP), Oslo, Norway.
| | - Espen Andreas Brembo
- Science Centre Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway.
| | - Hilde Eide
- Science Centre Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway.
| | - Pål Gulbrandsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Health Services Research (HØKH) Centre, Akershus University Hospital, Lørenskog, Norway.
| | - Lena Heyn
- Science Centre Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway.
| | | | - Hilde Strømme
- Library of Medicine and Science, University of Oslo, Oslo, Norway.
| | - Vibeke Sundling
- Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway.
| | - Eva Turk
- Science Centre Health and Technology, Faculty of Health and Social Sciences, University of South-Eastern Norway, Drammen, Norway; Medical Faculty, University of Maribor, Maribor, Slovenia.
| | - Lene K Juvet
- Department of Nursing and Health Sciences, University of South-Eastern Norway, Drammen, Norway; Norvegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
48
|
Bruckheimer E, Goreczny S. Advanced imaging techniques to assist transcatheter congenital heart defects therapies. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Revels JW, Wang SS, Gharai LR, Febbo J, Fadl S, Bastawrous S. The role of CT in planning percutaneous structural heart interventions: Where to measure and why. Clin Imaging 2021; 76:247-264. [PMID: 33991744 DOI: 10.1016/j.clinimag.2021.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
As research continues to demonstrate successes in the use of percutaneous trans-vascular techniques in structural heart intervention, both the subspecialty trained and non-subspecialty trained cardiac imager find themselves performing and reporting larger amounts of information regarding cardiovascular findings. It is therefore imperative that the imager gains understanding and appreciation for how these various measurements are obtained, as well as their implication in a patient's care. Cardiac gated computed tomography (CT) has solidified its role and ability at providing high resolution images that can be used to obtain the key measurements used in structural heart intervention planning. This manuscript aims to provide an overview of what measurements are necessary to report when interpreting CT examinations purposed for structural heart intervention. This includes a review on indications and brief discussion on complications related to these procedures.
Collapse
Affiliation(s)
- Jonathan W Revels
- Department of Radiology, University of New Mexico, MSC 10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA. https://twitter.com/JRevRad1
| | - Sherry S Wang
- Department of Radiology and Imaging Sciences, University of Utah, 30 North 1900 East #1A71, Salt Lake City, UT 84132, USA. https://twitter.com/drsherrywang
| | - Leila R Gharai
- Department of Radiology, Virginia Commonwealth University, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA
| | - Jennifer Febbo
- Department of Radiology, University of New Mexico, MSC 10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA. https://twitter.com/JennFebb
| | - Shaimaa Fadl
- Department of Radiology, Virginia Commonwealth University, West Hospital, 1200 East Broad Street, North Wing, Room 2-013, Box 980470, Richmond, VA 23298-0470, USA
| | - Sarah Bastawrous
- Department of Radiology, University of Washington, Puget Sound Veterans Administration Hospital, 1959 NE Pacific Street, Room BB308, Box 357115, Seattle, WA 98195, USA. https://twitter.com/sbastawrous1
| |
Collapse
|
50
|
Tack P, Willems R, Annemans L. An early health technology assessment of 3D anatomic models in pediatric congenital heart surgery: potential cost-effectiveness and decision uncertainty. Expert Rev Pharmacoecon Outcomes Res 2021; 21:1107-1115. [PMID: 33475446 DOI: 10.1080/14737167.2021.1879645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Three-dimensional anatomic models have been used for surgical planning and simulation in pediatric congenital heart surgery. This research is the first to evaluate the potential cost-effectiveness of 3D anatomic models with the intent to guide surgeons and decision makers on its use.Method: A decision tree and subsequent Markov model with a 15-year time horizon was constructed and analyzed for nine cardiovascular surgeries. Epidemiological, clinical, and economic data were derived from databases. Literature and experts were consulted to close data gaps. Scenario, one-way, threshold, and probabilistic sensitivity analysis captured methodological and parameter uncertainty.Results: Incremental costs of using anatomical models ranged from -366€ (95% credibility interval: -2595€; 1049€) in the Norwood operation to 1485€ (95% CI: 1206€; 1792€) in atrial septal defect repair. Incremental health-benefits ranged from negligible in atrial septal defect repair to 0.54 Quality Adjusted Life Years (95% CI: 0.06; 1.43) in truncus arteriosus repair. Variability in the results was mainly caused by a temporary postoperative quality-adjusted life years gain.Conclusion: For complex operations, the implementation of anatomic models is likely to be cost-effective on a 15 year time horizon. For the right indication, these models thus provide a clinical advantage at an acceptable cost.
Collapse
Affiliation(s)
- Philip Tack
- Department of Innovation, Entrepreneurship and Service Management, Ghent University, Ghent, Belgium
| | - Ruben Willems
- Department of Public Health, Ghent University, Ghent, Belgium
| | - Lieven Annemans
- Department of Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|