1
|
De Cock PA, Colman R, Amza A, De Paepe P, De Pla H, Vanlanduyt L, Van der Linden D. A multicentric, randomized, controlled clinical trial to study the impact of bedside model-informed precision dosing of vancomycin in critically ill children-BENEFICIAL trial. Trials 2024; 25:669. [PMID: 39390583 PMCID: PMC11466033 DOI: 10.1186/s13063-024-08512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Vancomycin is a commonly prescribed antibiotic to treat serious Gram-positive infections in children. The efficacy of vancomycin is known to be directly related to the pharmacokinetic/pharmacodynamic (PK/PD) index of the area under the concentration-time curve (AUC) divided by the minimal inhibitory concentration (MIC) of the pathogen. In most countries, steady-state plasma concentrations are used as a surrogate parameter for this target AUC/MIC, but this practice has some drawbacks. Hence, AUC-based dosing using model-informed precision dosing (MIPD) tools has been proposed for increasing the target attainment rate and reducing vancomycin-related nephrotoxicity. Solid scientific evidence for these claimed benefits is lacking in children. This randomized controlled trial aims to investigate the large-scale utility of MIPD dosing of vancomycin in critically ill children. METHODS Participants from 14 neonatal intensive care, pediatric intensive care, and pediatric hemo-oncology ward units from 7 hospitals are randomly allocated to the intervention or standard-of-care comparator group. In the intervention group, a MIPD dosing calculator is used for AUC-based dosing, in combination with extra sampling for therapeutic drug monitoring in the first hours of treatment, as compared to standard-of-care. An AUC24h between 400 and 600 is targeted, assuming an MIC of 1 mg/L. Patients in the comparator group receive standard-of-care dosing and monitoring according to institutional guidelines. The primary endpoint is the proportion of patients reaching the target AUC24h/MIC of 400-600 between 24 and 48 h after the start of vancomycin treatment. Secondary endpoints are the proportion of patients with (worsening) acute kidney injury during vancomycin treatment, the proportion of patients reaching target AUC24h/MIC of 400-600 between 48 and 72 h after the start of vancomycin treatment, time to clinical cure, ward unit length-of-stay, hospital length-of-stay, and 30-day all-cause mortality. DISCUSSION This trial will clarify the propagated benefits and provide new insights into how to optimally monitor vancomycin treatment in critically ill children. TRIAL REGISTRATION Eudract number: 2019-004538-40. Registered on 2020-09-08 ClinicalTrials.gov NCT046666948. Registered on 2020-11-28.
Collapse
Affiliation(s)
- Pieter A De Cock
- Department of Hospital Pharmacy, Ghent University Hospital, Ghent, Belgium.
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
- Department of Pediatric Intensive Care, Ghent University Hospital, Ghent, Belgium.
| | - Roos Colman
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Anca Amza
- Department of Emergency Medicine, Ghent University Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter De Paepe
- Department of Emergency Medicine, Ghent University Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hans De Pla
- Health, Innovation and Research Institute, Ghent University Hospital, Ghent, Belgium
| | - Lieselot Vanlanduyt
- Health, Innovation and Research Institute, Ghent University Hospital, Ghent, Belgium
| | - Dimitri Van der Linden
- Department of Pediatrics, Pediatric Infectious Diseases, Specialized Pediatric Service, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
2
|
Manyara AM, Davies P, Stewart D, Weir CJ, Young AE, Blazeby J, Butcher NJ, Bujkiewicz S, Chan AW, Dawoud D, Offringa M, Ouwens M, Hróbjartsson A, Amstutz A, Bertolaccini L, Bruno VD, Devane D, Faria CDCM, Gilbert PB, Harris R, Lassere M, Marinelli L, Markham S, Powers JH, Rezaei Y, Richert L, Schwendicke F, Tereshchenko LG, Thoma A, Turan A, Worrall A, Christensen R, Collins GS, Ross JS, Taylor RS, Ciani O. Reporting of surrogate endpoints in randomised controlled trial protocols (SPIRIT-Surrogate): extension checklist with explanation and elaboration. BMJ 2024; 386:e078525. [PMID: 38981624 PMCID: PMC11231880 DOI: 10.1136/bmj-2023-078525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 07/11/2024]
Affiliation(s)
- Anthony Muchai Manyara
- MRC/CSO Social and Public Health Sciences Unit, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Global Health and Ageing Research Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philippa Davies
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Amber E Young
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jane Blazeby
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Nancy J Butcher
- Child Health Evaluative Sciences, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sylwia Bujkiewicz
- Biostatistics Research Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - An-Wen Chan
- Women's College Research Institute, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dalia Dawoud
- Science, Evidence, and Analytics Directorate, Science Policy and Research Programme, National Institute for Health and Care Excellence, London, UK
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Martin Offringa
- Child Health Evaluative Sciences, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | | | - Asbjørn Hróbjartsson
- Centre for Evidence-Based Medicine Odense and Cochrane Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network, Odense University hospital, Odense, Denmark
| | - Alain Amstutz
- CLEAR Methods Centre, Division of Clinical Epidemiology, Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Luca Bertolaccini
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Vito Domenico Bruno
- IRCCS Galeazzi-Sant'Ambrogio Hospital, Department of Minimally Invasive Cardiac Surgery, Milan, Italy
| | - Declan Devane
- University of Galway, Galway, Ireland
- Health Research Board-Trials Methodology Research Network, University of Galway, Galway, Ireland
| | - Christina D C M Faria
- Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Marissa Lassere
- St George Hospital and School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sarah Markham
- Patient author, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John H Powers
- George Washington University School of Medicine, Washington, DC, USA
| | - Yousef Rezaei
- Heart Valve Disease Research Centre, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Ardabil University of Medical Sciences, Ardabil, Iran
- Behyan Clinic, Pardis New Town, Tehran, Iran
| | - Laura Richert
- University of Bordeaux, Centre d'Investigation Clinique-Epidémiologie Clinique 1401, Research in Clinical Epidemiology and in Public Health and European Clinical Trials Platform & Development/French Clinical Research Infrastructure Network, Institut National de la Santé et de la Recherche Médicale/Institut Bergonié/Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | | | - Larisa G Tereshchenko
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Alparslan Turan
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, OH, USA
| | | | - Robin Christensen
- Section for Biostatistics and Evidence-Based Research, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen and Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Gary S Collins
- UK EQUATOR Centre, Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Joseph S Ross
- Department of Health Policy and Management, Yale School of Public Health, New Haven, CT, USA
- Section of General Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Rod S Taylor
- MRC/CSO Social and Public Health Sciences Unit, School of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Robertson Centre for Biostatistics, School of Health and Well Being, University of Glasgow, Glasgow, UK
| | - Oriana Ciani
- Centre for Research on Health and Social Care Management, Bocconi University, Milan 20136, Italy
| |
Collapse
|
3
|
Burch AR, von Arx L, Hasse B, Neumeier V. Extended Infusion of Beta-Lactams and Glycopeptides: A New Era in Pediatric Care? A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2024; 13:164. [PMID: 38391550 PMCID: PMC10886114 DOI: 10.3390/antibiotics13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Optimizing antibiotic therapy is imperative with rising bacterial resistance and high infection mortality. Extended infusion defined as a continuous infusion (COI) or prolonged infusion (PI) of beta-lactams and glycopeptides might improve efficacy and safety compared to their intermittent administration (IA). This study aimed to evaluate the efficacy and safety of extended infusion in pediatric patients. Adhering to Cochrane standards, we conducted a systematic review with meta-analysis investigating the efficacy and safety of COI (24 h/d) and PI (>1 h/dose) compared to IA (≤1 h/dose) of beta-lactams and glycopeptides in pediatrics. Primary outcomes included mortality, clinical success, and microbiological eradication. Five studies could be included for the outcome mortality, investigating meropenem, piperacillin/tazobactam, cefepime, or combinations of these. The pooled relative risk estimate was 0.48 (95% CI 0.26-0.89, p = 0.02). No significant differences between the administration modes were found for the outcomes of clinical success, microbiological eradication (beta-lactams; glycopeptides), and mortality (glycopeptides). No study reported additional safety issues, e.g., adverse drug reactions when using COI/PI vs. IA. Our findings suggest that the administration of beta-lactams by extended infusion leads to a reduction in mortality for pediatric patients.
Collapse
Affiliation(s)
- Andrea Rahel Burch
- Department of Pharmaceutical Sciences, University of Basel, 4000 Basel, Switzerland
- University Hospital Zurich, Hospital Pharmacy, 8006 Zurich, Switzerland
| | - Lukas von Arx
- University Hospital Zurich, Hospital Pharmacy, 8006 Zurich, Switzerland
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), 8049 Zurich, Switzerland
| | - Barbara Hasse
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8006 Zurich, Switzerland
- University of Zurich, 8050 Zurich, Switzerland
| | - Vera Neumeier
- University Hospital Zurich, Hospital Pharmacy, 8006 Zurich, Switzerland
- University of Zurich, 8050 Zurich, Switzerland
| |
Collapse
|
6
|
Mejías-Trueba M, Alonso-Moreno M, Herrera-Hidalgo L, Gil-Navarro MV. Target Attainment and Clinical Efficacy for Vancomycin in Neonates: Systematic Review. Antibiotics (Basel) 2021; 10:347. [PMID: 33805874 PMCID: PMC8064372 DOI: 10.3390/antibiotics10040347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 01/22/2023] Open
Abstract
Vancomycin is commonly used as a treatment for neonatal infections. However, there is a lack of consensus establishing the optimal vancomycin therapeutic regimen and defining the most appropriate PK/PD parameter correlated with the efficacy. A recent guideline recommends AUC-guided therapeutic dosing in treating serious infections in neonates. However, in clinical practice, trough serum concentrations are commonly used as a surrogate PKPD index for AUC24. Despite this, target serum concentrations in a neonatal population remain poorly defined. The objective is to describe the relationship between therapeutic regimens and the achievement of clinical or pharmacokinetic outcomes in the neonatal population. The review was carried out following PRISMA guidelines. A bibliographic search was manually performed for studies published on PubMed and EMBASE. Clinical efficacy and/or target attainment and the safety of vancomycin treatment were evaluated through obtaining serum concentrations. A total of 476 articles were identified, of which 20 met the inclusion criteria. All of them evaluated the target attainment, but only two assessed the clinical efficacy. The enormous variability concerning target serum concentrations is noteworthy, which translates into a difficulty in determining which therapeutic regimen achieves the best results. Moreover, there are few studies that analyze clinical efficacy results obtained after reaching predefined trough serum concentrations, this information being essential for clinical practice.
Collapse
Affiliation(s)
- Marta Mejías-Trueba
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (M.M.-T.); (M.A.-M.)
| | - Marta Alonso-Moreno
- Unidad de Gestión Clínica de Farmacia, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (M.M.-T.); (M.A.-M.)
| | - Laura Herrera-Hidalgo
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| | - Maria Victoria Gil-Navarro
- Unidad de Gestión Clínica de Farmacia, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, 41013 Seville, Spain;
| |
Collapse
|