1
|
Karlsson C, Johnson LK, Greasley PJ, Retterstøl K, Hedberg J, Hall M, Hawker N, Robertsen I, Havsol J, Hertel JK, Sandbu R, Skovlund E, Olsen T, Christensen H, Jansson-Löfmark R, Andersson S, Åsberg A, Hjelmesæth J. Gastric Bypass vs Diet and Cardiovascular Risk Factors: A Nonrandomized Controlled Trial. JAMA Surg 2024; 159:971-980. [PMID: 38959017 PMCID: PMC11223056 DOI: 10.1001/jamasurg.2024.2162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/13/2024] [Indexed: 07/04/2024]
Abstract
Importance Roux-en-Y gastric bypass (RYGB) is associated with reduced cardiovascular (CV) risk factors, morbidity, and mortality. Whether these effects are specifically induced by the surgical procedure or the weight loss is unclear. Objective To compare 6-week changes in CV risk factors in patients with obesity undergoing matching caloric restriction and weight loss by RYGB or a very low-energy diet (VLED). Design, Setting, and Participants This nonrandomized controlled study (Impact of Body Weight, Low Calorie Diet, and Gastric Bypass on Drug Bioavailability, Cardiovascular Risk Factors, and Metabolic Biomarkers [COCKTAIL]) was conducted at a tertiary care obesity center in Norway. Participants were individuals with severe obesity preparing for RYGB or a VLED. Recruitment began February 26, 2015; the first patient visit was on March 18, 2015, and the last patient visit (9-week follow-up) was on August 9, 2017. Data were analyzed from April 30, 2021, through June 29, 2023. Interventions VLED alone for 6 weeks or VLED for 6 weeks after RYGB; both interventions were preceded by 3-week LED. Main Outcomes and Measures Between-group comparisons of 6-week changes in CV risk factors. Results Among 78 patients included in the analyses, the mean (SD) age was 47.5 (9.7) years; 51 (65%) were women, and 27 (35%) were men. Except for a slightly higher mean (SD) body mass index of 44.5 (6.2) in the RYGB group (n = 41) vs 41.9 (5.4) in the VLED group (n = 37), baseline demographic and clinical characteristics were similar between groups. Major atherogenic blood lipids (low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, apolipoprotein B, lipoprotein[a]) were reduced after RYGB in comparison with VLED despite a similar fat mass loss. Mean between-group differences were -17.7 mg/dL (95% CI, -27.9 to -7.5), -17.4 mg/dL (95% CI, -29.8 to -5.0) mg/dL, -9.94 mg/dL (95% CI, -15.75 to -4.14), and geometric mean ratio was 0.55 U/L (95% CI, 0.42 to 0.72), respectively. Changes in glycemic control and blood pressure were similar between groups. Conclusions and Relevance This study found that clinically meaningful reductions in major atherogenic blood lipids were demonstrated after RYGB, indicating that RYGB may reduce CV risk independent of weight loss. Trial Registration ClinicalTrials.gov Identifier: NCT02386917.
Collapse
Affiliation(s)
- Cecilia Karlsson
- Late-Stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Peter J. Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kjetil Retterstøl
- The Lipid Clinic, Oslo University Hospital, Oslo, Norway
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jonatan Hedberg
- Medical Evidence and Observational Research, Global Medical BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Martin Hall
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Noele Hawker
- Early Biometrics & Statistical Innovation, Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jesper Havsol
- Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jens Kristoffer Hertel
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Rune Sandbu
- Department of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Shalini Andersson
- Research and Early Development, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Kvitne KE, Hjelmesæth J, Hovd M, Sandbu R, Johnson LK, Andersson S, Karlsson C, Christensen H, Jansson-Löfmark R, Åsberg A, Robertsen I. Oral Drug Dosing After Gastric Bypass and Diet-Induced Weight Loss: Simpler Than We Think? Lessons Learned From the COCKTAIL Study. Clin Pharmacol Ther 2024; 116:647-652. [PMID: 38771070 DOI: 10.1002/cpt.3307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
This article summarizes the lessons learned from the COCKTAIL study: an open, three-armed, single-center study including patients with obesity scheduled for treatment with Roux-en-Y gastric bypass (RYGB) or nonsurgical calorie restriction, and a normal- to overweight control group. The clinical implications of the results from multiple peer-reviewed articles describing the effects of RYGB, severe caloric restriction, weight loss, and type 2 diabetes on the in vivo activity and protein expression of drug-metabolizing enzymes (cytochrome P450 (CYP) 1A2, 2C9, 2C19, and 3A) and transporters (DMETs; organic anion-transporting polypeptide (OATP) 1B1 and P-glycoprotein (P-gp)) are discussed in the perspective of three clinically relevant questions: (1) How should clinicians get the dose right in patients after RYGB? (2) Will drug disposition in patients with obesity be normalized after successful weight loss? (3) Are dose adjustments needed according to obesity and diabetes status? Overall, RYGB seems to have a lower impact on drug disposition than previously assumed, but clinicians should pay close attention to drugs with a narrow therapeutic range or where a high maximum drug concentration may be problematic. Whether obesity-related alterations of DMETs normalize with substantial weight loss depends on the DMET in question. Obesity and diabetes downregulate the in vivo activity of CYP2C19 and CYP3A (only obesity) but whether substrate drugs should be dose adjusted is also dependent on other factors that influence clearance, that is, liver blood flow and protein binding. Finally, we recommend frequent and individualized follow-up due to high inter- and intraindividual variability in these patients, particularly following RYGB.
Collapse
Affiliation(s)
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Markus Hovd
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Rune Sandbu
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Karlsson
- Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Kvitne KE, Hovd M, Johnson LK, Wegler C, Karlsson C, Artursson P, Andersson S, Sandbu R, Hjelmesæth J, Skovlund E, Jansson-Löfmark R, Christensen H, Åsberg A, Robertsen I. Digoxin Pharmacokinetics in Patients with Obesity Before and After a Gastric Bypass or a Strict Diet Compared with Normal Weight Individuals. Clin Pharmacokinet 2024; 63:109-120. [PMID: 37993699 PMCID: PMC10786955 DOI: 10.1007/s40262-023-01320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Several drugs on the market are substrates for P-glycoprotein (P-gp), an efflux transporter highly expressed in barrier tissues such as the intestine. Body weight, weight loss, and a Roux-en-Y gastric bypass (RYGB) may influence P-gp expression and activity, leading to variability in the drug response. The objective of this study was therefore to investigate digoxin pharmacokinetics as a measure of the P-gp phenotype in patients with obesity before and after weight loss induced by an RYGB or a strict diet and in normal weight individuals. METHODS This study included patients with severe obesity preparing for an RYGB (n = 40) or diet-induced weight loss (n = 40) and mainly normal weight individuals scheduled for a cholecystectomy (n = 18). Both weight loss groups underwent a 3-week low-energy diet (<1200 kcal/day) followed by an additional 6 weeks of <800 kcal/day induced by an RYGB (performed at week 3) or a very-low-energy diet. Follow-up time was 2 years, with four digoxin pharmacokinetic investigations at weeks 0, 3, and 9, and year 2. Hepatic and jejunal P-gp levels were determined in biopsies obtained from the patients undergoing surgery. RESULTS The RYGB group and the diet group had a comparable weight loss in the first 9 weeks (13 ± 2.3% and 11 ± 3.6%, respectively). During this period, we observed a minor increase (16%) in the digoxin area under the concentration-time curve from zero to infinity in both groups: RYGB: 2.7 µg h/L [95% confidence interval (CI) 0.67, 4.7], diet: 2.5 µg h/L [95% CI 0.49, 4.4]. In the RYGB group, we also observed that the time to reach maximum concentration decreased after surgery: from 1.0 ± 0.33 hours at week 3 to 0.77 ± 0.08 hours at week 9 (-0.26 hours [95% CI -0.47, -0.05]), corresponding to a 25% reduction. Area under the concentration-time curve from zero to infinity did not change long term (week 0 to year 2) in either the RYGB (1.1 µg h/L [-0.94, 3.2]) or the diet group (0.94 µg h/L [-1.2, 3.0]), despite a considerable difference in weight loss from baseline (RYGB: 30 ± 7%, diet: 3 ± 6%). At baseline, the area under the concentration-time curve from zero to infinity was -5.5 µg h/L [95% CI -8.5, -2.5] (-26%) lower in patients with obesity (RYGB plus diet) than in normal weight individuals scheduled for a cholecystectomy. Further, patients undergoing an RYGB had a 0.05 fmol/µg [95% CI 0.00, 0.10] (29%) higher hepatic P-gp level than the normal weight individuals. CONCLUSIONS Changes in digoxin pharmacokinetics following weight loss induced by a pre-operative low-energy diet and an RYGB or a strict diet (a low-energy diet plus a very-low-energy diet) were minor and unlikely to be clinically relevant. The lower systemic exposure of digoxin in patients with obesity suggests that these patients may have increased biliary excretion of digoxin possibly owing to a higher expression of P-gp in the liver.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Markus Hovd
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Karlsson
- Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rune Sandbu
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hege Christensen
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
4
|
Handin N, Yuan D, Ölander M, Wegler C, Karlsson C, Jansson-Löfmark R, Hjelmesæth J, Åsberg A, Lauschke VM, Artursson P. Proteome deconvolution of liver biopsies reveals hepatic cell composition as an important marker of fibrosis. Comput Struct Biotechnol J 2023; 21:4361-4369. [PMID: 37711184 PMCID: PMC10498185 DOI: 10.1016/j.csbj.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Human liver tissue is composed of heterogeneous mixtures of different cell types and their cellular stoichiometry can provide information on hepatic physiology and disease progression. Deconvolution algorithms for the identification of cell types and their proportions have recently been developed for transcriptomic data. However, no method for the deconvolution of bulk proteomics data has been presented to date. Here, we show that proteomes, which usually contain less data than transcriptomes, can provide useful information for cell type deconvolution using different algorithms. We demonstrate that proteomes from defined mixtures of cell lines, isolated primary liver cells, and human liver biopsies can be deconvoluted with high accuracy. In contrast to transcriptome-based deconvolution, liver tissue proteomes also provided information about extracellular compartments. Using deconvolution of proteomics data from liver biopsies of 56 patients undergoing Roux-en-Y gastric bypass surgery we show that proportions of immune and stellate cells correlate with inflammatory markers and altered composition of extracellular matrix proteins characteristic of early-stage fibrosis. Our results thus demonstrate that proteome deconvolution can be used as a molecular microscope for investigations of the composition of cell types, extracellular compartments, and for exploring cell-type specific pathological events. We anticipate that these findings will allow the refinement of retrospective analyses of the growing number of proteome datasets from various liver disease states and pave the way for AI-supported clinical and preclinical diagnostics.
Collapse
Affiliation(s)
- Niklas Handin
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Di Yuan
- Department of Information Technology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE- 41345, Sweden
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43153, Sweden
| | - Jøran Hjelmesæth
- Morbid Obesity Centre, Department of Medi cine, Vestfold Hospital Trust, NO-3103 Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, NO-0318 Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, NO-0316 Oslo, Norway
- Department of Transplanation Medicin, Oslo University Hospital-Rikshospitalet, NO-0424 Oslo, Norway
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Per Artursson
- Department of Pharmacy, Uppsala University, SE-75123 Uppsala, Sweden
| |
Collapse
|
5
|
Ghasim H, Rouini M, Safari S, Larti F, Khoshayand M, Gholami K, Neyshaburinezhad N, Gloor Y, Daali Y, Ardakani YH. Impact of Obesity and Bariatric Surgery on Metabolic Enzymes and P-Glycoprotein Activity Using the Geneva Cocktail Approach. J Pers Med 2023; 13:1042. [PMID: 37511655 PMCID: PMC10381895 DOI: 10.3390/jpm13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The inter-individual variability of CYP450s enzyme activity may be reduced by comparing the effects of bariatric surgery on CYP-mediated drug elimination in comparable patients before and after surgery. The current research will use a low-dose phenotyping cocktail to simultaneously evaluate the activities of six CYP isoforms and P-gp. The results showed that following weight reduction after surgery, the activity of all enzymes increased compared to the obese period, which was statistically significant in the case of CYP3A, CYP2B6, CYP2C9, and CYP1A2. Furthermore, the activity of P-gp after surgery decreased without reaching a statistical significance (p-value > 0.05). Obese individuals had decreased CYP3A and CYP2D6 activity compared with the control group, although only CYP3A was statistically important. In addition, there was a trend toward increased activity for CYP1A2, CYP2B6, CYP2C9, and CYP2C19 in obese patients compared to the control group, without reaching statistical insignificance (p-value ≥ 0.05). After six months (at least), all enzymes and the P-gp pump activity were significantly higher than the control group except for CYP2D6. Ultimately, a greater comprehension of phenoconversion can aid in altering the patient's treatment. Further studies are required to confirm the changes in the metabolic ratios of probes after bariatric surgery to demonstrate the findings' clinical application. As a result, the effects of inflammation-induced phenoconversion on medication metabolism may differ greatly across persons and drug CYP pathways. It is essential to apply these results to the clinic to recommend dose adjustments.
Collapse
Affiliation(s)
- Hengameh Ghasim
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Saeed Safari
- Department of General Surgery, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farnoosh Larti
- Department of Cardiology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammadreza Khoshayand
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Kheirollah Gholami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Navid Neyshaburinezhad
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Yvonne Gloor
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Yalda H Ardakani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
6
|
Hovd M, Robertsen I, Johnson LK, Krogstad V, Wegler C, Kvitne KE, Kringen MK, Skovlund E, Karlsson C, Andersson S, Artursson P, Sandbu R, Hjelmesæth J, Åsberg A, Jansson-Löfmark R, Christensen H. Neither Gastric Bypass Surgery Nor Diet-Induced Weight-Loss Affect OATP1B1 Activity as Measured by Rosuvastatin Oral Clearance. Clin Pharmacokinet 2023; 62:725-735. [PMID: 36988826 PMCID: PMC10181972 DOI: 10.1007/s40262-023-01235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 03/30/2023]
Abstract
INTRODUCTION Rosuvastatin pharmacokinetics is mainly dependent on the activity of hepatic uptake transporter OATP1B1. In this study, we aimed to investigate and disentangle the effect of Roux-en-Y gastric bypass (RYGB) and weight loss on oral clearance (CL/F) of rosuvastatin as a measure of OATP1B1-activity. METHODS Patients with severe obesity preparing for RYGB (n = 40) or diet-induced weight loss (n = 40) were included and followed for 2 years, with four 24-hour pharmacokinetic investigations. Both groups underwent a 3-week low-energy diet (LED; < 1200 kcal/day), followed by RYGB or a 6-week very-low-energy diet (VLED; < 800 kcal/day). RESULTS A total of 80 patients were included in the RYGB group (40 patients) and diet-group (40 patients). The weight loss was similar between the groups following LED and RYGB. The LED induced a similar (mean [95% CI]) decrease in CL/F in both intervention groups (RYGB: 16% [0, 31], diet: 23% [8, 38]), but neither induced VLED resulted in any further changes in CL/F. At Year 2, CL/F had increased by 21% from baseline in the RYGB group, while it was unaltered in the diet group. Patients expressing the reduced function SLCO1B1 variants (c.521TC/CC) showed similar changes in CL/F over time compared with patients expressing the wild-type variant. CONCLUSIONS Neither body weight, weight loss nor RYGB per se seem to affect OATP1B1 activity to a clinically relevant degree. Overall, the observed changes in rosuvastatin pharmacokinetics were minor, and unlikely to be of clinical relevance.
Collapse
Affiliation(s)
- Markus Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, PO 1068, 0316, Oslo, Norway.
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, PO 1068, 0316, Oslo, Norway
| | - Line Kristin Johnson
- The Morbid Obesity Center, Vestfold Hospital Trust, P.O. Box 2168, 3103, Tønsberg, Norway
| | - Veronica Krogstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, PO 1068, 0316, Oslo, Norway
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, PO 1068, 0316, Oslo, Norway
| | - Marianne Kristiansen Kringen
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
- Department of Health Sciences, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, P.O. Box 8905, 7491, Trondheim, Norway
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, P.O. Box 580, 75123, Uppsala, Sweden
| | - Rune Sandbu
- The Morbid Obesity Center, Vestfold Hospital Trust, P.O. Box 2168, 3103, Tønsberg, Norway
- Department of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, P.O. Box 2168, 3103, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, 0318, Oslo, Norway
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, PO 1068, 0316, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Nydalen, P.O. Box 4950, 0424, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, PO 1068, 0316, Oslo, Norway
| |
Collapse
|
7
|
Kvitne KE, Åsberg A, Johnson LK, Wegler C, Hertel JK, Artursson P, Karlsson C, Andersson S, Sandbu R, Skovlund E, Christensen H, Jansson‐Löfmark R, Hjelmesæth J, Robertsen I. Impact of type 2 diabetes on in vivo activities and protein expressions of cytochrome P450 in patients with obesity. Clin Transl Sci 2022; 15:2685-2696. [PMID: 36037309 PMCID: PMC9652437 DOI: 10.1111/cts.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023] Open
Abstract
Previous studies have not accounted for the close link between type 2 diabetes mellitus (T2DM) and obesity when investigating the impact of T2DM on cytochrome P450 (CYP) activities. The aim was to investigate the effect of T2DM on in vivo activities and protein expressions of CYP2C19, CYP3A, CYP1A2, and CYP2C9 in patients with obesity. A total of 99 patients from the COCKTAIL study (NCT02386917) were included in this cross-sectional analysis; 29 with T2DM and obesity (T2DM-obesity), 53 with obesity without T2DM (obesity), and 17 controls without T2DM and obesity (controls). CYP activities were assessed after the administration of a cocktail of probe drugs including omeprazole (CYP2C19), midazolam (CYP3A), caffeine (CYP1A2), and losartan (CYP2C9). Jejunal and liver biopsies were also obtained to determine protein concentrations of the respective CYPs. CYP2C19 activity and jejunal CYP2C19 concentration were 63% (-0.39 [95% CI: -0.82, -0.09]) and 40% (-0.09 fmol/μg protein [95% CI: -0.18, -0.003]) lower in T2DM-obesity compared with the obesity group, respectively. By contrast, there were no differences in the in vivo activities and protein concentrations of CYP3A, CYP1A2, and CYP2C9. Multivariable regression analyses also indicated that T2DM was associated with interindividual variability in CYP2C19 activity, but not CYP3A, CYP1A2, and CYP2C9 activities. The findings indicate that T2DM has a significant downregulating impact on CYP2C19 activity, but not on CYP3A, CYP1A2, and CYP2C9 activities and protein concentrations in patients with obesity. Hence, the effect of T2DM seems to be isoform-specific.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway,Department of Transplantation MedicineOslo University HospitalOsloNorway
| | - Line K. Johnson
- The Morbid Obesity CenterVestfold Hospital TrustTønsbergNorway
| | - Christine Wegler
- Department of PharmacyUppsala UniversityUppsalaSweden,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM)BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Jens K. Hertel
- The Morbid Obesity CenterVestfold Hospital TrustTønsbergNorway
| | - Per Artursson
- Department of Pharmacy and Science for Life LaboratoryUppsala UniversityUppsalaSweden
| | - Cecilia Karlsson
- Late‐stage Development, Cardiovascular, Renal and Metabolism (CVRM)BioPharmaceuticals R&D, AstraZenecaGothenburgSweden,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Shalini Andersson
- Oligonucleotide DiscoveryDiscovery Sciences, R&D, AstraZenecaGothenburgSweden
| | - Rune Sandbu
- The Morbid Obesity CenterVestfold Hospital TrustTønsbergNorway,Department of SurgeryVestfold Hospital TrustTønsbergNorway
| | - Eva Skovlund
- Department of Public Health and NursingNorwegian University of Science and Technology, NTNUTrondheimNorway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| | - Rasmus Jansson‐Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM)BioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Jøran Hjelmesæth
- The Morbid Obesity CenterVestfold Hospital TrustTønsbergNorway,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of PharmacyUniversity of OsloOsloNorway
| |
Collapse
|
8
|
Eide Kvitne K, Hole K, Krogstad V, Wollmann BM, Wegler C, Johnson LK, Hertel JK, Artursson P, Karlsson C, Andersson S, Andersson TB, Sandbu R, Hjelmesæth J, Skovlund E, Christensen H, Jansson-Löfmark R, Åsberg A, Molden E, Robertsen I. Correlations between 4β-hydroxycholesterol and hepatic and intestinal CYP3A4: protein expression, microsomal ex vivo activity, and in vivo activity in patients with a wide body weight range. Eur J Clin Pharmacol 2022; 78:1289-1299. [PMID: 35648149 PMCID: PMC9283167 DOI: 10.1007/s00228-022-03336-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Variability in cytochrome P450 3A4 (CYP3A4) metabolism is mainly caused by non-genetic factors, hence providing a need for accurate phenotype biomarkers. Although 4β-hydroxycholesterol (4βOHC) is a promising endogenous CYP3A4 biomarker, additional investigations are required to evaluate its ability to predict CYP3A4 activity. This study investigated the correlations between 4βOHC concentrations and hepatic and intestinal CYP3A4 protein expression and ex vivo microsomal activity in paired liver and jejunum samples, as well as in vivo CYP3A4 phenotyping (midazolam) in patients with a wide body weight range. METHODS The patients (n = 96; 78 with obesity and 18 normal or overweight individuals) were included from the COCKTAIL-study (NCT02386917). Plasma samples for analysis of 4βOHC and midazolam concentrations, and liver (n = 56) and jejunal (n = 38) biopsies were obtained. The biopsies for determination of CYP3A4 protein concentration and microsomal activity were obtained during gastric bypass or cholecystectomy. In vivo CYP3A4 phenotyping was performed using semi-simultaneous oral (1.5 mg) and intravenous (1.0 mg) midazolam. RESULTS 4βOHC concentrations were positively correlated with hepatic microsomal CYP3A4 activity (ρ = 0.53, p < 0.001), and hepatic CYP3A4 concentrations (ρ = 0.30, p = 0.027), but not with intestinal CYP3A4 concentrations (ρ = 0.18, p = 0.28) or intestinal microsomal CYP3A4 activity (ρ = 0.15, p = 0.53). 4βOHC concentrations correlated weakly with midazolam absolute bioavailability (ρ = - 0.23, p = 0.027) and apparent oral clearance (ρ = 0.28, p = 0.008), but not with systemic clearance (ρ = - 0.03, p = 0.81). CONCLUSION These findings suggest that 4βOHC concentrations reflect hepatic, but not intestinal, CYP3A4 activity. Further studies should investigate the potential value of 4βOHC as an endogenous biomarker for individual dose requirements of intravenously administered CYP3A4 substrate drugs. TRIAL REGISTRATION Clinical. TRIALS gov identifier: NCT02386917.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Kristine Hole
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway.,Department of Life Sciences and Health, Oslo Metropolitan University, Oslo, Norway
| | - Veronica Krogstad
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | | | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Line K Johnson
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jens K Hertel
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Karlsson
- Clinical Metabolism, Cardiovascular, Renal and Metabolism (CVRM), Late-Stage Development, AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Rune Sandbu
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Deparment of Surgery, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- The Morbid Obesity Center, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), AstraZeneca, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.,Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
9
|
Ghasim H, Rouini M, Gholami K, Larti F, Safari S, Ardakani YH. Evaluation of phenoconversion phenomenon in obese patients: the effects of bariatric surgery on the CYP450 activity "a protocol for a case-control pharmacokinetic study". J Diabetes Metab Disord 2021; 20:2085-2092. [PMID: 34900844 DOI: 10.1007/s40200-021-00852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
Personalized therapy suggests the appropriate drug at the right dose for the first time through genotype-based individualized therapy, instead of prescribing medicines by the traditional one-size-fits-all manner, thereby claiming that it will make medicines safer and more effective. Accordingly, polymorphisms of drug metabolizing enzymes (DMEs), which induce inter-individual variability in the pharmacokinetics of a drug, have attracted great interest in the context of personalized medicine. Obesity is one of the most common chronic diseases in the world, including Iran, and the prevalence is increasing according to predictions. The remarkable role of P450 cytochromes has been verified in the metabolism of numerous drugs, toxins, carcinogen compounds, and the synthesis of some intrinsic compounds, such as steroid hormones. Thus, evaluating the activity of these enzymes is of great importance because any functionality variation can lead to failure in the treatment or unwanted side effects of some drugs. Therefore, any change in the activity of these enzymes in obese patients can also be problematic in the treatment process of these patients in comparison to normal weighted ones. Since only a few human studies have examined the role of inflammation in altering the function of these enzymes, it seems to be necessary to investigate the effect of obesity on the expression and activity of these enzymes; in which the role of inflammatory processes has been proven. Most importantly, it is worth evaluating changes in the activity levels of cytochrome P450 (CYP450) and the inflammatory cytokines after a course of post-surgical treatment and weight loss. To evaluate the activity of CYPs, a multi-drug cocktail is prescribed to obese patients before and after obesity surgery, as well as to healthy volunteers, to provide simultaneous evaluation of different isoforms. A complete demographic data, medical examinations, laboratory tests, and the CYPs genotype of all participants can be extremely important during this investigation.
Collapse
Affiliation(s)
- Hengameh Ghasim
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, P. O. Box 1417614411, Tehran, Iran
| | - Mohammadreza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, P. O. Box 1417614411, Tehran, Iran
| | - Kheirollah Gholami
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Larti
- Department of Cardiology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Safari
- Department of General Surgery, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Yalda H Ardakani
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, P. O. Box 1417614411, Tehran, Iran
| |
Collapse
|
10
|
Karlsson C, Wallenius K, Walentinsson A, Greasley PJ, Miliotis T, Hammar M, Iaconelli A, Tapani S, Raffaelli M, Mingrone G, Carlsson B. Identification of Proteins Associated with the Early Restoration of Insulin Sensitivity After Biliopancreatic Diversion. J Clin Endocrinol Metab 2020; 105:5896394. [PMID: 32830851 PMCID: PMC7518464 DOI: 10.1210/clinem/dgaa558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023]
Abstract
CONTEXT Insulin resistance (IR) is a risk factor for type 2 diabetes, diabetic kidney disease, cardiovascular disease and nonalcoholic steatohepatitis. Biliopancreatic diversion (BPD) is the most effective form of bariatric surgery for improving insulin sensitivity. OBJECTIVE To identify plasma proteins correlating with the early restoration of insulin sensitivity after BPD. DESIGN Prospective single-center study including 20 insulin-resistant men with morbid obesity scheduled for BPD. Patient characteristics and blood samples were repeatedly collected from baseline up to 4 weeks postsurgery. IR was assessed by homeostatic model assessment for insulin resistance (HOMA-IR), Matsuda Index, and by studying metabolic profiles during meal tolerance tests. Unbiased proteomic analysis was performed to identify plasma proteins altered by BPD. Detailed plasma profiles were made on a selected set of proteins by targeted multiple reaction monitoring mass spectrometry (MRM/MS). Changes in plasma proteome were evaluated in relation to metabolic and inflammatory changes. RESULTS BPD resulted in improved insulin sensitivity and reduced body weight. Proteomic analysis identified 29 proteins that changed following BPD. Changes in plasma levels of afamin, apolipoprotein A-IV (ApoA4), and apolipoprotein A-II (ApoA2) correlated significantly with changes in IR. CONCLUSION Circulating levels of afamin, ApoA4, and ApoA2 were associated with and may contribute to the rapid improvement in insulin sensitivity after BPD.
Collapse
Affiliation(s)
- Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence and Reprint Requests: Cecilia Karlsson, MD, PhD, Assoc Prof, Late-stage Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden, Pepparedsleden 1, SE-431 83 Mölndal, Sweden. E-mail:
| | - Kristina Wallenius
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Anna Walentinsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Peter J Greasley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Tasso Miliotis
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Mårten Hammar
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | | | - Sofia Tapani
- Early Biometrics and Statistical Innovation, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| | - Marco Raffaelli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Diabetes, King’s College London, London, United Kingdom
| | - Björn Carlsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Mölndal, Sweden
| |
Collapse
|
11
|
Wegler C, Prieto Garcia L, Klinting S, Robertsen I, Wiśniewski JR, Hjelmesaeth J, Åsberg A, Jansson-Löfmark R, Andersson TB, Artursson P. Proteomics-Informed Prediction of Rosuvastatin Plasma Profiles in Patients With a Wide Range of Body Weight. Clin Pharmacol Ther 2020; 109:762-771. [PMID: 32970864 PMCID: PMC7984432 DOI: 10.1002/cpt.2056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Rosuvastatin is a frequently used probe to study transporter‐mediated hepatic uptake. Pharmacokinetic models have therefore been developed to predict transporter impact on rosuvastatin disposition in vivo. However, the interindividual differences in transporter concentrations were not considered in these models, and the predicted transporter impact was compared with historical in vivo data. In this study, we investigated the influence of interindividual transporter concentrations on the hepatic uptake clearance of rosuvastatin in 54 patients covering a wide range of body weight. The 54 patients were given an oral dose of rosuvastatin the day before undergoing gastric bypass or cholecystectomy, and pharmacokinetic (PK) parameters were established from each patient’s individual time‐concentration profiles. Liver biopsies were sampled from each patient and their individual hepatic transporter concentrations were quantified. We combined the transporter concentrations with in vitro uptake kinetics determined in HEK293‐transfected cells, and developed a semimechanistic model with a bottom‐up approach to predict the plasma concentration profiles of the single dose of rosuvastatin in each patient. The predicted PK parameters were evaluated against the measured in vivo plasma PKs from the same 54 patients. The developed model predicted the rosuvastatin PKs within two‐fold error for rosuvastatin area under the plasma concentration versus time curve (AUC; 78% of the patients; average fold error (AFE): 0.96), peak plasma concentration (Cmax; 76%; AFE: 1.05), and terminal half‐life (t1/2; 98%; AFE: 0.89), and captured differences in the rosuvastatin PKs in patients with the OATP1B1 521T<C polymorphism. This demonstrates that hepatic uptake clearance determined in transfected cell lines, together with proteomics scaling, provides a useful tool for prediction models, without the need for empirical scaling factors.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luna Prieto Garcia
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Signe Klinting
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jøran Hjelmesaeth
- Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Simoni AH, Ladebo L, Christrup LL, Drewes AM, Johnsen SP, Olesen AE. Chronic abdominal pain and persistent opioid use after bariatric surgery. Scand J Pain 2020; 20:239-251. [PMID: 31756166 DOI: 10.1515/sjpain-2019-0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 01/03/2025]
Abstract
Background and aims Bariatric surgery remains a mainstay for treatment of morbid obesity. However, long-term adverse outcomes include chronic abdominal pain and persistent opioid use. The aim of this review was to assess the existing data on prevalence, possible mechanisms, risk factors, and outcomes regarding chronic abdominal pain and persistent opioid use after bariatric surgery. Methods PubMed was screened for relevant literature focusing on chronic abdominal pain, persistent opioid use and pharmacokinetic alterations of opioids after bariatric surgery. Relevant papers were cross-referenced to identify publications possibly not located during the ordinary screening. Results Evidence regarding general chronic pain status after bariatric surgery is sparse. However, our literature review revealed that abdominal pain was the most prevalent complication to bariatric surgery, presented in 3-61% of subjects with health care contacts or readmissions 1-5 years after surgery. This could be explained by behavioral, anatomical, and/or functional disorders. Persistent opioid use and doses increased after bariatric surgery, and 4-14% initiated a persistent opioid use 1-7 years after the surgery. Persistent opioid use was associated with severe pain symptoms and was most prevalent among subjects with a lower socioeconomic status. Alteration of absorption and distribution after bariatric surgery may impact opioid effects and increase the risk of adverse events and development of addiction. Changes in absorption have been briefly investigated, but the identified alterations could not be separated from alterations caused solely by excessive weight loss, and medication formulation could influence the findings. Subjects with persistent opioid use after bariatric surgery achieved lower weight loss and less metabolic benefits from the surgery. Thus, remission from comorbidities and cost effectiveness following bariatric surgery may be limited in these subjects. Conclusions Pain, especially chronic abdominal, and persistent opioid use were found to be prevalent after bariatric surgery. Physiological, anatomical, and pharmacokinetic changes are likely to play a role. However, the risk factors for occurrence of chronic abdominal pain and persistent opioid use have only been scarcely examined as have the possible impact of pain and persistent opioid use on clinical outcomes, and health-care costs. This makes it difficult to design targeted preventive interventions, which can identify subjects at risk and prevent persistent opioid use after bariatric surgery. Future studies could imply pharmacokinetic-, pharmacodynamics-, and physiological-based modelling of pain treatment. More attention to social, physiologic, and psychological factors may be warranted in order to identify specific risk profiles of subjects considered for bariatric surgery in order to tailor and optimize current treatment recommendations for this population.
Collapse
Affiliation(s)
- Amalie H Simoni
- Danish Center for Clinical Health Service Research (DACS), Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Louise Ladebo
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Lona L Christrup
- Section of Pharmacotherapy, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Søren P Johnsen
- Danish Center for Clinical Health Service Research (DACS), Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne E Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Pharmacology, Aalborg University Hospital, Gartnerboligen, Ground Floor, Mølleparkvej 8a, 9000 Aalborg, Denmark, Phone: +45 97664376
| |
Collapse
|
13
|
Wegler C, Ölander M, Wiśniewski JR, Lundquist P, Zettl K, Åsberg A, Hjelmesæth J, Andersson TB, Artursson P. Global variability analysis of mRNA and protein concentrations across and within human tissues. NAR Genom Bioinform 2020; 2:lqz010. [PMID: 33575562 PMCID: PMC7671341 DOI: 10.1093/nargab/lqz010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 10/06/2019] [Indexed: 12/25/2022] Open
Abstract
Genes and proteins show variable expression patterns throughout the human body. However, it is not clear whether relative differences in mRNA concentrations are retained on the protein level. Furthermore, inter-individual protein concentration variability within single tissue types has not been comprehensively explored. Here, we used the Gini index for in-depth concentration variability analysis of publicly available transcriptomics and proteomics data, and of an in-house proteomics dataset of human liver and jejunum from 38 donors. We found that the transfer of concentration variability from mRNA to protein is limited, that established 'reference genes' for data normalization vary markedly at the protein level, that protein concentrations cover a wide variability spectrum within single tissue types, and that concentration variability analysis can be a convenient starting point for identifying disease-associated proteins and novel biomarkers. Our results emphasize the importance of considering individual concentration levels, as opposed to population averages, for personalized systems biology analysis.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala SE-75123, Sweden
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Magnus Ölander
- Department of Pharmacy, Uppsala University, Uppsala SE-75123, Sweden
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried D-82152, Germany
| | - Patrik Lundquist
- Department of Pharmacy, Uppsala University, Uppsala SE-75123, Sweden
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried D-82152, Germany
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo NO-0316, Norway
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo NO-0316, Norway
| | - Jøran Hjelmesæth
- Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg NO-3103, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo NO-0316, Norway
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg SE-43183, Sweden
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala SE-75123, Sweden
| |
Collapse
|
14
|
Krogstad V, Peric A, Robertsen I, Kringen MK, Wegler C, Angeles PC, Hjelmesæth J, Karlsson C, Andersson S, Artursson P, Åsberg A, Andersson TB, Christensen H. A Comparative Analysis of Cytochrome P450 Activities in Paired Liver and Small Intestinal Samples from Patients with Obesity. Drug Metab Dispos 2019; 48:8-17. [DOI: 10.1124/dmd.119.087940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
|