1
|
Martiniakova M, Biro R, Kovacova V, Babikova M, Zemanova N, Mondockova V, Omelka R. Current knowledge of bone-derived factor osteocalcin: its role in the management and treatment of diabetes mellitus, osteoporosis, osteopetrosis and inflammatory joint diseases. J Mol Med (Berl) 2024; 102:435-452. [PMID: 38363329 PMCID: PMC10963459 DOI: 10.1007/s00109-024-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Osteocalcin (OC) is the most abundant non-collagenous and osteoblast-secreted protein in bone. It consists of two forms such as carboxylated OC (cOC) and undercarboxylated OC (ucOC). While cOC promotes bone mineralization and increases bone strength, ucOC is regarded an endocrinologically active form that may have several functions in multiple end organs and tissues. Total OC (tOC) includes both of these forms (cOC and ucOC) and is considered a marker of bone turnover in clinical settings. Most of the data on OC is limited to preclinical studies and therefore may not accurately reflect the situation in clinical conditions. For the stated reason, the aim of this review was not only to summarize current knowledge of all forms of OC and characterize its role in diabetes mellitus, osteoporosis, osteopetrosis, inflammatory joint diseases, but also to provide new interpretations of its involvement in the management and treatment of aforementioned diseases. In this context, special emphasis was placed on available clinical trials. Significantly lower levels of tOC and ucOC could be associated with the risk of type 2 diabetes mellitus. On the contrary, tOC level does not seem to be a good indicator of high bone turnover status in postmenopausal osteoporosis, osteoarthritis and rheumatoid arthritis. The associations between several pharmacological drugs used to treat all disorders mentioned above and OC levels have also been provided. From this perspective, OC may serve as a medium through which certain medications can influence glucose metabolism, body weight, adiponectin secretion, and synovial inflammation.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
2
|
Trivedi T, Guise TA. Systemic effects of abnormal bone resorption on muscle, metabolism, and cognition. Bone 2022; 154:116245. [PMID: 34718221 DOI: 10.1016/j.bone.2021.116245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
Skeletal tissue is dynamic, undergoing constant remodeling to maintain musculoskeletal integrity and balance in the human body. Recent evidence shows that apart from maintaining homeostasis in the local microenvironment, the skeleton systemically affects other tissues. Several cancer-associated and noncancer-associated bone disorders can disrupt the physiological homeostasis locally in the bone microenvironment and indirectly contribute to dysregulation of systemic body function. The systemic effects of bone on the regulation of distant organ function have not been widely explored. Recent evidence suggests that bone can interact with skeletal muscle, pancreas, and brain by releasing factors from mineralized bone matrix. Currently available bone-targeting therapies such as bisphosphonates and denosumab inhibit bone resorption, decrease morbidity associated with bone destruction, and improve survival. Bisphosphonates have been a standard treatment for bone metastases, osteoporosis, and cancer treatment-induced bone diseases. The extraskeletal effects of bisphosphonates on inhibition of tumor growth are known. However, our knowledge of the effects of bisphosphonates on muscle weakness, hyperglycemia, and cognitive defects is currently evolving. To be able to identify the molecular link between bone and distant organs during abnormal bone resorption and then treat these abnormalities and prevent their systemic effects could improve survival benefits. The current review highlights the link between bone resorption and its systemic effects on muscle, pancreas, and brain.
Collapse
Affiliation(s)
- Trupti Trivedi
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
3
|
Anastasilakis AD, Tsourdi E, Tabacco G, Naciu AM, Napoli N, Vescini F, Palermo A. The Impact of Antiosteoporotic Drugs on Glucose Metabolism and Fracture Risk in Diabetes: Good or Bad News? J Clin Med 2021; 10:jcm10050996. [PMID: 33801212 PMCID: PMC7957889 DOI: 10.3390/jcm10050996] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis and diabetes mellitus represent global health problems due to their high, and increasing with aging, prevalence in the general population. Osteoporosis can be successfully treated with both antiresorptive and anabolic drugs. While these drugs are clearly effective in reducing the risk of fracture in patients with postmenopausal and male osteoporosis, it is still unclear whether they may have the same efficacy in patients with diabetic osteopathy. Furthermore, as bone-derived cytokines (osteokines) are able to influence glucose metabolism, it is conceivable that antiosteoporotic drugs may have an effect on glycemic control through their modulation of bone turnover that affects the osteokines’ release. These aspects are addressed in this narrative review by means of an unrestricted computerized literature search in the PubMed database. Our findings indicate a balance between good and bad news. Active bone therapies and their modulation of bone turnover do not appear to play a clinically significant role in glucose metabolism in humans. Moreover, there are insufficient data to clarify whether there are any differences in the efficacy of antiosteoporotic drugs on fracture incidence between diabetic and nondiabetic patients with osteoporosis. Although more studies are required for stronger recommendations to be issued, bisphosphonates appear to be the first-line drug for treatment of osteoporosis in diabetic patients, while denosumab seems preferable for older patients, particularly for those with impaired renal function, and osteoanabolic agents should be reserved for patients with more severe forms of osteoporosis.
Collapse
Affiliation(s)
| | - Elena Tsourdi
- Department of Medicine (III) &Center for Healthy Aging, Technische Universität Dresden Medical Center, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-12933; Fax: +49-351-458-5801
| | - Gaia Tabacco
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Anda Mihaela Naciu
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| | - Fabio Vescini
- Department of Endocrinology and Diabetes, Santa Maria della Misericordia Hospital, 33100 Udine, Italy;
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, Campus Bio-Medico University, 00128 Rome, Italy; (G.T.); (A.M.N.); (N.N.); (A.P.)
| |
Collapse
|
4
|
Aguayo-Ruiz JI, García-Cobián TA, Pascoe-González S, Sánchez-Enríquez S, Llamas-Covarrubias IM, García-Iglesias T, López-Quintero A, Llamas-Covarrubias MA, Trujillo-Quiroz J, Rivera-Leon EA. Effect of supplementation with vitamins D3 and K2 on undercarboxylated osteocalcin and insulin serum levels in patients with type 2 diabetes mellitus: a randomized, double-blind, clinical trial. Diabetol Metab Syndr 2020; 12:73. [PMID: 32831908 PMCID: PMC7436967 DOI: 10.1186/s13098-020-00580-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) are characterized by chronic hyperglycemia as a consequence of decreased insulin sensitivity, which contributes to bone demineralization and could also be related to changes in serum levels of osteocalcin and insulin, particularly when coupled with a deficiency in the daily consumption of vitamins D3 and K2. The objective of this study was to evaluate the effect of vitamin D3 and vitamin K2 supplements alone or in combination on osteocalcin levels and metabolic parameters in patients with T2DM. METHODS A double-blind, randomized clinical trial was carried out in 40 patients aged between 30 and 70 years old for 3 months. Clinical and laboratory assessment was carried out at the beginning and at the end of the treatment. The patients were divided into three groups: (a) 1000 IU vitamin D3 + a calcinated magnesium placebo (n = 16), (b) 100 µg of Vitamin K2 + a calcinated magnesium placebo (n = 12), and (c) 1000 IU vitamin D3 + 100 µg vitamin K2 (n = 12). RESULTS After treatment in the total studied population, a significant decrease in glycemia (p = 0.001), HOMA-IR (Homeostatic model assessment-insulin resistance) (p = 0.040), percentage of pancreatic beta cells (p < 0.001), uOC/cOC index and diastolic blood pressure (p = 0.030) were observed; in vitamin D3 group, differences in serum undercarboxylated osteocalcin (p = 0.026), undercarboxylated to carboxylated osteocalcin index (uOC/cOC) (p = 0.039) glucose (p < 0.001) and % of functional pancreatic beta cells (p < 0.001) were demonstrated. In vitamin K2 group a significant decrease in glycemia (p = 0.002), HOMA-IR (p = 0.041), percentage of pancreatic beta cells (p = 0.002), and in cOC (p = 0.041) were observed, conversely cOC concentration was found high. Finally, in the vitamins D3 + K2 a significant decrease in glycemia (p = 0.002), percentage of pancreatic beta cells (p = 0.004), and in the uOC/cOC index (p = 0.023) were observed. CONCLUSION Individual or combined supplementation with vitamins D3 and K2 significantly decreases the glucose levels and % of functional pancreatic beta cells, while D3 and D3 + K2 treatments also induced a reduction in the uOC/cOC index. Only in the group with vitamin D3 supplementation, it was observed a reduction in undercarboxylated osteocalcin while vitamin K2 increased the carboxylated osteocalcin levels.Trial registration NCT04041492.
Collapse
Affiliation(s)
- J. I. Aguayo-Ruiz
- Pharmacology, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - T. A. García-Cobián
- Department of Physiology, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - S. Pascoe-González
- Department of Physiology, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - S. Sánchez-Enríquez
- Department of Clinics, Altos University Center (CuAltos), Universidad de Guadalajara (UdeG), 47620 Tepatitlán de Morelos, Jalisco Mexico
| | - I. M. Llamas-Covarrubias
- Department of Molecular Biology and Genomics, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - T. García-Iglesias
- Department of Physiology, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - A. López-Quintero
- Department of Molecular Biology and Genomics, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - M. A. Llamas-Covarrubias
- Department of Molecular Biology and Genomics, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - J. Trujillo-Quiroz
- Department of Physiology, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| | - E. A. Rivera-Leon
- Department of Molecular Biology and Genomics, Health Sciences University Center (CUCS), Universidad de Guadalajara (UdeG), 44350 Guadalajara, Jalisco Mexico
| |
Collapse
|
5
|
Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, Pepe J. The Interplay Between Bone and Glucose Metabolism. Front Endocrinol (Lausanne) 2020; 11:122. [PMID: 32265831 PMCID: PMC7105593 DOI: 10.3389/fendo.2020.00122] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
The multiple endocrine functions of bone other than those related to mineral metabolism, such as regulation of insulin sensitivity, glucose homeostasis, and energy metabolism, have recently been discovered. In vitro and murine studies investigated the impact of several molecules derived from osteoblasts and osteocytes on glucose metabolism. In addition, the effect of glucose on bone cells suggested a mutual cross-talk between bone and glucose homeostasis. In humans, these mechanisms are the pivotal determinant of the skeletal fragility associated with both type 1 and type 2 diabetes. Metabolic abnormalities associated with diabetes, such as increase in adipose tissue, reduction of lean mass, effects of hyperglycemia per se, production of the advanced glycation end products, diabetes-associated chronic kidney disease, and perturbation of the calcium-PTH-vitamin D metabolism, are the main mechanisms involved. Finally, there have been multiple reports of antidiabetic drugs affecting the skeleton, with differences among basic and clinical research data, as well as of anti-osteoporosis medication influencing glucose metabolism. This review focuses on the aspects linking glucose and bone metabolism by offering insight into the most recent evidence in humans.
Collapse
|