1
|
O’Hare N, Millican K, Ebong EE. Unraveling neurovascular mysteries: the role of endothelial glycocalyx dysfunction in Alzheimer's disease pathogenesis. Front Physiol 2024; 15:1394725. [PMID: 39027900 PMCID: PMC11254711 DOI: 10.3389/fphys.2024.1394725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
While cardiovascular disease, cancer, and human immunodeficiency virus (HIV) mortality rates have decreased over the past 20 years, Alzheimer's Disease (AD) deaths have risen by 145% since 2010. Despite significant research efforts, effective AD treatments remain elusive due to a poorly defined etiology and difficulty in targeting events that occur too downstream of disease onset. In hopes of elucidating alternative treatment pathways, now, AD is commonly being more broadly defined not only as a neurological disorder but also as a progression of a variety of cerebrovascular pathologies highlighted by the breakdown of the blood-brain barrier. The endothelial glycocalyx (GCX), which is an essential regulator of vascular physiology, plays a crucial role in the function of the neurovascular system, acting as an essential vascular mechanotransducer to facilitate ultimate blood-brain homeostasis. Shedding of the cerebrovascular GCX could be an early indication of neurovascular dysfunction and may subsequently progress neurodegenerative diseases like AD. Recent advances in in vitro modeling, gene/protein silencing, and imaging techniques offer new avenues of scrutinizing the GCX's effects on AD-related neurovascular pathology. Initial studies indicate GCX degradation in AD and other neurodegenerative diseases and have begun to demonstrate a possible link to GCX loss and cerebrovascular dysfunction. This review will scrutinize the GCX's contribution to known vascular etiologies of AD and propose future work aimed at continuing to uncover the relationship between GCX dysfunction and eventual AD-associated neurological deterioration.
Collapse
Affiliation(s)
- Nicholas O’Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
2
|
van Lanen RHGJ, Haeren RHL, Staals J, Dings JTA, Schijns OEMG, Hoogland G, van Kuijk SMJ, Kapsokalyvas D, van Zandvoort MAMJ, Vink H, Rijkers K. Cerebrovascular glycocalyx damage and microcirculation impairment in patients with temporal lobe epilepsy. J Cereb Blood Flow Metab 2023; 43:1737-1751. [PMID: 37231664 PMCID: PMC10581235 DOI: 10.1177/0271678x231179413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Temporal lobe epilepsy (TLE) is increasingly associated with blood-brain barrier dysfunction and microvascular alterations, yet the pathophysiological link is missing. An important barrier function is exerted by the glycocalyx, a gel-like layer coating the endothelium. To explore such associations, we used intraoperative videomicroscopy to quantify glycocalyx and microcirculation properties of the neocortex and hippocampus of 15 patients undergoing resective brain surgery as treatment for drug-resistant TLE, and 15 non-epileptic controls. Fluorescent lectin staining of neocortex and hippocampal tissue was used for blood vessel surface area quantification. Neocortical perfused boundary region, the thickness of the glycocalyx' impaired layer, was higher in patients (2.64 ± 0.52 µm) compared to controls (1.31 ± 0.29 µm), P < 0.01, indicative of reduced glycocalyx integrity in patients. Moreover, erythrocyte flow velocity analysis revealed an impaired ability of TLE patients to (de-)recruit capillaries in response to changing metabolic demands (R2 = 0.75, P < 0.01), indicating failure of neurovascular coupling mechanisms. Blood vessel quantification comparison between intraoperative measurements and resected tissue showed strong correlation (R2 = 0.94, P < 0.01). This is the first report on in vivo assessment of glycocalyx and microcirculation properties in TLE patients, confirming the pivotal role of cerebrovascular changes. Further assessment of the cerebral microcirculation in relation to epileptogenesis might open avenues for new therapeutic targets for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Rick HGJ van Lanen
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Roel HL Haeren
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Julie Staals
- Department of Neurology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jim TA Dings
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - Olaf EMG Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Sander MJ van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dimitris Kapsokalyvas
- Department of Genetics & Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), University Hospital RWTH Aachen, Aachen, Germany
| | - Marc AMJ van Zandvoort
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Genetics & Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, Universitätsklinikum, Aachen University, Aachen, Germany
| | - Hans Vink
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| |
Collapse
|
3
|
Yuan L, Han J, van der Velden AIM, Vink H, de Mutsert R, Rosendaal FR, van Hylckama Vlieg A, Li-Gao R, Rabelink TJ, van den Berg BM. Sex-specific association between microvascular health and coagulation parameters: the Netherlands Epidemiology of Obesity study. J Thromb Haemost 2023; 21:2585-2595. [PMID: 37301258 DOI: 10.1016/j.jtha.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microvascular dysfunction is a growing determinant of sex differences in coronary heart disease (CHD). Dysregulation of the coagulation system is involved in CHD pathogenesis and can be induced by endothelial glycocalyx (EG) perturbation. However, little is known about the link between EG function and coagulation parameters in population-based studies on sex specificity. OBJECTIVES We sought to examine the sex differences in the relationship between EG function and coagulation parameters in a middle-aged Dutch population. METHODS Using baseline measurements of 771 participants from the Netherlands Epidemiology of Obesity study (age, 56 years [IQR, 51-61 years]; 53% women; body mass index, 27.9 kg/m2 [IQR, 25.1-30.9 kg/m2]), associations between glycocalyx-related perfused boundary region (PBR) derived using sidestream dark-field imaging and coagulation parameters (factor [F]VIII/IX/XI; thrombin generation parameters; and fibrinogen) were investigated using linear regression analyses, adjusting for possible confounders (including C-reactive protein, leptin, and glycoprotein acetyls), followed by sex-stratified analyses. RESULTS There was a sex difference in the associations between PBR and coagulation parameters. Particularly in women, 1-SD PBR (both total and feed vessel, indicating poorer glycocalyx status) was associated with higher FIX activity ([1.8%; 95% CI, 0.3%-3.3%] and [2.0%; 95% CI, 0.5%-3.4%], respectively) and plasma fibrinogen levels ([5.1 mg/dL; 95% CI, 0.4-9.9 mg/dL] and [5.8 mg/dL; 95% CI, 1.1-10.6 mg/dL], respectively). Furthermore, 1-SD PBRcapillary was associated with higher FVIII activity (3.5%; 95% CI, 0.4%-6.5%) and plasma fibrinogen levels (5.3 mg/dL; 95% CI, 0.6-10.0 mg/dL). CONCLUSION We revealed a sex-specific association between microcirculatory health and procoagulant status, which suggests that microvascular health be considered during early development of CHD in women.
Collapse
Affiliation(s)
- Lushun Yuan
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jihee Han
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anouk I M van der Velden
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands; MicroVascular Health Solutions LLC, Alpine, Utah, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Metabolon Inc, Morrisville, North Carolina, USA
| | - Ton J Rabelink
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bernard M van den Berg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Department of Internal Medicine, Nephrology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Galea I. The blood-brain barrier in systemic infection and inflammation. Cell Mol Immunol 2021; 18:2489-2501. [PMID: 34594000 PMCID: PMC8481764 DOI: 10.1038/s41423-021-00757-x] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
The vascular blood-brain barrier is a highly regulated interface between the blood and brain. Its primary function is to protect central neurons while signaling the presence of systemic inflammation and infection to the brain to enable a protective sickness behavior response. With increasing degrees and duration of systemic inflammation, the vascular blood-brain barrier becomes more permeable to solutes, undergoes an increase in lymphocyte trafficking, and is infiltrated by innate immune cells; endothelial cell damage may occasionally occur. Perturbation of neuronal function results in the clinical features of encephalopathy. Here, the molecular and cellular anatomy of the vascular blood-brain barrier is reviewed, first in a healthy context and second in a systemic inflammatory context. Distinct from the molecular and cellular mediators of the blood-brain barrier's response to inflammation, several moderators influence the direction and magnitude at genetic, system, cellular and molecular levels. These include sex, genetic background, age, pre-existing brain pathology, systemic comorbidity, and gut dysbiosis. Further progress is required to define and measure mediators and moderators of the blood-brain barrier's response to systemic inflammation in order to explain the heterogeneity observed in animal and human studies.
Collapse
Affiliation(s)
- Ian Galea
- grid.5491.90000 0004 1936 9297Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| |
Collapse
|
5
|
Anticoagulants and the Hemostatic System: A Primer for Occupational Stress Researchers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010626. [PMID: 34682370 PMCID: PMC8535451 DOI: 10.3390/ijerph182010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022]
Abstract
Anticoagulation, the body’s mechanism to prevent blood clotting, is an internal biomarker of an individual’s response to stress. Research has indicated that understanding the causes, processes, and consequences of anticoagulation can provide important insight into the experience of individuals facing emotional and occupational strain. Unfortunately, despite their importance, the mechanisms and implications of anticoagulation are unfamiliar to many researchers and practitioners working with trauma-exposed professionals. This paper provides an accessible primer on the topic of anticoagulation, including an overview of the biological process, the research connecting these processes with emotional and occupational functioning, as well as some potential methods for assessment.
Collapse
|
6
|
Hayden MR, Banks WA. Deficient Leptin Cellular Signaling Plays a Key Role in Brain Ultrastructural Remodeling in Obesity and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:5427. [PMID: 34063911 PMCID: PMC8196569 DOI: 10.3390/ijms22115427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
The triad of obesity, metabolic syndrome (MetS), Type 2 diabetes mellitus (T2DM) and advancing age are currently global societal problems that are expected to grow over the coming decades. This triad is associated with multiple end-organ complications of diabetic vasculopathy (maco-microvessel disease), neuropathy, retinopathy, nephropathy, cardiomyopathy, cognopathy encephalopathy and/or late-onset Alzheimer's disease. Further, obesity, MetS, T2DM and their complications are associated with economical and individual family burdens. This review with original data focuses on the white adipose tissue-derived adipokine/hormone leptin and how its deficient signaling is associated with brain remodeling in hyperphagic, obese, or hyperglycemic female mice. Specifically, the ultrastructural remodeling of the capillary neurovascular unit, brain endothelial cells (BECs) and their endothelial glycocalyx (ecGCx), the blood-brain barrier (BBB), the ventricular ependymal cells, choroid plexus, blood-cerebrospinal fluid barrier (BCSFB), and tanycytes are examined in female mice with impaired leptin signaling from either dysfunction of the leptin receptor (DIO and db/db models) or the novel leptin deficiency (BTBR ob/ob model).
Collapse
Affiliation(s)
- Melvin R. Hayden
- Departments of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA;
| | - William A. Banks
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S. Columbian Way, 810C/Bldg 1, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98108, USA
| |
Collapse
|
7
|
Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers 2021; 9:1904773. [PMID: 34003072 DOI: 10.1080/21688370.2021.1904773] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The negative surface charge of brain microvessel endothelial cells is derived from the special composition of their membrane lipids and the thick endothelial surface glycocalyx. They are important elements of the unique defense systems of the blood-brain barrier. The tissue-specific properties, components, function and charge of the brain endothelial glycocalyx have only been studied in detail in the past 15 years. This review highlights the importance of the negative surface charge in the permeability of macromolecules and nanoparticles as well as in drug interactions. We discuss surface charge and glycoxalyx changes in pathologies related to the brain microvasculature and protective measures against glycocalyx shedding and damage. We present biophysical techniques, including a microfluidic chip device, to measure surface charge of living brain endothelial cells and imaging methods for visualization of surface charge and glycocalyx.
Collapse
Affiliation(s)
- Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ana R Santa-Maria
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Szilvia Veszelka
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
8
|
Mullen KM, Regier PJ, Londoño LA, Millar K, Groover J. Evaluation of jejunal microvasculature of healthy anesthetized dogs with sidestream dark field video microscopy. Am J Vet Res 2020; 81:888-893. [PMID: 33107751 DOI: 10.2460/ajvr.81.11.888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the feasibility of sidestream dark field (SDF) video microscopy for the evaluation of the jejunal microvasculature of healthy dogs. ANIMALS 30 healthy sexually intact female shelter dogs anesthetized for ovariohysterectomy. PROCEDURES Preoperative physical and clinicopathologic assessments were performed to confirm health status. Then healthy dogs were anesthetized, and the abdomen was incised at the ventral midline for ovariohysterectomy and jejunal microvasculature evaluation. An SDF video microscope imaged the microvasculature of 2 sites of a portion of the jejunum, and recorded videos were analyzed with software capable of quantitating parameters of microvascular health. Macrovascular parameters (heart rate, respiratory rate, and hemoglobin oxygen saturation) were also recorded during anesthesia. RESULTS Quantified jejunal microvascular parameters included valid microvascular density (mean ± SD, 251.72 ± 97.10 μm/mm), RBC-filling percentage (66.96 ± 8.00%), RBC column width (7.11 ± 0.72 μm), and perfused boundary region (2.17 ± 0.42 μm). The perfused boundary region and RBC-filling percentage had a significant negative correlation. Strong to weak positive correlations were noted among the perfused boundary regions of small-, medium-, and large-sized microvessels. No significant correlations were identified between microvascular parameters and age, body weight, preoperative clinicopathologic results, or macrovascular parameters. CONCLUSIONS AND CLINICAL RELEVANCE Interrogation of the jejunal microvasculature of healthy dogs with SDF video microscopy was feasible. Results of this study indicated that SDF video microscopy is worth additional investigation, including interrogation of diseased small intestine in dogs.
Collapse
|
9
|
Effect of Hydroxyethyl Starch Loading on Glycocalyx Shedding and Cerebral Metabolism During Surgery. J Surg Res 2020; 246:274-283. [DOI: 10.1016/j.jss.2019.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/04/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022]
|
10
|
Abstract
Objective: The endothelial glycocalyx (eGC) is a dynamic and multicomponent layer of macromolecules found at the surface of vascular endothelium, which is largely underappreciated. It has recently been recognized that eGC is a major regulator of endothelial function and may have therapeutic value in organ injuries. This study aimed to explore the role of the eGC in various pathologic and physiologic conditions, by reviewing the basic research findings pertaining to the detection of the eGC and its clinical significance. We also explored different pharmacologic agents used to protect and rebuild the eGC. Data sources: An in-depth search was performed in the PubMed database, focusing on research published after 2003 with keywords including eGC, permeability, glycocalyx and injuries, and glycocalyx protection. Study selection: Several authoritative reviews and original studies were identified and reviewed to summarize the characteristics of the eGC under physiologic and pathologic conditions as well as the detection and protection of the eGC. Results: The eGC degradation is closely associated with pathophysiologic changes such as vascular permeability, edema formation, mechanotransduction, and clotting cascade, together with neutrophil and platelet adhesion in diverse injury and disease states including inflammation (sepsis and trauma), ischemia-reperfusion injury, shock, hypervolemia, hypertension, hyperglycemia, and high Na+ as well as diabetes and atherosclerosis. Therapeutic strategies for protecting and rebuilding the eGC should be explored through experimental test and clinical verifications. Conclusions: Disturbance of the eGC usually occurs at early stages of various clinical pathophysiologies which can be partly prevented and reversed by protecting and restoring the eGC. The eGC seems to be a promising diagnostic biomarker and therapeutic target in clinical settings.
Collapse
|
11
|
Haeren R, Rijkers K, Schijns O, Dings J, Hoogland G, van Zandvoort M, Vink H, van Overbeeke J. In vivo assessment of the human cerebral microcirculation and its glycocalyx: A technical report. J Neurosci Methods 2018; 303:114-125. [DOI: 10.1016/j.jneumeth.2018.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
|
12
|
Cerny V, Astapenko D, Burkovskiy I, Hyspler R, Ticha A, Trevors MA, Lehmann C. Glycocalyx in vivo measurement. Clin Hemorheol Microcirc 2018; 67:499-503. [PMID: 28922148 DOI: 10.3233/ch-179235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The endothelial glycocalyx (EG) lining the endoluminal surface of the capillaries has been proposed as a key component of the microcirculation and a major player in microvascular pathology. Recent advances in the understanding of its physiological role and clinical significance have been made upon the development of methods allowing EG assessment in clinical medicine. Laboratory methods can assess the amount of EG damage by measuring levels of its degradation products (e.g. syndecan-1, heparan sulphate and hyaluronan sulphate), mostly in the plasma, however, their physiological turnover disqualifies them from being the reliable index of EG damage. At the bedside, in vivo video microscopy tools technologies (e.g. Side-stream Dark Field imaging technology) allow indirect assessment of EG thickness in sublingual microcirculation by measuring the penetration extent (called Perfused Boundary Region) of flowing red blood cells into the EG.
Collapse
Affiliation(s)
- Vladimir Cerny
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, J.E. Purkinje University, Masaryk Hospital, Usti nad Labem, Czech Republic.,Centrum for Research and Development, University Hospital Hradec Kralove, Czech Republic.,Department of Anaesthesiology and Intensive Care, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic.,Department of Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada
| | - David Astapenko
- Centrum for Research and Development, University Hospital Hradec Kralove, Czech Republic.,Department of Anaesthesiology and Intensive Care, Charles University in Prague, Faculty of Medicine in Hradec Kralove, Czech Republic
| | - Ian Burkovskiy
- Department of Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Radomir Hyspler
- Centrum for Research and Development, University Hospital Hradec Kralove, Czech Republic
| | - Alena Ticha
- Centrum for Research and Development, University Hospital Hradec Kralove, Czech Republic
| | - Mary Ann Trevors
- Electron microscopy unit - core facility, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christian Lehmann
- Department of Anaesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Cerny V, Astapenko D, Brettner F, Benes J, Hyspler R, Lehmann C, Zadak Z. Targeting the endothelial glycocalyx in acute critical illness as a challenge for clinical and laboratory medicine. Crit Rev Clin Lab Sci 2017; 54:343-357. [PMID: 28958185 DOI: 10.1080/10408363.2017.1379943] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this manuscript is to review the role of endothelial glycocalyx (EG) in the field of critical and perioperative medicine and to discuss possible future directions for investigations in this area. Under physiological conditions, EG has several well-defined functions aimed to prevent the disruption of vessel wall integrity. Under pathological conditions, the EG represent one of the earliest sites of injury during inflammation. EG structure and function distortion contribute to organ dysfunction related to sepsis, trauma, or global ischemia of any origin. Discovering new therapeutic approaches (either pharmacological or non-pharmacological) aimed to protect the EG against injury represents a promising direction in clinical medicine. Further, the currently-used common interventions in the acutely ill - fluids, blood products, nutritional support, organ-supporting techniques (e.g. continuous renal replacement therapy, extracorporeal circulation), temperature modulation and many others - should be re-evaluated during acute illness in terms of their EG "friendliness". To assess new therapies that protect the EG, or to evaluate the effect of currently-used interventions on EG integrity, a relevant marker or method to determine EG damage is needed. Such marker or method should be available to clinicians within hours, preferably in the form of a point-of-care test at the bedside. Collaborative research between clinical disciplines and laboratory medicine is warranted, and targeting the EG represents major challenges for both.
Collapse
Affiliation(s)
- Vladimir Cerny
- a Department of Anaesthesiology, Perioperative Medicine and Intensive Care , JE Purkinje University, Masaryk Hospital , Usti nad Labem , Czech Republic.,b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic.,c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic.,d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada
| | - David Astapenko
- c Department of Anaesthesiology and Intensive Care , Charles University, Faculty of Medicine in Hradec Kralove , Hradec Kralove , Czech Republic
| | - Florian Brettner
- e Department of Anaesthesiology , University Hospital of Munich, Ludwig-Maximilians University , Munich , Germany
| | - Jan Benes
- f Department of Anaesthesiology and Intensive Care Medicine , Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic.,g Biomedical Centre, Charles University, Faculty of Medicine in Plzen , Plzen , Czech Republic
| | - Radomir Hyspler
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| | - Christian Lehmann
- d Department of Anaesthesia, Pain Management and Perioperative Medicine , Dalhousie University , Halifax , Canada.,h Department of Microbiology and Immunology , Dalhousie University , Halifax , Canada.,i Department of Pharmacology , Dalhousie University , Halifax , Canada
| | - Zdenek Zadak
- b Centrum for Research and Development, University Hospital , Hradec Kralove , Czech Republic
| |
Collapse
|