1
|
Gaps in Knowledge Relevant to the "ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (100 kHz TO 300 GHz)". HEALTH PHYSICS 2025; 128:190-202. [PMID: 39670836 DOI: 10.1097/hp.0000000000001944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
ABSTRACT In the last 30 y, observational as well as experimental studies have addressed possible health effects of exposure to radiofrequency electromagnetic fields (EMF) and investigated potential interaction mechanisms. The main goal of ICNIRP is to protect people and the environment from detrimental exposure to all forms of non-ionizing radiation (NIR), providing advice and guidance by developing and disseminating exposure guidelines based on the available scientific research on specific parts of the electromagnetic spectrum. During the development of International Commission on Non-Ionizing Radiation Protection's (ICNIRP's) 2020 radiofrequency EMF guidelines some gaps in the available data were identified. To encourage further research into knowledge gaps in research that would, if addressed, assist ICNIRP in further developing guidelines and setting revised recommendations on limiting exposure, data gaps that were identified during the development of the 2020 radiofrequency EMF guidelines, in conjunction with subsequent consideration of the literature, are described in this Statement. Note that this process and resultant recommendations were not intended to duplicate more traditional research agendas, whose focus is on extending knowledge in this area more generally but was tightly focused on identifying the highest data gap priorities for guidelines development more specifically. The result of this distinction is that the present data gap recommendations do not include some gaps in the literature that in principle could be relevant to radiofrequency EMF health, but which were excluded because either the link between exposure and endpoint, or the link between endpoint and health, was not supported sufficiently by the literature. The evaluation of these research areas identified the following data gaps: (1) Issues concerning relations between radiofrequency EMF exposure and heat-induced pain; (2) Clarification of the relation between whole-body exposure and core temperature rise from 100 kHz to 300 GHz, as a function of exposure duration and combined EMF exposures; (3) Adverse effect thresholds and thermal dosimetry for a range of ocular structures; (4) Pain thresholds for contact currents under a range of exposure scenarios, including associated dosimetry; and (5) A range of additional dosimetry studies to both support future research, and also to improve the application of radiofrequency EMF exposure restrictions in future guidelines.
Collapse
|
2
|
Karipidis K, Baaken D, Loney T, Blettner M, Mate R, Brzozek C, Elwood M, Narh C, Orsini N, Röösli M, Paulo MS, Lagorio S. Response to the letter from members of the ICBE-EMF. ENVIRONMENT INTERNATIONAL 2025; 195:109201. [PMID: 39741030 DOI: 10.1016/j.envint.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia.
| | - Dan Baaken
- Competence Center for Electromagnetic Fields, Federal Office for Radiation Protection (BfS), Cottbus, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany(1)
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany(1)
| | - Rohan Mate
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia
| | - Chris Brzozek
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia
| | - Mark Elwood
- Epidemiology and Biostatistics, School of Population Health, University of Auckland, New Zealand
| | - Clement Narh
- Department of Epidemiology and Biostatistics, School of Public Health (Hohoe Campus), University of Health and Allied Sciences, PMB31, Ho, Ghana
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marilia Silva Paulo
- NOVA National School of Public Health, Public Health Research Center, Comprehensive Health Research Center, CHRC, REAL, CCAL, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), Rome, Italy(2)
| |
Collapse
|
3
|
Karipidis K, Baaken D, Loney T, Blettner M, Brzozek C, Elwood M, Narh C, Orsini N, Röösli M, Paulo MS, Lagorio S. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A systematic review of human observational studies - Part I: Most researched outcomes. ENVIRONMENT INTERNATIONAL 2024; 191:108983. [PMID: 39241333 DOI: 10.1016/j.envint.2024.108983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The objective of this review was to assess the quality and strength of the evidence provided by human observational studies for a causal association between exposure to radiofrequency electromagnetic fields (RF-EMF) and risk of the most investigated neoplastic diseases. METHODS Eligibility criteria: We included cohort and case-control studies of neoplasia risks in relation to three types of exposure to RF-EMF: near-field, head-localized, exposure from wireless phone use (SR-A); far-field, whole body, environmental exposure from fixed-site transmitters (SR-B); near/far-field occupational exposures from use of hand-held transceivers or RF-emitting equipment in the workplace (SR-C). While no restrictions on tumour type were applied, in the current paper we focus on incidence-based studies of selected "critical" neoplasms of the central nervous system (brain, meninges, pituitary gland, acoustic nerve) and salivary gland tumours (SR-A); brain tumours and leukaemias (SR-B, SR-C). We focussed on investigations of specific neoplasms in relation to specific exposure sources (i.e. E-O pairs), noting that a single article may address multiple E-O pairs. INFORMATION SOURCES Eligible studies were identified by literature searches through Medline, Embase, and EMF-Portal. Risk-of-bias (RoB) assessment: We used a tailored version of the Office of Health Assessment and Translation (OHAT) RoB tool to evaluate each study's internal validity. At the summary RoB step, studies were classified into three tiers according to their overall potential for bias (low, moderate and high). DATA SYNTHESIS We synthesized the study results using random effects restricted maximum likelihood (REML) models (overall and subgroup meta-analyses of dichotomous and categorical exposure variables), and weighted mixed effects models (dose-response meta-analyses of lifetime exposure intensity). Evidence assessment: Confidence in evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. RESULTS We included 63 aetiological articles, published between 1994 and 2022, with participants from 22 countries, reporting on 119 different E-O pairs. RF-EMF exposure from mobile phones (ever or regular use vs no or non-regular use) was not associated with an increased risk of glioma [meta-estimate of the relative risk (mRR) = 1.01, 95 % CI = 0.89-1.13), meningioma (mRR = 0.92, 95 % CI = 0.82-1.02), acoustic neuroma (mRR = 1.03, 95 % CI = 0.85-1.24), pituitary tumours (mRR = 0.81, 95 % CI = 0.61-1.06), salivary gland tumours (mRR = 0.91, 95 % CI = 0.78-1.06), or paediatric (children, adolescents and young adults) brain tumours (mRR = 1.06, 95 % CI = 0.74-1.51), with variable degree of across-study heterogeneity (I2 = 0 %-62 %). There was no observable increase in mRRs for the most investigated neoplasms (glioma, meningioma, and acoustic neuroma) with increasing time since start (TSS) use of mobile phones, cumulative call time (CCT), or cumulative number of calls (CNC). Cordless phone use was not significantly associated with risks of glioma [mRR = 1.04, 95 % CI = 0.74-1.46; I2 = 74 %) meningioma, (mRR = 0.91, 95 % CI = 0.70-1.18; I2 = 59 %), or acoustic neuroma (mRR = 1.16; 95 % CI = 0.83-1.61; I2 = 63 %). Exposure from fixed-site transmitters (broadcasting antennas or base stations) was not associated with childhood leukaemia or paediatric brain tumour risks, independently of the level of the modelled RF exposure. Glioma risk was not significantly increased following occupational RF exposure (ever vs never), and no differences were detected between increasing categories of modelled cumulative exposure levels. DISCUSSION In the sensitivity analyses of glioma, meningioma, and acoustic neuroma risks in relation to mobile phone use (ever use, TSS, CCT, and CNC) the presented results were robust and not affected by changes in study aggregation. In a leave-one-out meta-analyses of glioma risk in relation to mobile phone use we identified one influential study. In subsequent meta-analyses performed after excluding this study, we observed a substantial reduction in the mRR and the heterogeneity between studies, for both the contrast Ever vs Never (regular) use (mRR = 0.96, 95 % CI = 0.87-1.07, I2 = 47 %), and in the analysis by increasing categories of TSS ("<5 years": mRR = 0.97, 95 % CI = 0.83-1.14, I2 = 41 %; "5-9 years ": mRR = 0.96, 95 % CI = 0.83-1.11, I2 = 34 %; "10+ years": mRR = 0.97, 95 % CI = 0.87-1.08, I2 = 10 %). There was limited variation across studies in RoB for the priority domains (selection/attrition, exposure and outcome information), with the number of studies evenly classified as at low and moderate risk of bias (49 % tier-1 and 51 % tier-2), and no studies classified as at high risk of bias (tier-3). The impact of the biases on the study results (amount and direction) proved difficult to predict, and the RoB tool was inherently unable to account for the effect of competing biases. However, the sensitivity meta-analyses stratified on bias-tier, showed that the heterogeneity observed in our main meta-analyses across studies of glioma and acoustic neuroma in the upper TSS stratum (I2 = 77 % and 76 %), was explained by the summary RoB-tier. In the tier-1 study subgroup, the mRRs (95 % CI; I2) in long-term (10+ years) users were 0.95 (0.85-1.05; 5.5 %) for glioma, and 1.00 (0.78-1.29; 35 %) for acoustic neuroma. The time-trend simulation studies, evaluated as complementary evidence in line with a triangulation approach for external validity, were consistent in showing that the increased risks observed in some case-control studies were incompatible with the actual incidence rates of glioma/brain cancer observed in several countries and over long periods. Three of these simulation studies consistently reported that RR estimates > 1.5 with a 10+ years induction period were definitely implausible, and could be used to set a "credibility benchmark". In the sensitivity meta-analyses of glioma risk in the upper category of TSS excluding five studies reporting implausible effect sizes, we observed strong reductions in both the mRR [mRR of 0.95 (95 % CI = 0.86-1.05)], and the degree of heterogeneity across studies (I2 = 3.6 %). CONCLUSIONS Consistently with the published protocol, our final conclusions were formulated separately for each exposure-outcome combination, and primarily based on the line of evidence with the highest confidence, taking into account the ranking of RF sources by exposure level as inferred from dosimetric studies, and the external coherence with findings from time-trend simulation studies (limited to glioma in relation to mobile phone use). For near field RF-EMF exposure to the head from mobile phone use, there was moderate certainty evidence that it likely does not increase the risk of glioma, meningioma, acoustic neuroma, pituitary tumours, and salivary gland tumours in adults, or of paediatric brain tumours. For near field RF-EMF exposure to the head from cordless phone use, there was low certainty evidence that it may not increase the risk of glioma, meningioma or acoustic neuroma. For whole-body far-field RF-EMF exposure from fixed-site transmitters (broadcasting antennas or base stations), there was moderate certainty evidence that it likely does not increase childhood leukaemia risk and low certainty evidence that it may not increase the risk of paediatric brain tumours. There were no studies eligible for inclusion investigating RF-EMF exposure from fixed-site transmitters and critical tumours in adults. For occupational RF-EMF exposure, there was low certainty evidence that it may not increase the risk of brain cancer/glioma, but there were no included studies of leukemias (the second critical outcome in SR-C). The evidence rating regarding paediatric brain tumours in relation to environmental RF exposure from fixed-site transmitters should be interpreted with caution, due to the small number of studies. Similar interpretative cautions apply to the evidence rating of the relation between glioma/brain cancer and occupational RF exposure, due to differences in exposure sources and metrics across the few included studies. OTHER This project was commissioned and partially funded by the World Health Organization (WHO). Co-financing was provided by the New Zealand Ministry of Health; the Istituto Superiore di Sanità in its capacity as a WHO Collaborating Centre for Radiation and Health; and ARPANSA as a WHO Collaborating Centre for Radiation Protection. REGISTRATION PROSPERO CRD42021236798. Published protocol: [(Lagorio et al., 2021) DOI https://doi.org/10.1016/j.envint.2021.106828].
Collapse
Affiliation(s)
- Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia.
| | - Dan Baaken
- Competence Center for Electromagnetic Fields, Federal Office for Radiation Protection (BfS), Cottbus, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany(1)
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, United Arab Emirates
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany(1)
| | - Chris Brzozek
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia
| | - Mark Elwood
- Epidemiology and Biostatistics, School of Population Health, University of Auckland, New Zealand
| | - Clement Narh
- Department of Epidemiology and Biostatistics, School of Public Health (Hohoe Campus), University of Health and Allied Sciences, PMB31 Ho, Ghana
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marilia Silva Paulo
- Comprehensive Health Research Center, NOVA Medical School, Universidad NOVA de Lisboa, Portugal
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), Rome, Italy(1)
| |
Collapse
|
4
|
Uddin M, Dhanta R, Pitti T, Barsasella D, Scholl J, Jian WS, Li YCJ, Hsu MH, Syed-Abdul S. Incidence and Mortality of Malignant Brain Tumors after 20 Years of Mobile Use. Cancers (Basel) 2023; 15:3492. [PMID: 37444602 DOI: 10.3390/cancers15133492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Objective: This population-based study was performed to examine the trends of incidence and deaths due to malignant neoplasm of the brain (MNB) in association with mobile phone usage for a period of 20 years (January 2000-December 2019) in Taiwan. (2) Methods: Pearson correlation, regression analysis, and joinpoint regression analysis were used to examine the trends of incidence of MNB and deaths due to MNB in association with mobile phone usage. (3) Results: The findings indicate a trend of increase in the number of mobile phone users over the study period, accompanied by a slight rise in the incidence and death rates of MNB. The compound annual growth rates further support these observations, highlighting consistent growth in mobile phone users and a corresponding increase in MNB incidences and deaths. (4) Conclusions: The results suggest a weaker association between the growing number of mobile phone users and the rising rates of MNB, and no significant correlation was observed between MNB incidences and deaths and mobile phone usage. Ultimately, it is important to acknowledge that conclusive results cannot be drawn at this stage and further investigation is required by considering various other confounding factors and potential risks to obtain more definitive findings and a clearer picture.
Collapse
Grants
- 106-2923-E-038-001-MY2, 107-2923-E-038-001 -MY2, 106-2221-E-038-005, 108-2221-E-038-013, 110-2923-E-038-001-MY3 Ministry of Science and Technology, Taiwan
- 106-3805-004-111, 106-3805-018-110, 108-3805-009-110 Taipei Medical University, Taiwan
- 108-6604-002-400 Ministry of Education, Taiwan
- 106TMU-WFH-01-4 Wanfang hospital, Taiwan
Collapse
Affiliation(s)
- Mohy Uddin
- Research Quality Management Section, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 11481, Saudi Arabia
| | - Rozy Dhanta
- Faculty of Management Sciences and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan 508976, India
| | - Thejkiran Pitti
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Diana Barsasella
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Sciences and Technology, Taipei Medical University, 15F., No. 172-1, Sec. 2, Keelung Rd., Da'an Dist., Taipei 110, Taiwan
- Department of Medical Records and Health Information, Health Polytechnic of Health Ministry Tasikmalaya, Tasikmalaya 6574, Indonesia
| | | | - Wen-Shan Jian
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Sciences and Technology, Taipei Medical University, 15F., No. 172-1, Sec. 2, Keelung Rd., Da'an Dist., Taipei 110, Taiwan
- Department of Dermatology, Taipei Municipal Wan Fang Hospital, Taipei 110, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 15F., No. 172-1, Sec. 2, Keelung Rd., Da'an Dist., Taipei 110, Taiwan
- Department of Neurosurgery, Wan-Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Shabbir Syed-Abdul
- International Center for Health Information Technology (ICHIT), College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Sciences and Technology, Taipei Medical University, 15F., No. 172-1, Sec. 2, Keelung Rd., Da'an Dist., Taipei 110, Taiwan
- School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
Deltour I, Poulsen AH, Johansen C, Feychting M, Johannesen TB, Auvinen A, Schüz J. Time trends in mobile phone use and glioma incidence among males in the Nordic Countries, 1979-2016. ENVIRONMENT INTERNATIONAL 2022; 168:107487. [PMID: 36041243 PMCID: PMC9463632 DOI: 10.1016/j.envint.2022.107487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION In the Nordic countries, the use of mobile phones increased sharply in the mid-1990s especially among middle-aged men. We investigated time trends in glioma incidence rates (IR) with the perspective to inform about the plausibility of brain tumour risks from mobile phone use reported in some case-control studies. METHODS We analysed IR of glioma in Denmark, Finland, Norway, and Sweden among men aged 40-69 years, using data from national cancer registries and population statistics during 1979-2016, using log-linear joinpoint analysis. Information on regular mobile phone use and amount of call-time was obtained from major studies of mobile phones in these countries. We compared annual observed incidence with that expected under various risk scenarios to assess which of the reported effect sizes are compatible with the observed IR. The expected numbers of cases were computed accounting for an impact of other factors besides mobile phone use, such as improved cancer registration. RESULTS Based on 18,232 glioma cases, IR increased slightly but steadily with a change of 0.1% (95 %CI 0.0%; 0.3%) per year during 1979-2016 among 40-59-year-old men and for ages 60-69, by 0.6 % (95 %CI 0.4; 0.9) annually. The observed IR trends among men aged 40-59 years were incompatible with risk ratios (RR) 1.08 or higher with a 10-year lag, RR ≥ 1.2 with 15-year lag and RR ≥ 1.5 with 20-year lag. For the age group 60-69 years, corresponding effect sizes RR ≥ 1.4, ≥2 and ≥ 2.5 could be rejected for lag times 10, 15 and 20 years. DISCUSSION This study confirms and reinforces the conclusions that no changes in glioma incidence in the Nordic countries have occurred that are consistent with a substantial risk attributable to mobile phone use. This particularly applies to virtually all reported risk increases reported by previous case-control studies with positive findings.
Collapse
Affiliation(s)
- Isabelle Deltour
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, Lyon, France.
| | | | | | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Anssi Auvinen
- Tampere University, Faculty of Social Sciences, Tampere, Finland; STUK - Radiation and Nuclear Safety Authority, Vantaa, Finland
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
6
|
Elwood JM, Win SS, Aye PS, Sanagou M. Trends in brain cancers (glioma) in New Zealand from 1995 to 2020, with reference to mobile phone use. Cancer Epidemiol 2022; 80:102234. [PMID: 35961280 DOI: 10.1016/j.canep.2022.102234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Some case-control studies have suggested substantial increased risks of glioma in association with mobile phone use; these risks would lead to an increase in incidence over time. METHODS Incidence rates of glioma from 1995 to 2020 by age, sex, and site in New Zealand (NZ) recorded by the national cancer registry were assessed and trends analysed. Phone use was based on surveys. RESULTS In these 25 years there were 6677 incident gliomas, giving age-standardised rates (WHO world standard) of 6.04 in males, and 3.95 in females per 100,000. The use of mobile phones increased rapidly from 1990 to more than 50% of the population from about 2000, and almost all the population from 2006. The incidence of glioma from ages 10-69 has shown a small decrease over the last 25 years, during which time the use of mobile phones has become almost universal. Rates in the brain locations receiving most radiofrequency energy have also shown a small decrease. Rates at ages of 80 and over have increased. CONCLUSION There is no indication of any increase related to the use of mobile phones. These results are similar to results in Australia and in many other countries. The increase in recorded incidence at ages over 80 is similar to that seen in other countries and consistent with improved diagnostic methods.
Collapse
Affiliation(s)
- J Mark Elwood
- Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Auckland, New Zealand.
| | - Shwe Sin Win
- Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Phyu Sin Aye
- Department of Epidemiology and Biostatistics, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Masoumeh Sanagou
- Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria, Australia
| |
Collapse
|
7
|
Gupta S, Sharma RS, Singh R. Non-ionizing radiation as possible carcinogen. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:916-940. [PMID: 32885667 DOI: 10.1080/09603123.2020.1806212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The advent of wireless technologies has revolutionized the way we communicate. The steady upsurge in the use of mobile phone all over the world in the last two decades, while triggered economic growth, has caused substantial damage to the environment, both directly and indirectly. The electromagnetic radiation generated from mobile phones, radio-based stations, and phone towers, high-voltage power lines have been reported which leads to the variety of health scares such as the risk of cancer in human beings and adverse effects in animals, birds, etc. Though the usage of such radiation emitting from mobile phones has risen steeply, there is a lack of proper knowledge about the associated risks. The review provides the latest research evidence based both on in vitro studies, in vivo studies, and possible gaps in our knowledge. Moreover, the present review also summarizes available literature in this subject, reports and studies which will help to form guidelines for its exposure limits to the public.Abbreviations: Continuous Wave: CW; Code Division Multiple Access: CDMA; Global System for Mobile Communications: GSM; Peripheral Blood Mononuclear Cell: PBMC; Radiofrequency: RF; Radiofrequency radiation: RFR; Universal Mobile Telecommunications System: UMTS; Wideband Code Division Multiple Access: WCDMA; Specific Absorption Rate: SAR; National Toxicology Program: NTP; amplitude-modulated or amplitude-modulation: AM; Electromagnetic frequencies: EMF; confidence interval: CI; Gigahertz: GHz; odds ratio: OR; incidence ratio: IR; reactive oxygen species: ROS; specific absorption rate: SAR; International Agency of Research on Cancer: IARC; single-strand breaks: SSB; double-strand breaks: DSB (7,12-Dimethylbenz[a]anthracene): DMBA; Hour: h; international commission on non-ionizing radiation protection: ICNIRP; extremely low frequency: ELFl; microtesla: mT; Gigahertz: GHz; hertz: Hz; decibel: dB; kilometer: Km; Watt per square meter: W/m2; Hour: h; positron emission tomography: PET.
Collapse
Affiliation(s)
- Shiwangi Gupta
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Radhey Shyam Sharma
- Department of RBMH & CH, Indian Council of Medical Research, New Delhi, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Castaño-Vinyals G, Sadetzki S, Vermeulen R, Momoli F, Kundi M, Merletti F, Maslanyj M, Calderon C, Wiart J, Lee AK, Taki M, Sim M, Armstrong B, Benke G, Schattner R, Hutter HP, Krewski D, Mohipp C, Ritvo P, Spinelli J, Lacour B, Remen T, Radon K, Weinmann T, Petridou ET, Moschovi M, Pourtsidis A, Oikonomou K, Kanavidis P, Bouka E, Dikshit R, Nagrani R, Chetrit A, Bruchim R, Maule M, Migliore E, Filippini G, Miligi L, Mattioli S, Kojimahara N, Yamaguchi N, Ha M, Choi K, Kromhout H, Goedhart G, 't Mannetje A, Eng A, Langer CE, Alguacil J, Aragonés N, Morales-Suárez-Varela M, Badia F, Albert A, Carretero G, Cardis E. Wireless phone use in childhood and adolescence and neuroepithelial brain tumours: Results from the international MOBI-Kids study. ENVIRONMENT INTERNATIONAL 2022; 160:107069. [PMID: 34974237 DOI: 10.1016/j.envint.2021.107069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
In recent decades, the possibility that use of mobile communicating devices, particularly wireless (mobile and cordless) phones, may increase brain tumour risk, has been a concern, particularly given the considerable increase in their use by young people. MOBI-Kids, a 14-country (Australia, Austria, Canada, France, Germany, Greece, India, Israel, Italy, Japan, Korea, the Netherlands, New Zealand, Spain) case-control study, was conducted to evaluate whether wireless phone use (and particularly resulting exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF)) increases risk of brain tumours in young people. Between 2010 and 2015, the study recruited 899 people with brain tumours aged 10 to 24 years old and 1,910 controls (operated for appendicitis) matched to the cases on date of diagnosis, study region and age. Participation rates were 72% for cases and 54% for controls. The mean ages of cases and controls were 16.5 and 16.6 years, respectively; 57% were males. The vast majority of study participants were wireless phones users, even in the youngest age group, and the study included substantial numbers of long-term (over 10 years) users: 22% overall, 51% in the 20-24-year-olds. Most tumours were of the neuroepithelial type (NBT; n = 671), mainly glioma. The odds ratios (OR) of NBT appeared to decrease with increasing time since start of use of wireless phones, cumulative number of calls and cumulative call time, particularly in the 15-19 years old age group. A decreasing trend in ORs was also observed with increasing estimated cumulative RF specific energy and ELF induced current density at the location of the tumour. Further analyses suggest that the large number of ORs below 1 in this study is unlikely to represent an unknown causal preventive effect of mobile phone exposure: they can be at least partially explained by differential recall by proxies and prodromal symptoms affecting phone use before diagnosis of the cases. We cannot rule out, however, residual confounding from sources we did not measure. Overall, our study provides no evidence of a causal association between wireless phone use and brain tumours in young people. However, the sources of bias summarised above prevent us from ruling out a small increased risk.
Collapse
Affiliation(s)
- G Castaño-Vinyals
- Barcelona Institute of Global Health (ISGlobal), 88 Doctor Aiguader, E-08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - S Sadetzki
- Cancer & Radiation Epidemiology Unit, Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ministry of Health, Jerusalem, Israel
| | - R Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - F Momoli
- School of Epidemiology and Public Health, University of Ottawa, Canada; Risk Science International, Ottawa, Canada
| | - M Kundi
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Austria
| | - F Merletti
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | | | | | - J Wiart
- Laboratoire de Traitement et Communication de l'Information (LTCI), Telecom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - A-K Lee
- Radio Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon, Korea
| | - M Taki
- Department of Electrical & Electronic Engineering, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - M Sim
- School of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - B Armstrong
- School of Population and Global Health, The University of Western Australia, Perth 6009, Australia
| | - G Benke
- School of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - R Schattner
- School of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - H-P Hutter
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Austria
| | - D Krewski
- Risk Science International, Ottawa, Canada; School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - C Mohipp
- University of Ottawa, Ottawa, Canada
| | - P Ritvo
- York University, Toronto, Ontario, Canada
| | - J Spinelli
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Lacour
- French National Registry of Childhood Solid Tumors, CHRU, Nancy, France; Inserm UMR 1153, Center of Research in Epidemiology and StatisticS (CRESS), Paris University, Epidemiology of Childhood and Adolescent Cancers Team (EPICEA), Paris, France
| | - T Remen
- Inserm UMR 1153, Center of Research in Epidemiology and StatisticS (CRESS), Paris University, Epidemiology of Childhood and Adolescent Cancers Team (EPICEA), Paris, France
| | - K Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - T Weinmann
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - E Th Petridou
- Hellenic Society for Social Pediatrics & Health Promotion, Greece; Dept of Hygiene and Epidemiology, Medical School, National and Kapodistrian University of Athens, Greece
| | - M Moschovi
- Hellenic Society for Social Pediatrics & Health Promotion, Greece
| | - A Pourtsidis
- Hellenic Society for Social Pediatrics & Health Promotion, Greece
| | - K Oikonomou
- Hellenic Society for Social Pediatrics & Health Promotion, Greece
| | - P Kanavidis
- Hellenic Society for Social Pediatrics & Health Promotion, Greece
| | - E Bouka
- Hellenic Society for Social Pediatrics & Health Promotion, Greece
| | - R Dikshit
- Centre for Cancer Epidemiology, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - R Nagrani
- Centre for Cancer Epidemiology, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Leibniz Institute for Prevention Research and Epidemiology - BIPS, Achterstrasse 30, 28359 Bremen, Germany
| | - A Chetrit
- Cancer & Radiation Epidemiology Unit, Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Tel-Hashomer, Israel
| | - R Bruchim
- Cancer & Radiation Epidemiology Unit, Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Tel-Hashomer, Israel
| | - M Maule
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - E Migliore
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Turin, Italy
| | - G Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| | - L Miligi
- Environmental and Occupational Epidemiology Branch, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - S Mattioli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Italy
| | - N Kojimahara
- Department of Public Health, Tokyo Women's Medical University, Tokyo, Japan; Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - N Yamaguchi
- Department of Public Health, Tokyo Women's Medical University, Tokyo, Japan; Saiseikai Research Institute of Care and Welfare, Tokyo, Japan
| | - M Ha
- Department of Preventive Medicine, Dankook University College of Medicine, 119 Dandae-ro, Cheonan, Chungnam, South Korea
| | - K Choi
- Department of Preventive Medicine, Dankook University College of Medicine, 119 Dandae-ro, Cheonan, Chungnam, South Korea
| | - H Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - G Goedhart
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - A 't Mannetje
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - A Eng
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - C E Langer
- Barcelona Institute of Global Health (ISGlobal), 88 Doctor Aiguader, E-08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - J Alguacil
- CIBER Epidemiologia y Salud Pública, Madrid, Spain; Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente (RENSMA), Universidad de Huelva, Huelva, Spain
| | - N Aragonés
- CIBER Epidemiologia y Salud Pública, Madrid, Spain; Epidemiology Section, Public Health Division, Department of Health of Madrid, 28035 Madrid, Spain
| | - M Morales-Suárez-Varela
- CIBER Epidemiologia y Salud Pública, Madrid, Spain; Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Valencia, Spain
| | - F Badia
- Barcelona Institute of Global Health (ISGlobal), 88 Doctor Aiguader, E-08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain; Institut Cartogràfic i Geològic de Catalunya, Barcelona, Spain
| | - A Albert
- Barcelona Institute of Global Health (ISGlobal), 88 Doctor Aiguader, E-08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain
| | - G Carretero
- Barcelona Institute of Global Health (ISGlobal), 88 Doctor Aiguader, E-08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain; Institut Català d'Oncologia, L'Hospitalet de Llobregat, Spain
| | - E Cardis
- Barcelona Institute of Global Health (ISGlobal), 88 Doctor Aiguader, E-08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; CIBER Epidemiologia y Salud Pública, Madrid, Spain.
| |
Collapse
|
9
|
Lagorio S, Blettner M, Baaken D, Feychting M, Karipidis K, Loney T, Orsini N, Röösli M, Paulo MS, Elwood M. The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A protocol for a systematic review of human observational studies. ENVIRONMENT INTERNATIONAL 2021; 157:106828. [PMID: 34433115 PMCID: PMC8484862 DOI: 10.1016/j.envint.2021.106828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND The World Health Organization (WHO) has an ongoing project to assess potential health effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in the general and working population. Here we present the protocol for a systematic review of the scientific literature on cancer hazards from exposure to RF-EMF in humans, commissioned by the WHO as part of that project. OBJECTIVE To assess the quality and strength of the evidence provided by human observational studies for a causal association between exposure to RF-EMF and risk of neoplastic diseases. ELIGIBILITY CRITERIA We will include cohort and case-control studies investigating neoplasia risks in relation to three types of exposure to RF-EMF: near-field, head-localized, exposure from wireless phone use (SR-A); far-field, whole body, environmental exposure from fixed-site transmitters (SR-B); near/far-field occupational exposures from use of handheld transceivers or RF-emitting equipment in the workplace (SR-C). While no restriction on tumour type will be applied, we will focus on selected neoplasms of the central nervous system (brain, meninges, pituitary gland, acoustic nerve) and salivary gland tumours (SR-A); brain tumours and leukaemias (SR-B, SR-C). INFORMATION SOURCES Eligible studies will be identified through Medline, Embase, and EMF-Portal. RISK-OF-BIAS ASSESSMENT We will use a tailored version of the OHAT's tool to evaluate the study's internal validity. DATA SYNTHESIS We will consider separately studies on different tumours, neoplasm-specific risks from different exposure sources, and a given exposure-outcome pair in adults and children. When a quantitative synthesis of findings can be envisaged, the main aims of the meta-analysis will be to assess the strength of association and the shape of the exposure-response relationship; to quantify the degree of heterogeneity across studies; and explore the sources of inconsistency (if any). When a meta-analysis is judged inappropriate, we will perform a narrative synthesis, complemented by a structured tabulation of results and appropriate visual displays. EVIDENCE ASSESSMENT Confidence in evidence will be assessed in line with the GRADE approach. FUNDING This project is supported by the World Health Organization. Co-financing was provided by the New Zealand Ministry of Health; the Istituto Superiore di Sanità in its capacity as a WHO Collaborating Centre for Radiation and Health; ARPANSA as a WHO Collaborating Centre for Radiation Protection. REGISTRATION PROSPERO CRD42021236798.
Collapse
Affiliation(s)
- Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), Rome, Italy.
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany.
| | - Dan Baaken
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University of Mainz, Germany.
| | - Maria Feychting
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, Australia.
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Nicola Orsini
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Marilia Silva Paulo
- Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | |
Collapse
|
10
|
Choi KH, Ha J, Bae S, Lee AK, Choi HD, Ahn YH, Ha M, Joo H, Kwon HJ, Jung KW. Mobile Phone Use and Time Trend of Brain Cancer Incidence Rate in Korea. Bioelectromagnetics 2021; 42:629-648. [PMID: 34541704 DOI: 10.1002/bem.22373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/06/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022]
Abstract
This study evaluated the time trends in mobile phone subscriber number by mobile network generation (G) and brain cancer incidence by type in Korea. We obtained data from the Information Technology Statistics of Korea (1984-2017) and Korea Central Cancer Registry (1999-2017). The average annual percent change was estimated using Joinpoint regression analysis. We evaluated 29,721 brain cancer cases with an age-standardized incidence rate (ASR) of 2.89/100,000 persons. The glioma and glioblastoma annual ASR significantly increased in 2.6% and 3.9% of males and 3.0% and 3.8% of females, respectively. The ASR for frontal lobe involvement was the highest. The ASR of gliomas of unspecified grade annually increased by 7.8%; those for unspecified topology and histology decreased. The incidence of glioma, glioblastoma, frontal, temporal, and high-grade glioma increased among those aged ≥60 years. No association was observed between the mobile phone subscriber number and brain cancer incidence in Korea. Furthermore, long-term research is warranted because of the latency period of brain cancer. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Johyun Ha
- Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ae-Kyoung Lee
- Radio Technology Research Department, ETRI, Daejeon, Republic of Korea
| | - Hyung-Do Choi
- Radio Technology Research Department, ETRI, Daejeon, Republic of Korea
| | - Young Hwan Ahn
- Department of Neurosurgery, Ajou University School of Medicine, Ajou University Hospital, Suwon, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Hyunjoo Joo
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Kyu-Won Jung
- Division of Cancer Registration and Surveillance, National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| |
Collapse
|
11
|
Villeneuve PJ, Momoli F, Parent MÉ, Siemiatycki J, Turner MC, Krewski D. Cell phone use and the risk of glioma: are case-control study findings consistent with Canadian time trends in cancer incidence? ENVIRONMENTAL RESEARCH 2021; 200:111283. [PMID: 34029549 DOI: 10.1016/j.envres.2021.111283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND There remains controversy as to whether cell phones cause cancer. We evaluated whether temporal changes in cell phone use and the incidence of glioma in Canada were consistent with the hypothesis of an increased risk. DESIGN We used data from the Canadian Cancer Registry to calculate annual incidence rates for glioma between 1992 and 2015. The annual number of new cell phone subscribers was determined using national industry statistics. The number of newly diagnosed gliomas was compared to the predicted number by applying risks from epidemiological studies to age-specific population estimates. Specifically, we calculated the "predicted" number of incident gliomas by determining the annual prevalence of cell phone users and years of use. These estimates were multiplied by the corresponding risk estimates to determine the predicted number of gliomas. RESULTS The number of cellular subscriptions in Canada increased from nil in the early-1980s to approximately 29.5 million in 2015. In contrast, age-standardized glioma incidence rates remained stable between 1992 and 2015. When applying risk estimates from i) a recent pooled analysis of Swedish case-control studies, ii) the 13 country INTERPHONE study, and iii) more recent results from data collected from the Canadian component of the INTERPHONE these risks overestimated the observed number of glioma cases diagnosed in Canada in 2015 by 50%, 86%, and 63%, respectively. INTERPRETATION Predictions of glioma incidence counts using estimates of the relative risk of glioma due to cell phone use from case-control studies over-estimated the incidence rates of glioma in Canada. The absence of an elevation in incidence rates of glioma in conjunction with marked increases in cell phone use suggests that there may not be a causal link between cellphones and glioma.
Collapse
Affiliation(s)
- Paul J Villeneuve
- School of Mathematics and Statistics, Carleton University, Herzberg Building, Room 5413, Ottawa, ON, K1S 5B6, Canada.
| | - Franco Momoli
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada; Department of Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada
| | - Jack Siemiatycki
- Department of Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada
| | - Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Raghu SV, Kudva AK, Rajanikant GK, Baliga MS. Medicinal plants in mitigating electromagnetic radiation-induced neuronal damage: a concise review. Electromagn Biol Med 2021; 41:1-14. [PMID: 34382485 DOI: 10.1080/15368378.2021.1963762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the evidence is inconclusive, epidemiological studies strongly suggest that increased exposure to electromagnetic radiation (EMR) increases the risk of brain tumors, parotid gland tumors, and seminoma. The International Agency for Research on Cancer (IARC) has classified mobile phone radiofrequency radiation as possibly carcinogenic to humans (Group 2B). Humans being are inadvertently being exposed to EMR as its prevalence increases, mainly through mobile phones. Radiation exposure is unavoidable in the current context, with mobile phones being an inevitable necessity. Prudent usage of medicinal plants with a long history of mention in traditional and folklore medicine and, more importantly, are safe, inexpensive, and easily acceptable for long-term human use would be an appealing and viable option for mitigating the deleterious effects of EMR. Plants with free radical scavenging, anti-oxidant and immunomodulatory properties are beneficial in maintaining salubrious health. Green tea polyphenols, Ginkgo biloba, lotus seedpod procyanidins, garlic extract, Loranthus longiflorus, Curcuma amada, and Rosmarinus officinalis have all been shown to confer neuroprotective effects in validated experimental models of study. The purpose of this review is to compile for the first time the protective effects of these plants against mobile phone-induced neuronal damage, as well as to highlight the various mechanisms of action that are elicited to invoke the beneficial effects.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka, India
| | | | | | | |
Collapse
|
13
|
Özdemir E, Çömelekoğlu Ü, Degirmenci E, Bayrak G, Yildirim M, Ergenoglu T, Coşkun Yılmaz B, Korunur Engiz B, Yalin S, Koyuncu DD, Ozbay E. The effect of 4.5 G (LTE Advanced-Pro network) mobile phone radiation on the optic nerve. Cutan Ocul Toxicol 2021; 40:198-206. [PMID: 33653184 DOI: 10.1080/15569527.2021.1895825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Rapid development in mobile phone technologies increase the average mobile phone usage duration. This increase also triggers exposure to radiofrequency radiation (RF), which is a risk factor for the health. In this study, it was aimed to investigate the effect of mobile phone working with LTE-Advanced Pro (4.5 G) mobile network on the optic nerve, which is responsible for the transmission of visual information. MATERIAL AND METHODS Thirty-two rats divided into two groups as control (no RF, sham exposure) and experimental (RF exposure using a mobile phone with LTE-Advanced Pro network; 2 hours/day, 6 weeks). The visual evoked potential (VEP) was recorded and determined amplitudes and latencies of VEP waves. Optic nerve malondialdehyde level, catalase and superoxide dismutase activities were determined. Furthermore, ultrastructural and morphometric changes of optic nerve were evaluated. RESULTS In VEP recordings, the mean VEP amplitudes of experimental group were significantly lower than control group. In ultrastructural evaluation, myelinated nerve fibres and glial cells were observed in normal histologic appearance both in sham and experimental group. However, by performing morphometric analysis, in the experimental group, axonal diameter and myelin thickness were shown to be lower and the G-ratio was higher than in the sham group. In the experimental group, malondialdehyde level was significantly higher and superoxide dismutase and catalase activities were significantly lower than sham group. There was a high correlation between VEP wave amplitudes and oxidative stress markers. CONCLUSION Findings obtained in this study support optic nerve damage. These results point out an important risk that may decrease the quality of life.
Collapse
Affiliation(s)
- Erkin Özdemir
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Ülkü Çömelekoğlu
- Department of Biophysics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Evren Degirmenci
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Gülsen Bayrak
- Department of Histology-Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Metin Yildirim
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Tolgay Ergenoglu
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Banu Coşkun Yılmaz
- Department of Histology-Embryology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Begüm Korunur Engiz
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Samsun Ondokuz Mayıs University, Samsun, Turkey
| | - Serap Yalin
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Dilan Deniz Koyuncu
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Erkan Ozbay
- Vocational School of Health Service, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
14
|
Karipidis K, Mate R, Urban D, Tinker R, Wood A. 5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:585-605. [PMID: 33727687 PMCID: PMC8263336 DOI: 10.1038/s41370-021-00297-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 05/27/2023]
Abstract
The increased use of radiofrequency (RF) fields above 6 GHz, particularly for the 5 G mobile phone network, has given rise to public concern about any possible adverse effects to human health. Public exposure to RF fields from 5 G and other sources is below the human exposure limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). This state-of-the science review examined the research into the biological and health effects of RF fields above 6 GHz at exposure levels below the ICNIRP occupational limits. The review included 107 experimental studies that investigated various bioeffects including genotoxicity, cell proliferation, gene expression, cell signalling, membrane function and other effects. Reported bioeffects were generally not independently replicated and the majority of the studies employed low quality methods of exposure assessment and control. Effects due to heating from high RF energy deposition cannot be excluded from many of the results. The review also included 31 epidemiological studies that investigated exposure to radar, which uses RF fields above 6 GHz similar to 5 G. The epidemiological studies showed little evidence of health effects including cancer at different sites, effects on reproduction and other diseases. This review showed no confirmed evidence that low-level RF fields above 6 GHz such as those used by the 5 G network are hazardous to human health. Future experimental studies should improve the experimental design with particular attention to dosimetry and temperature control. Future epidemiological studies should continue to monitor long-term health effects in the population related to wireless telecommunications.
Collapse
Affiliation(s)
- Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia.
| | - Rohan Mate
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia
| | - David Urban
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia
| | - Rick Tinker
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia
| | - Andrew Wood
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Karipidis K, Mate R, Sanagou M, Brzozek C, Urban D, Elwood M. Mobile phone use and trends in the incidence of cancers of the parotid and other salivary glands. Cancer Epidemiol 2021; 73:101961. [PMID: 34020314 DOI: 10.1016/j.canep.2021.101961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND There has been a significant increase in the use of mobile phones over the last three decades and a possible association with head cancers has been suggested, including cancers of the parotic and other salivary glands. We examined the incidence time trends of parotid and other salivary gland cancers in Australia to ascertain the influence of increased mobile phone use. METHODS Analyses of incidence time trends were carried out using Poisson regression to estimate the annual percentage change (APC) in the incidence of salivary gland cancers of all available national registration data from 1982 to 2016, as well as specific time periods (1982-1993, 1994-2005, 2006-2016) representing changes in the prevalence of mobile phone use. RESULTS The incidence of parotid gland cancer was stable for the periods 1982-1993 and 1994-2005. During 2006-2016 there was a large decrease in parotid gland cancer for males (APC: -3.71, 95 %CI: -6.66 to -0.67) and a large increase in females (4.80, 1.77-7.91) for adults aged 20-59 years. The incidence for other salivary gland cancers was stable during all the periods. CONCLUSIONS The results do not indicate that mobile phone use increased the incidence of parotid or other salivary gland cancers. An increase in parotid gland cancer in females since 2006 may be attributed to other possible risk factors specific to this gender.
Collapse
Affiliation(s)
- Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia.
| | - Rohan Mate
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia.
| | - Masoumeh Sanagou
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia.
| | - Chris Brzozek
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia.
| | - David Urban
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia.
| | - Mark Elwood
- School of Population Health, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
16
|
Diagnosis and Management of Glioblastoma: A Comprehensive Perspective. J Pers Med 2021; 11:jpm11040258. [PMID: 33915852 PMCID: PMC8065751 DOI: 10.3390/jpm11040258] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma is the most common malignant brain tumor in adults. The current management relies on surgical resection and adjuvant radiotherapy and chemotherapy. Despite advances in our understanding of glioblastoma onset, we are still faced with an increased incidence, an altered quality of life and a poor prognosis, its relapse and a median overall survival of 15 months. For the past few years, the understanding of glioblastoma physiopathology has experienced an exponential acceleration and yielded significant insights and new treatments perspectives. In this review, through an original R-based literature analysis, we summarize the clinical presentation, current standards of care and outcomes in patients diagnosed with glioblastoma. We also present the recent advances and perspectives regarding pathophysiological bases as well as new therapeutic approaches such as cancer vaccination and personalized treatments.
Collapse
|
17
|
Myung SK, Moskowitz JM, Choi YJ, Hong YC. Reply to Comment on Choi, Y.-J., et al. Cellular Phone Use and Risk of Tumors: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8079. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3326. [PMID: 33807080 PMCID: PMC8005003 DOI: 10.3390/ijerph18063326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/23/2022]
Abstract
We appreciate Frank de Vocht and Martin Röösli's interest [...].
Collapse
Affiliation(s)
- Seung-Kwon Myung
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Department of Family Medicine and Center for Cancer Prevention and Detection, Hospital, National Cancer Center, Goyang 10408, Korea
- Division of Cancer Epidemiology and Management, National Cancer Center Research Institute, Goyang 10408, Korea
| | - Joel M. Moskowitz
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yoon-Jung Choi
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 110-744, Korea; (Y.-J.C.); (Y.-C.H.)
- Environmental Health Center, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul 110-744, Korea; (Y.-J.C.); (Y.-C.H.)
- Environmental Health Center, College of Medicine, Seoul National University, Seoul 03080, Korea
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
18
|
de Vocht F, Röösli M. Comment on Choi, Y.-J., et al. Cellular Phone Use and Risk of Tumors: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8079. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063125. [PMID: 33803580 PMCID: PMC8002929 DOI: 10.3390/ijerph18063125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
We welcome the updated systematic review and meta-analysis of case-control studies of mobile phone use and cancer by Choi et al [...].
Collapse
Affiliation(s)
- Frank de Vocht
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
- Correspondence:
| | - Martin Röösli
- Department Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland;
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
19
|
Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M, Soskolne CL. Risks to Health and Well-Being From Radio-Frequency Radiation Emitted by Cell Phones and Other Wireless Devices. Front Public Health 2019; 7:223. [PMID: 31457001 PMCID: PMC6701402 DOI: 10.3389/fpubh.2019.00223] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Radiation exposure has long been a concern for the public, policy makers, and health researchers. Beginning with radar during World War II, human exposure to radio-frequency radiation (RFR) technologies has grown substantially over time. In 2011, the International Agency for Research on Cancer (IARC) reviewed the published literature and categorized RFR as a "possible" (Group 2B) human carcinogen. A broad range of adverse human health effects associated with RFR have been reported since the IARC review. In addition, three large-scale carcinogenicity studies in rodents exposed to levels of RFR that mimic lifetime human exposures have shown significantly increased rates of Schwannomas and malignant gliomas, as well as chromosomal DNA damage. Of particular concern are the effects of RFR exposure on the developing brain in children. Compared with an adult male, a cell phone held against the head of a child exposes deeper brain structures to greater radiation doses per unit volume, and the young, thin skull's bone marrow absorbs a roughly 10-fold higher local dose. Experimental and observational studies also suggest that men who keep cell phones in their trouser pockets have significantly lower sperm counts and significantly impaired sperm motility and morphology, including mitochondrial DNA damage. Based on the accumulated evidence, we recommend that IARC re-evaluate its 2011 classification of the human carcinogenicity of RFR, and that WHO complete a systematic review of multiple other health effects such as sperm damage. In the interim, current knowledge provides justification for governments, public health authorities, and physicians/allied health professionals to warn the population that having a cell phone next to the body is harmful, and to support measures to reduce all exposures to RFR.
Collapse
Affiliation(s)
- Anthony B. Miller
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret E. Sears
- Ottawa Hospital Research Institute, Prevent Cancer Now, Ottawa, ON, Canada
| | - L. Lloyd Morgan
- Environmental Health Trust, Teton Village, WY, United States
| | - Devra L. Davis
- Environmental Health Trust, Teton Village, WY, United States
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Örebro, Sweden
| | - Mark Oremus
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
| | - Colin L. Soskolne
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|