1
|
Hu P, Li Z, Hu A, Gong Y, Huang X, Zhong M, Li X, Zhong C, Liu S, Hong J, Zhang W, Wang Y, Huang Y. Are workers also vulnerable to the impact of ambient air pollution? Insight from a large-scale ventilatory exam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174634. [PMID: 38992366 DOI: 10.1016/j.scitotenv.2024.174634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
It remains unclear how ambient air pollution may affect the prevalence of obstructive ventilatory dysfunction (OVD) among workers. We aim to assess the association of a comprehensive set of ambient air pollutants with OVD prevalence in workers and to explore the potential interactive effects of the occupational factors. This is a population-based cross-sectional study among 305,022 participants from the Guangdong Province, China. Mixed-effects models were used to obtain differences in the OVD risk associated with a 10 μg/m3 increase in ambient air pollution. We found that for each 10 μg/m3 increase in PM2.5, PM10, PM coarse, O3, and NO2 concentrations, the odds ratio (OR) for OVD in workers is 1.324 (95 % confidence interval (CI), 1.282-1.367), 1.292 (95 % CI, 1.268-1.315),1.666 (95 % CI, 1.614-1.719), 1.153 (95 % CI, 1.142-1.165), and 1.023 (95 % CI, 1.012-1.033). We observed that young participants (18-38 years old), women, participants with longer years of service (>48 months), participants working in large enterprises, professional skills workers, and production and manufacturing workers have higher estimated effects. In addition, we also found that workers exposed to high temperatures have higher estimated effects under air pollutants exposure, while workers exposed to noise have higher estimated effects under PM2.5, PM10, NO2, and O3 exposure. Workers exposed to dust have a lower risk of developing OVD under exposure to ambient air pollutants compared to those not exposed. Our results indicate that ambient air pollution increases the risk of OVD in workers. Moreover, air pollutants exhibit a greater estimated effect among workers exposed to high temperatures or noise. Our research findings highlight the importance of fully considering the impact of ambient air pollution on protecting the respiratory health of workers.
Collapse
Affiliation(s)
- Peixia Hu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Zhiqiang Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Anyi Hu
- Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yajun Gong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangyuan Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Meimei Zhong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Xinyue Li
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Chuifei Zhong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Suhui Liu
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jiaying Hong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Ying Wang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yongshun Huang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China; Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China; School of Public Health, Shanxi Medical University, Taiyuan 030001, China; School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Fatima SH, Rothmore P, Giles LC, Bi P. Intra-urban risk assessment of occupational injuries and illnesses associated with current and projected climate: Evidence from three largest Australian cities. ENVIRONMENTAL RESEARCH 2023; 228:115855. [PMID: 37028539 DOI: 10.1016/j.envres.2023.115855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Increased risk of occupational injuries and illnesses (OI) is associated with ambient temperature. However, most studies have reported the average impacts within cities, states, or provinces at broader scales. METHODS We assessed the intra-urban risk of OI associated with ambient temperature in three Australian cities at statistical area level 3 (SA3). We collected daily workers' compensation claims data and gridded meteorological data from July 1, 2005, to June 30, 2018. Heat index was used as the primary temperature metric. We performed a two-stage time series analysis: we generated location-specific estimates using Distributed Lag Non-Linear Models (DLNM) and estimated the cumulative effects with multivariate meta-analysis. The risk was estimated at moderate heat (90th percentile) and extreme heat (99th percentile). Subgroup analyses were conducted to identify vulnerable groups of workers. Further, the OI risk in the future was estimated for two projected periods: 2016-2045 and 2036-2065. RESULTS The cumulative risk of OI was 3.4% in Greater Brisbane, 9.5% in Greater Melbourne, and 8.9% in Greater Sydney at extreme heat. The western inland regions in Greater Brisbane (17.4%) and Greater Sydney (32.3%) had higher risk of OI for younger workers, workers in outdoor and indoor industries, and workers reporting injury claims. The urbanized SA3 regions posed a higher risk (19.3%) for workers in Greater Melbourne. The regions were generally at high risk for young workers and illness-related claims. The projected risk of OI increased with time in climate change scenarios. CONCLUSIONS This study provides a comprehensive spatial profile of OI risk associated with hot weather conditions across three cities in Australia. Risk assessment at the intra-urban level revealed strong spatial patterns in OI risk distribution due to heat exposure. These findings provide much-needed scientific evidence for work, health, and safety regulators, industries, unions, and workers to design and implement location-specific preventative measures.
Collapse
Affiliation(s)
- Syeda Hira Fatima
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Rothmore
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lynne C Giles
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
3
|
Schulte PA, Jacklitsch BL, Bhattacharya A, Chun H, Edwards N, Elliott KC, Flynn MA, Guerin R, Hodson L, Lincoln JM, MacMahon KL, Pendergrass S, Siven J, Vietas J. Updated assessment of occupational safety and health hazards of climate change. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:183-206. [PMID: 37104117 PMCID: PMC10443088 DOI: 10.1080/15459624.2023.2205468] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Workers, particularly outdoor workers, are among the populations most disproportionately affected by climate-related hazards. However, scientific research and control actions to comprehensively address these hazards are notably absent. To assess this absence, a seven-category framework was developed in 2009 to characterize the scientific literature published from 1988-2008. Using this framework, a second assessment examined the literature published through 2014, and the current one examines literature from 2014-2021. The objectives were to present literature that updates the framework and related topics and increases awareness of the role of climate change in occupational safety and health. In general, there is substantial literature on worker hazards related to ambient temperatures, biological hazards, and extreme weather but less on air pollution, ultraviolet radiation, industrial transitions, and the built environment. There is growing literature on mental health and health equity issues related to climate change, but much more research is needed. The socioeconomic impacts of climate change also require more research. This study illustrates that workers are experiencing increased morbidity and mortality related to climate change. In all areas of climate-related worker risk, including geoengineering, research is needed on the causality and prevalence of hazards, along with surveillance to identify, and interventions for hazard prevention and control.
Collapse
Affiliation(s)
- P. A. Schulte
- Advanced Technologies and Laboratories International, Inc, Cincinnati, Ohio
| | - B. L. Jacklitsch
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - A. Bhattacharya
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - H. Chun
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Atlanta, Georgia
| | - N. Edwards
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Morgantown, West Virginia
| | - K. C. Elliott
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Anchorage, Alaska
| | - M. A. Flynn
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - R. Guerin
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - L. Hodson
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) (retired), Cincinnati, Ohio
| | - J. M. Lincoln
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - K. L. MacMahon
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - S. Pendergrass
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) (retired), Cincinnati, Ohio
| | - J. Siven
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - J. Vietas
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| |
Collapse
|
4
|
Di Blasi C, Marinaccio A, Gariazzo C, Taiano L, Bonafede M, Leva A, Morabito M, Michelozzi P, de’ Donato FK. Effects of Temperatures and Heatwaves on Occupational Injuries in the Agricultural Sector in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2781. [PMID: 36833478 PMCID: PMC9957348 DOI: 10.3390/ijerph20042781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 05/12/2023]
Abstract
The effects of heat on health have been well documented, while less is known about the effects among agricultural workers. Our aim is to estimate the effects and impacts of heat on occupational injuries in the agricultural sector in Italy. Occupational injuries in the agricultural sector from the Italian national workers' compensation authority (INAIL) and daily mean air temperatures from Copernicus ERA5-land for a five-year period (2014-2018) were considered. Distributed lag non-linear models (DLNM) were used to estimate the relative risk and attributable injuries for increases in daily mean air temperatures between the 75th and 99th percentile and during heatwaves. Analyses were stratified by age, professional qualification, and severity of injury. A total of 150,422 agricultural injuries were considered and the overall relative risk of injury for exposure to high temperatures was 1.13 (95% CI: 1.08; 1.18). A higher risk was observed among younger workers (15-34 years) (1.23 95% CI: 1.14; 1.34) and occasional workers (1.25 95% CI: 1.03; 1.52). A total of 2050 heat-attributable injuries were estimated in the study period. Workers engaged in outdoor and labour-intensive activities in the agricultural sector are at greater risk of injury and these results can help target prevention actions for climate change adaptation.
Collapse
Affiliation(s)
- Chiara Di Blasi
- Department of Epidemiology Lazio Regional Health Service, ASL ROMA 1, 00147 Rome, Italy
| | - Alessandro Marinaccio
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00143 Rome, Italy
| | - Claudio Gariazzo
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00143 Rome, Italy
| | - Luca Taiano
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00143 Rome, Italy
| | - Michela Bonafede
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00143 Rome, Italy
| | - Antonio Leva
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), 00143 Rome, Italy
| | - Marco Morabito
- Institute of Bioeconomy, National Research Council (IBE-CNR), 50019 Florence, Italy
| | - Paola Michelozzi
- Department of Epidemiology Lazio Regional Health Service, ASL ROMA 1, 00147 Rome, Italy
| | | | | |
Collapse
|
5
|
Ferrari GN, Leal GCL, Thom de Souza RC, Galdamez EVC. Impact of climate change on occupational health and safety: A review of methodological approaches. Work 2022; 74:485-499. [PMID: 36314181 DOI: 10.3233/wor-211303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The working population is exposed daily to unavoidable climatic conditions due to their occupational settings. Effects of the weather such as rain, heat, and air pollution may increase the risk of diseases, injuries, accidents, and even death during labor. OBJECTIVE This paper aims to summarize the impacts of climate change on workers' health, safety and performance, identifying the risks, affected workplaces and the range of methodological approaches used to assess this problem. METHODS A thorough systematic mapping was conducted in seven scientific international databases: Emerald, IEEE Xplore, Science Direct, Scielo, Scopus, SpringerLink, and Web of Science. Three research questions guided the extraction process resulting in 170 articles regarding the impacts of climate change on occupational health and safety. RESULTS We found an accentuated trend in observational studies applying primary and secondary data collection. Many studies focused on the association between rising temperatures and occupational hazards, mainly in outdoor work settings such as agriculture. The variation of temperature was the most investigated impact of climate change. CONCLUSIONS We established a knowledge base on how to explore the impacts of climate change on workers' well-being and health. Researchers and policymakers benefit from this review, which explores the suitable methods found in the literature and highlights the most recurring risks and their consequences to occupational health and safety.
Collapse
Affiliation(s)
- Guilherme Neto Ferrari
- Postgraduate Program in Production Engineering, Production Engineering Department, State University of Maringá, Maringá, PR, Brazil
| | - Gislaine Camila Lapasini Leal
- Postgraduate Program in Production Engineering, Production Engineering Department, State University of Maringá, Maringá, PR, Brazil
| | | | - Edwin Vladimir Cardoza Galdamez
- Postgraduate Program in Production Engineering, Production Engineering Department, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
6
|
Evoy R, Hystad P, Bae H, Kincl L. The impact of wildfire smoke and temperature on traumatic worker injury claims, Oregon 2009-2018. Health Sci Rep 2022; 5:e820. [PMID: 36177399 PMCID: PMC9476546 DOI: 10.1002/hsr2.820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Aims As average temperatures rise and wildfire events increase in the United States, outdoor workers may be at an increased risk of injury. Recent research suggests that heat exposure increases outdoor workers' risk of traumatic injuries, but co-exposures of heat and wildfire smoke have not been evaluated. Methods Oregon workers' compensation data from 2009 to 2018 were linked to satellite data by the date of injury to determine if acute heat (maximum Heat Index) and wildfire smoke (presence/absence) were associated with a traumatic injury. North American Industry Classification System (NAICS) codes were utilized to identify accepted, disabling injury claims from construction (NAICS 23) and agriculture, forestry, fishing, and hunting (NAICS 11). Claims from April to October were analyzed using negative binomial models to calculate incident rate ratios (IRR) by heat and wildfire exposure for All workers and specifically for Agricultural (Ag)/Construction workers. Results During the study period, 91,895 accepted, traumatic injury claims were analyzed. All workers had an injury IRR of 1.04 (95% confidence interval [CI]: 1.02-1.06) while Ag/Construction workers had an IRR of 1.11 (95% CI: 1.06-1.16) when wildfire smoke was present. When the maximum Heat Index was 75°F or greater, the IRR significantly increased as temperatures increased. When the maximum Heat Index was above 80-84°F, All workers had an IRR of 1.04 (95% CI: 1.01-1.06) while Ag/construction workers had an IRR of 1.14 (95% CI: 1.08-1.21) with risk increasing with increased temperatures. In joint models, heat remained associated with injury rates, but not wildfire smoke. No multiplicative interactions between exposures were observed. Conclusion Increasing temperature was associated with increased rates of traumatic injury claims in Oregon that were more pronounced in Ag/Construction workers. Future work should focus on further understanding these associations and effective injury prevention strategies.
Collapse
Affiliation(s)
- Richard Evoy
- Environmental and Occupational Health Program, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Perry Hystad
- Environmental and Occupational Health Program, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Harold Bae
- Biostatistics Program, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| | - Laurel Kincl
- Environmental and Occupational Health Program, College of Public Health and Human SciencesOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
7
|
Fatima SH, Rothmore P, Giles LC, Varghese BM, Bi P. Extreme heat and occupational injuries in different climate zones: A systematic review and meta-analysis of epidemiological evidence. ENVIRONMENT INTERNATIONAL 2021; 148:106384. [PMID: 33472088 DOI: 10.1016/j.envint.2021.106384] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND The link between heat exposure and adverse health outcomes in workers is well documented and a growing body of epidemiological evidence from various countries suggests that extreme heat may also contribute to increased risk of occupational injuries (OI). Previously, there have been no comparative reviews assessing the risk of OI due to extreme heat within a wide range of global climate zones. The present review therefore aims to summarise the existing epidemiological evidence on the impact of extreme heat (hot temperatures and heatwaves (HW)) on OI in different climate zones and to assess the individual risk factors associated with workers and workplace that contribute to heat-associated OI risks. METHODS A systematic review of published peer-reviewed articles that assessed the effects of extreme heat on OI among non-military workers was undertaken using three databases (PubMed, Embase and Scopus) without temporal or geographical limits from database inception until July 2020. Extreme heat exposure was assessed in terms of hot temperatures and HW periods. For hot temperatures, the effect estimates were converted to relative risks (RR) associated with 1 °C increase in temperature above reference values, while for HW, effect estimates were RR comparing heatwave with non-heatwave periods. The patterns of heat associated OI risk were investigated in different climate zones (according to Köppen Geiger classification) based on the study locations and were estimated using random-effects meta-analysis models. Subgroup analyses according to workers' characteristics (e.g. gender, age group, experience), nature of work (e.g. physical demands, location of work i.e. indoor/outdoor) and workplace characteristics (e.g. industries, business size) were also conducted. RESULTS A total of 24 studies published between 2005 and 2020 were included in the review. Among these, 22 studies met the eligibility criteria, representing almost 22 million OI across six countries (Australia, Canada, China, Italy, Spain, and USA) and were included in the meta-analysis. The pooled results suggested that the overall risk of OI increased by 1% (RR 1.010, 95% CI: 1.009-1.011) for 1 °C increase in temperature above reference values and 17.4% (RR 1.174, 95% CI: 1.057-1.291) during HW. Among different climate zones, the highest risk of OI during hot temperatures was identified in Humid Subtropical Climates (RR 1.017, 95% CI: 1.014-1.020) followed by Oceanic (RR 1.010, 95% CI: 1.008-1.012) and Hot Mediterranean Climates (RR 1.009, 95% CI: 1.008-1.011). Similarly, Oceanic (RR 1.218, 95% CI: 1.093-1.343) and Humid Subtropical Climates (RR 1.213, 95% CI: 0.995-1.431) had the highest risk of OI during HW periods. No studies assessing the risk of OI in Tropical regions were found. The effects of hot temperatures on the risk of OI were acute with a lag effect of 1-2 days in all climate zones. Young workers (age < 35 years), male workers and workers in agriculture, forestry or fishing, construction and manufacturing industries were at high risk of OI during hot temperatures. Further young workers (age < 35 years), male workers and those working in electricity, gas and water and manufacturing industries were found to be at high risk of OI during HW. CONCLUSIONS This review strengthens the evidence on the risk of heat-associated OI in different climate zones. The risk of OI associated with extreme heat is not evenly distributed and is dependent on underlying climatic conditions, workers' attributes, the nature of work and workplace characteristics. The differences in the risk of OI across different climate zones and worker subgroups warrant further investigation along with the development of climate and work-specific intervention strategies.
Collapse
Affiliation(s)
| | - Paul Rothmore
- School of Allied Health Science and Practice, The University of Adelaide, Australia
| | - Lynne C Giles
- School of Public Health, The University of Adelaide, Australia
| | | | - Peng Bi
- School of Public Health, The University of Adelaide, Australia.
| |
Collapse
|
8
|
Regional Temperature-Sensitive Diseases and Attributable Fractions in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010184. [PMID: 31888051 PMCID: PMC6982219 DOI: 10.3390/ijerph17010184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Few studies have been carried out to systematically screen regional temperature-sensitive diseases. This study was aimed at systematically and comprehensively screening both high- and low-temperature-sensitive diseases by using mortality data from 17 study sites in China located in temperate and subtropical climate zones. The distributed lag nonlinear model (DLNM) was applied to quantify the association between extreme temperature and mortality to screen temperature-sensitive diseases from 18 kinds of diseases of eight disease systems. The attributable fractions (AFs) of sensitive diseases were calculated to assess the mortality burden attributable to high and low temperatures. A total of 1,380,713 records of all-cause deaths were involved. The results indicate that injuries, nervous, circulatory and respiratory diseases are sensitive to heat, with the attributable fraction accounting for 6.5%, 4.2%, 3.9% and 1.85%, respectively. Respiratory and circulatory diseases are sensitive to cold temperature, with the attributable fraction accounting for 13.3% and 11.8%, respectively. Most of the high- and low-temperature-sensitive diseases seem to have higher relative risk in study sites located in subtropical zones than in temperate zones. However, the attributable fractions for mortality of heat-related injuries were higher in temperate zones. The results of this research provide epidemiological evidence of the relative burden of mortality across two climate zones in China.
Collapse
|
9
|
Marinaccio A, Scortichini M, Gariazzo C, Leva A, Bonafede M, De' Donato FK, Stafoggia M, Viegi G, Michelozzi P. Nationwide epidemiological study for estimating the effect of extreme outdoor temperature on occupational injuries in Italy. ENVIRONMENT INTERNATIONAL 2019; 133:105176. [PMID: 31654985 DOI: 10.1016/j.envint.2019.105176] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Despite the relevance for occupational safety policies, the health effects of temperature on occupational injuries have been scarcely investigated. A nationwide epidemiological study was carried out to estimate the risk of injuries for workers exposed to extreme temperature and identify economic sectors and jobs most at risk. MATERIALS AND METHODS The daily time series of work-related injuries in the industrial and services sector from the Italian national workers' compensation authority (INAIL) were collected for each of the 8090 Italian municipalities in the period 2006-2010. Daily air temperatures with a 1 × 1 km resolution derived from satellite land surface temperature data using mixed regression models were included. Distributed lag non-linear models (DLNM) were used to estimate the association between daily mean air temperature and injuries at municipal level. A meta-analysis was then carried out to retrieve national estimates. The relative risk (RR) and attributable cases of work-related injuries for an increase in mean temperature above the 75th percentile (heat) and for a decrease below the 25th percentile (cold) were estimated. Effect modification by gender, age, firm size, economic sector and job type were also assessed. RESULTS The study considered 2,277,432 occupational injuries occurred in Italy in the period 2006-2010. There were significant effects for both heat and cold temperatures. The overall relative risks (RR) of occupational injury for heat and cold were 1.17 (95% CI: 1.14-1.21) and 1.23 (95% CI: 1.17-1.30), respectively. The number of occupational injuries attributable to temperatures above and below the thresholds was estimated to be 5211 per year. A higher risk of injury on hot days was found among males and young (age 15-34) workers occupied in small-medium size firms, while the opposite was observed on cold days. Construction workers showed the highest risk of injuries on hot days while fishing, transport, electricity, gas and water distribution workers did it on cold days. CONCLUSIONS Prevention of the occupational exposure to extreme temperatures is a concern for occupational health and safety policies, and will become a critical issue in future years considering climate change. Epidemiological studies may help identify vulnerable jobs, activities and workers in order to define prevention plans and training to reduce occupational exposure to extreme temperature and the risk of work-related injuries.
Collapse
Affiliation(s)
- Alessandro Marinaccio
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers' Compensation Authority (INAIL), Roma, Italy.
| | - Matteo Scortichini
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Claudio Gariazzo
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers' Compensation Authority (INAIL), Roma, Italy
| | - Antonio Leva
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers' Compensation Authority (INAIL), Roma, Italy
| | - Michela Bonafede
- Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers' Compensation Authority (INAIL), Roma, Italy
| | | | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Giovanni Viegi
- Italian National Research Council (CNR), Institute of Biomedical Research and Innovation (IRIB) (previously Institute of Biomedicine and Molecular Epidemiology "Alberto Monroy"), Palermo, Italy
| | - Paola Michelozzi
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| |
Collapse
|