1
|
Beqiri E. CPPopt on Medical Devices: The Imitation Game. Neurocrit Care 2024; 41:330-331. [PMID: 38570411 DOI: 10.1007/s12028-024-01977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Affiliation(s)
- Erta Beqiri
- Division of Neurosurgery, Brain Physics Laboratory, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Plourde G, Carrier FM, Bijlenga P, Quintard H. Variations in Autoregulation-Based Optimal Cerebral Perfusion Pressure Determination Using Two Integrated Neuromonitoring Platforms in a Trauma Patient. Neurocrit Care 2024; 41:386-392. [PMID: 38424323 DOI: 10.1007/s12028-024-01949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Neuromonitoring devices are often used in traumatic brain injury. The objective of this report is to raise awareness concerning variations in optimal cerebral perfusion pressure (CPPopt) determination using exploratory information provided by two neuromonitoring monitors that are part of research programs (Moberg CNS Monitor and RAUMED NeuroSmart LogO). METHODS We connected both monitors simultaneously to a parenchymal intracranial pressure catheter and recorded the pressure reactivity index (PRx) and the derived CPPopt estimates for a patient with a severe traumatic brain injury. These estimates were available at the bedside and were updated at each minute. RESULTS Using the Bland and Altman method, we found a mean variation of - 3.8 (95% confidence internal from - 8.5 to 0.9) mm Hg between the CPPopt estimates provided by the two monitors (limits of agreement from - 26.6 to 19.1 mm Hg). The PRx and CPPopt trends provided by the two monitors were similar over time, but CPPopt trends differed when PRx values were around zero. Also, almost half of the CPPopt estimates differed by more than 10 mm Hg. CONCLUSIONS These wide variations recorded in the same patient are worrisome and reiterate the importance of understanding and standardizing the methodology and algorithms behind commercial neuromonitoring devices prior to incorporating them in clinical use.
Collapse
Affiliation(s)
- Guillaume Plourde
- Division of Intensive Care Medicine, Department of Medicine, Centre Hospitalier de l'Université de Montréal, 1051 Rue Sanguinet, Montreal, Canada.
| | - François Martin Carrier
- Division of Intensive Care Medicine, Department of Medicine and Department of Anesthesiology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Philippe Bijlenga
- Division of Neurosurgery, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Hervé Quintard
- Division of Intensive Care Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care, and Emergency Medicine, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
3
|
Kim KA, Kim H, Ha EJ, Yoon BC, Kim DJ. Artificial Intelligence-Enhanced Neurocritical Care for Traumatic Brain Injury : Past, Present and Future. J Korean Neurosurg Soc 2024; 67:493-509. [PMID: 38186369 PMCID: PMC11375068 DOI: 10.3340/jkns.2023.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024] Open
Abstract
In neurointensive care units (NICUs), particularly in cases involving traumatic brain injury (TBI), swift and accurate decision-making is critical because of rapidly changing patient conditions and the risk of secondary brain injury. The use of artificial intelligence (AI) in NICU can enhance clinical decision support and provide valuable assistance in these complex scenarios. This article aims to provide a comprehensive review of the current status and future prospects of AI utilization in the NICU, along with the challenges that must be overcome to realize this. Presently, the primary application of AI in NICU is outcome prediction through the analysis of preadmission and high-resolution data during admission. Recent applications include augmented neuromonitoring via signal quality control and real-time event prediction. In addition, AI can integrate data gathered from various measures and support minimally invasive neuromonitoring to increase patient safety. However, despite the recent surge in AI adoption within the NICU, the majority of AI applications have been limited to simple classification tasks, thus leaving the true potential of AI largely untapped. Emerging AI technologies, such as generalist medical AI and digital twins, harbor immense potential for enhancing advanced neurocritical care through broader AI applications. If challenges such as acquiring high-quality data and ethical issues are overcome, these new AI technologies can be clinically utilized in the actual NICU environment. Emphasizing the need for continuous research and development to maximize the potential of AI in the NICU, we anticipate that this will further enhance the efficiency and accuracy of TBI treatment within the NICU.
Collapse
Affiliation(s)
- Kyung Ah Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Eun Jin Ha
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Korea
| | - Byung C Yoon
- Department of Radiology, Stanford University School of Medicine, VA Palo Alto Heath Care System, Palo Alto, CA, USA
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Martini S, Thewissen L, Austin T, da Costa CS, de Boode WP, Dempsey E, Kooi E, Pellicer A, Rhee CJ, Riera J, Wolf M, Wong F. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now? Pediatr Res 2024; 96:884-895. [PMID: 36997690 DOI: 10.1038/s41390-023-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cerebrovascular reactivity defines the ability of the cerebral vasculature to regulate its resistance in response to both local and systemic factors to ensure an adequate cerebral blood flow to meet the metabolic demands of the brain. The increasing adoption of near-infrared spectroscopy (NIRS) for non-invasive monitoring of cerebral oxygenation and perfusion allowed investigation of the mechanisms underlying cerebrovascular reactivity in the neonatal population, confirming important associations with pathological conditions including the development of brain injury and adverse neurodevelopmental outcomes. However, the current literature on neonatal cerebrovascular reactivity is mainly still based on small, observational studies and is characterised by methodological heterogeneity; this has hindered the routine application of NIRS-based monitoring of cerebrovascular reactivity to identify infants most at risk of brain injury. This review aims (1) to provide an updated review on neonatal cerebrovascular reactivity, assessed using NIRS; (2) to identify critical points that need to be addressed with targeted research; and (3) to propose feasibility trials in order to fill the current knowledge gaps and to possibly develop a preventive or curative approach for preterm brain injury. IMPACT: NIRS monitoring has been largely applied in neonatal research to assess cerebrovascular reactivity in response to blood pressure, PaCO2 and other biochemical or metabolic factors, providing novel insights into the pathophysiological mechanisms underlying cerebral blood flow regulation. Despite these insights, the current literature shows important pitfalls that would benefit to be addressed in a series of targeted trials, proposed in the present review, in order to translate the assessment of cerebrovascular reactivity into routine monitoring in neonatal clinical practice.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | | | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, INFANT Centre, University College Cork, Cork, Ireland
| | - Elisabeth Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
| | - Christopher J Rhee
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Joan Riera
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Technology, Technical University, Madrid, Spain
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Flora Wong
- Monash Newborn, Monash Children's Hospital, Hudson Institute of Medical Research, Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Carlson AP, Mayer AR, Cole C, van der Horn HJ, Marquez J, Stevenson TC, Shuttleworth CW. Cerebral autoregulation, spreading depolarization, and implications for targeted therapy in brain injury and ischemia. Rev Neurosci 2024; 35:651-678. [PMID: 38581271 PMCID: PMC11297425 DOI: 10.1515/revneuro-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.
Collapse
Affiliation(s)
- Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Andrew R. Mayer
- Mind Research Network, 1101 Yale, Blvd, NE, Albuquerque, NM, 87106, USA
| | - Chad Cole
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | | | - Joshua Marquez
- University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| | - Taylor C. Stevenson
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 UNM, Albuquerque, NM, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Albuquerque, NM, 87106, USA
| |
Collapse
|
6
|
Prasad A, Gilmore EJ, Kim JA, Begunova L, Olexa M, Beekman R, Falcone GJ, Matouk C, Ortega-Gutierrez S, Temkin NR, Barber J, Diaz-Arrastia R, de Havenon A, Petersen NH. Impact of Therapeutic Interventions on Cerebral Autoregulatory Function Following Severe Traumatic Brain Injury: A Secondary Analysis of the BOOST-II Study. Neurocrit Care 2024; 41:91-99. [PMID: 38158481 PMCID: PMC11285118 DOI: 10.1007/s12028-023-01896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II randomized controlled trial used a tier-based management protocol based on brain tissue oxygen (PbtO2) and intracranial pressure (ICP) monitoring to reduce brain tissue hypoxia after severe traumatic brain injury. We performed a secondary analysis to explore the relationship between brain tissue hypoxia, blood pressure (BP), and interventions to improve cerebral perfusion pressure (CPP). We hypothesized that BP management below the lower limit of autoregulation would lead to cerebral hypoperfusion and brain tissue hypoxia that could be improved with hemodynamic augmentation. METHODS Of the 119 patients enrolled in the Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II trial, 55 patients had simultaneous recordings of arterial BP, ICP, and PbtO2. Autoregulatory function was measured by interrogating changes in ICP and PbtO2 in response to fluctuations in CPP using time-correlation analysis. The resulting autoregulatory indices (pressure reactivity index and oxygen reactivity index) were used to identify the "optimal" CPP and limits of autoregulation for each patient. Autoregulatory function and percent time with CPP outside personalized limits of autoregulation were calculated before, during, and after all interventions directed to optimize CPP. RESULTS Individualized limits of autoregulation were computed in 55 patients (mean age 38 years, mean monitoring time 92 h). We identified 35 episodes of brain tissue hypoxia (PbtO2 < 20 mm Hg) treated with CPP augmentation. Following each intervention, mean CPP increased from 73 ± 14 mm Hg to 79 ± 17 mm Hg (p = 0.15), and mean PbtO2 improved from 18.4 ± 5.6 mm Hg to 21.9 ± 5.6 mm Hg (p = 0.01), whereas autoregulatory function trended toward improvement (oxygen reactivity index 0.42 vs. 0.37, p = 0.14; pressure reactivity index 0.25 vs. 0.21, p = 0.2). Although optimal CPP and limits remained relatively unchanged, there was a significant decrease in the percent time with CPP below the lower limit of autoregulation in the 60 min after compared with before an intervention (11% vs. 23%, p = 0.05). CONCLUSIONS Our analysis suggests that brain tissue hypoxia is associated with cerebral hypoperfusion characterized by increased time with CPP below the lower limit of autoregulation. Interventions to increase CPP appear to improve autoregulation. Further studies are needed to validate the importance of autoregulation as a modifiable variable with the potential to improve outcomes.
Collapse
Affiliation(s)
- Ayush Prasad
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Emily J Gilmore
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Jennifer A Kim
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Liza Begunova
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Madelynne Olexa
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Rachel Beekman
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Guido J Falcone
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Charles Matouk
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Nancy R Temkin
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jason Barber
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam de Havenon
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Nils H Petersen
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA.
| |
Collapse
|
7
|
Cardim D, Giardina A, Ciliberti P, Battaglini D, Berardino A, Uccelli A, Czosnyka M, Roccatagliata L, Matta B, Patroniti N, Rocco PRM, Robba C. Short-term mild hyperventilation on intracranial pressure, cerebral autoregulation, and oxygenation in acute brain injury patients: a prospective observational study. J Clin Monit Comput 2024; 38:753-762. [PMID: 38310592 PMCID: PMC11297838 DOI: 10.1007/s10877-023-01121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024]
Abstract
Current guidelines suggest a target of partial pressure of carbon dioxide (PaCO2) of 32-35 mmHg (mild hypocapnia) as tier 2 for the management of intracranial hypertension. However, the effects of mild hyperventilation on cerebrovascular dynamics are not completely elucidated. The aim of this study is to evaluate the changes of intracranial pressure (ICP), cerebral autoregulation (measured through pressure reactivity index, PRx), and regional cerebral oxygenation (rSO2) parameters before and after induction of mild hyperventilation. Single center, observational study including patients with acute brain injury (ABI) admitted to the intensive care unit undergoing multimodal neuromonitoring and requiring titration of PaCO2 values to mild hypocapnia as tier 2 for the management of intracranial hypertension. Twenty-five patients were included in this study (40% female), median age 64.7 years (Interquartile Range, IQR = 45.9-73.2). Median Glasgow Coma Scale was 6 (IQR = 3-11). After mild hyperventilation, PaCO2 values decreased (from 42 (39-44) to 34 (32-34) mmHg, p < 0.0001), ICP and PRx significantly decreased (from 25.4 (24.1-26.4) to 17.5 (16-21.2) mmHg, p < 0.0001, and from 0.32 (0.1-0.52) to 0.12 (-0.03-0.23), p < 0.0001). rSO2 was statistically but not clinically significantly reduced (from 60% (56-64) to 59% (54-61), p < 0.0001), but the arterial component of rSO2 (ΔO2Hbi, changes in concentration of oxygenated hemoglobin of the total rSO2) decreased from 3.83 (3-6.2) μM.cm to 1.6 (0.5-3.1) μM.cm, p = 0.0001. Mild hyperventilation can reduce ICP and improve cerebral autoregulation, with minimal clinical effects on cerebral oxygenation. However, the arterial component of rSO2 was importantly reduced. Multimodal neuromonitoring is essential when titrating PaCO2 values for ICP management.
Collapse
Affiliation(s)
- Danilo Cardim
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alberto Giardina
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
| | - Pietro Ciliberti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
| | - Denise Battaglini
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Berardino
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Antonio Uccelli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DINOGMI, University of Genova, Genova, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- DISSAL, University of Genova, Genova, Italy
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Nicolo Patroniti
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV 16, Genova, Italy
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Hong E, Froese L, Pontén E, Fletcher-Sandersjöö A, Tatter C, Hammarlund E, Åkerlund CAI, Tjerkaski J, Alpkvist P, Bartek J, Raj R, Lindblad C, Nelson DW, Zeiler FA, Thelin EP. Critical thresholds of long-pressure reactivity index and impact of intracranial pressure monitoring methods in traumatic brain injury. Crit Care 2024; 28:256. [PMID: 39075480 PMCID: PMC11285281 DOI: 10.1186/s13054-024-05042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Moderate-to-severe traumatic brain injury (TBI) has a global mortality rate of about 30%, resulting in acquired life-long disabilities in many survivors. To potentially improve outcomes in this TBI population, the management of secondary injuries, particularly the failure of cerebrovascular reactivity (assessed via the pressure reactivity index; PRx, a correlation between intracranial pressure (ICP) and mean arterial blood pressure (MAP)), has gained interest in the field. However, derivation of PRx requires high-resolution data and expensive technological solutions, as calculations use a short time-window, which has resulted in it being used in only a handful of centers worldwide. As a solution to this, low resolution (longer time-windows) PRx has been suggested, known as Long-PRx or LPRx. Though LPRx has been proposed little is known about the best methodology to derive this measure, with different thresholds and time-windows proposed. Furthermore, the impact of ICP monitoring on cerebrovascular reactivity measures is poorly understood. Hence, this observational study establishes critical thresholds of LPRx associated with long-term functional outcome, comparing different time-windows for calculating LPRx as well as evaluating LPRx determined through external ventricular drains (EVD) vs intraparenchymal pressure device (IPD) ICP monitoring. METHODS The study included a total of n = 435 TBI patients from the Karolinska University Hospital. Patients were dichotomized into alive vs. dead and favorable vs. unfavorable outcomes based on 1-year Glasgow Outcome Scale (GOS). Pearson's chi-square values were computed for incrementally increasing LPRx or ICP thresholds against outcome. The thresholds that generated the greatest chi-squared value for each LPRx or ICP parameter had the highest outcome discriminatory capacity. This methodology was also completed for the segmentation of the population based on EVD, IPD, and time of data recorded in hospital stay. RESULTS LPRx calculated with 10-120-min windows behaved similarly, with maximal chi-square values ranging at around a LPRx of 0.25-0.35, for both survival and favorable outcome. When investigating the temporal relations of LPRx derived thresholds, the first 4 days appeared to be the most associated with outcomes. The segmentation of the data based on intracranial monitoring found limited differences between EVD and IPD, with similar LPRx values around 0.3. CONCLUSION Our work suggests that the underlying prognostic factors causing impairment in cerebrovascular reactivity can, to some degree, be detected using lower resolution PRx metrics (similar found thresholding values) with LPRx found clinically using as low as 10 min-by-minute samples of MAP and ICP. Furthermore, EVD derived LPRx with intermittent cerebrospinal fluid draining, seems to present similar outcome capacity as IPD. This low-resolution low sample LPRx method appears to be an adequate substitute for the clinical prognostic value of PRx and may be implemented independent of ICP monitoring method when PRx is not feasible, though further research is warranted.
Collapse
Affiliation(s)
- Erik Hong
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Logan Froese
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Emeli Pontén
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Skåne University Hospital, Lund, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Tatter
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Södersjukhuset, Stockholm, Sweden
| | - Emma Hammarlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia A I Åkerlund
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Peter Alpkvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Jiri Bartek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki, Helsinki, Finland
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Gordon AC, Alipanah-Lechner N, Bos LD, Dianti J, Diaz JV, Finfer S, Fujii T, Giamarellos-Bourboulis EJ, Goligher EC, Gong MN, Karakike E, Liu VX, Lumlertgul N, Marshall JC, Menon DK, Meyer NJ, Munroe ES, Myatra SN, Ostermann M, Prescott HC, Randolph AG, Schenck EJ, Seymour CW, Shankar-Hari M, Singer M, Smit MR, Tanaka A, Taccone FS, Thompson BT, Torres LK, van der Poll T, Vincent JL, Calfee CS. From ICU Syndromes to ICU Subphenotypes: Consensus Report and Recommendations for Developing Precision Medicine in the ICU. Am J Respir Crit Care Med 2024; 210:155-166. [PMID: 38687499 PMCID: PMC11273306 DOI: 10.1164/rccm.202311-2086so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.
Collapse
Affiliation(s)
| | - Narges Alipanah-Lechner
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | | | - Jose Dianti
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Departamento de Cuidados Intensivos, Centro de Educación Médica e Investigaciones Clínicas, Buenos Aires, Argentina
| | | | - Simon Finfer
- School of Public Health, Imperial College London, London, United Kingdom
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Tomoko Fujii
- Jikei University School of Medicine, Jikei University Hospital, Tokyo, Japan
| | | | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle Ng Gong
- Division of Critical Care Medicine and
- Division of Pulmonary Medicine, Department of Medicine and Department of Epidemiology and Population Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Eleni Karakike
- Second Department of Critical Care Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vincent X. Liu
- Division of Research, Kaiser Permanente, Oakland, California
| | - Nuttha Lumlertgul
- Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - John C. Marshall
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David K. Menon
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nuala J. Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth S. Munroe
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sheila N. Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- King’s College London, Guy’s & St Thomas’ Hospital, London, United Kingdom
| | - Hallie C. Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Anaesthesia and
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Edward J. Schenck
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Christopher W. Seymour
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | | | - Aiko Tanaka
- Department of Intensive Care, University of Fukui Hospital, Yoshida, Fukui, Japan
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fabio S. Taccone
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lisa K. Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, and
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Louis Vincent
- Department des Soins Intensifs, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium; and
| | - Carolyn S. Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
10
|
Mirsajadi A, Erickson D, Alias S, Froese L, Singh Sainbhi A, Gomez A, Majumdar R, Herath I, Wilson M, Zarychanski R, Zeiler FA, Mendelson AA. Microvascular Autoregulation in Skeletal Muscle Using Near-Infrared Spectroscopy and Derivation of Optimal Mean Arterial Pressure in the ICU: Pilot Study and Comparison With Cerebral Near-Infrared Spectroscopy. Crit Care Explor 2024; 6:e1111. [PMID: 38904977 PMCID: PMC11196085 DOI: 10.1097/cce.0000000000001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
IMPORTANCE Microvascular autoregulation (MA) maintains adequate tissue perfusion over a range of arterial blood pressure (ABP) and is frequently impaired in critical illness. MA has been studied in the brain to derive personalized hemodynamic targets after brain injury. The ability to measure MA in other organs is not known, which may inform individualized management during shock. OBJECTIVES This study determines the feasibility of measuring MA in skeletal muscle using near-infrared spectroscopy (NIRS) as a marker of tissue perfusion, the derivation of optimal mean arterial pressure (MAPopt), and comparison with indices from the brain. DESIGN Prospective observational study. SETTING Medical and surgical ICU in a tertiary academic hospital. PARTICIPANTS Adult critically ill patients requiring vasoactive support on the first day of ICU admission. MAIN OUTCOMES AND MEASURES Fifteen critically ill patients were enrolled. NIRS was applied simultaneously to skeletal muscle (brachioradialis) and brain (frontal cortex) while ABP was measured continuously via invasive catheter. MA correlation indices were calculated between ABP and NIRS from skeletal muscle total hemoglobin (MVx), muscle tissue saturation index (MOx), brain total hemoglobin (THx), and brain tissue saturation index (COx). Curve fitting algorithms derive the MAP with the lowest correlation index value, which is the MAPopt. RESULTS MAPopt values were successfully calculated for each correlation index for all patients and were frequently (77%) above 65 mm Hg. For all correlation indices, median time was substantially above impaired MA threshold (24.5-34.9%) and below target MAPopt (9.0-78.6%). Muscle and brain MAPopt show moderate correlation (MVx-THx r = 0.76, p < 0.001; MOx-COx r = 0.69, p = 0.005), with a median difference of -1.27 mm Hg (-9.85 to -0.18 mm Hg) and 0.05 mm Hg (-7.05 to 2.68 mm Hg). CONCLUSIONS AND RELEVANCE This study demonstrates, for the first time, the feasibility of calculating MA indices and MAPopt in skeletal muscle using NIRS. Future studies should explore the association between impaired skeletal muscle MA, ICU outcomes, and organ-specific differences in MA and MAPopt thresholds.
Collapse
Affiliation(s)
- Amirali Mirsajadi
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Dustin Erickson
- Section of Critical Care Medicine, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Soumya Alias
- Section of Critical Care Medicine, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Division of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Raju Majumdar
- Section of Critical Care Medicine, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Isuru Herath
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Maggie Wilson
- Section of Critical Care Medicine, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ryan Zarychanski
- Section of Critical Care Medicine, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Oncology and Hematology, University of Manitoba/CancerCare Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| | - Asher A. Mendelson
- Department of Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Critical Care Medicine, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Beqiri E, García-Orellana M, Politi A, Zeiler FA, Placek MM, Fàbregas N, Tas J, De Sloovere V, Czosnyka M, Aries M, Valero R, de Riva N, Smielewski P. Cerebral autoregulation derived blood pressure targets in elective neurosurgery. J Clin Monit Comput 2024; 38:649-662. [PMID: 38238636 PMCID: PMC11164832 DOI: 10.1007/s10877-023-01115-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/23/2023] [Indexed: 06/11/2024]
Abstract
Poor postoperative outcomes may be associated with cerebral ischaemia or hyperaemia, caused by episodes of arterial blood pressure (ABP) being outside the range of cerebral autoregulation (CA). Monitoring CA using COx (correlation between slow changes in mean ABP and regional cerebral O2 saturation-rSO2) could allow to individualise the management of ABP to preserve CA. We aimed to explore a continuous automated assessment of ABPOPT (ABP where CA is best preserved) and ABP at the lower limit of autoregulation (LLA) in elective neurosurgery patients. Retrospective analysis of prospectively collected data of 85 patients [median age 60 (IQR 51-68)] undergoing elective neurosurgery. ABPBASELINE was the mean of 3 pre-operative non-invasive measurements. ABP and rSO2 waveforms were processed to estimate COx-derived ABPOPT and LLA trend-lines. We assessed: availability (number of patients where ABPOPT/LLA were available); time required to achieve first values; differences between ABPOPT/LLA and ABP. ABPOPT and LLA availability was 86 and 89%. Median (IQR) time to achieve the first value was 97 (80-155) and 93 (78-122) min for ABPOPT and LLA respectively. Median ABPOPT [75 (69-84)] was lower than ABPBASELINE [90 (84-95)] (p < 0.001, Mann-U test). Patients spent 72 (56-86) % of recorded time with ABP above or below ABPOPT ± 5 mmHg. ABPOPT and ABP time trends and variability were not related to each other within patients. 37.6% of patients had at least 1 hypotensive insult (ABP < LLA) during the monitoring time. It seems possible to assess individualised automated ABP targets during elective neurosurgery.
Collapse
Affiliation(s)
- Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Marta García-Orellana
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Kepler Universitätsklinikum, Neuromed Campus, Linz, Austria
| | - Anna Politi
- Department of Anesthesiology, Intensive Care and Pain Medicine, Milano Bicocca University, San Gerardo Hospital, Monza, Italy
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Univesity of Manitoba, Winnipeg, Canada
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michal M Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Neus Fàbregas
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Jeanette Tas
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, The Netherlands
- Department of Intensive Care, Maastricht UMC, Maastricht, The Netherlands
| | - Veerle De Sloovere
- Department of Anesthesiology, University Hospitals Leuven, Louvain, Belgium
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marcel Aries
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, The Netherlands
- Department of Intensive Care, Maastricht UMC, Maastricht, The Netherlands
| | - Ricard Valero
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Nicolás de Riva
- Neuroanesthesia Division, Anesthesiology Department, Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Brasil S, Godoy DA, Videtta W, Rubiano AM, Solla D, Taccone FS, Robba C, Rasulo F, Aries M, Smielewski P, Meyfroidt G, Battaglini D, Hirzallah MI, Amorim R, Sampaio G, Moulin F, Deana C, Picetti E, Kolias A, Hutchinson P, Hawryluk GW, Czosnyka M, Panerai RB, Shutter LA, Park S, Rynkowski C, Paranhos J, Silva THS, Malbouisson LMS, Paiva WS. A Comprehensive Perspective on Intracranial Pressure Monitoring and Individualized Management in Neurocritical Care: Results of a Survey with Global Experts. Neurocrit Care 2024:10.1007/s12028-024-02008-z. [PMID: 38811514 DOI: 10.1007/s12028-024-02008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Numerous trials have addressed intracranial pressure (ICP) management in neurocritical care. However, identifying its harmful thresholds and controlling ICP remain challenging in terms of improving outcomes. Evidence suggests that an individualized approach is necessary for establishing tolerance limits for ICP, incorporating factors such as ICP waveform (ICPW) or pulse morphology along with additional data provided by other invasive (e.g., brain oximetry) and noninvasive monitoring (NIM) methods (e.g., transcranial Doppler, optic nerve sheath diameter ultrasound, and pupillometry). This study aims to assess current ICP monitoring practices among experienced clinicians and explore whether guidelines should incorporate ancillary parameters from NIM and ICPW in future updates. METHODS We conducted a survey among experienced professionals involved in researching and managing patients with severe injury across low-middle-income countries (LMICs) and high-income countries (HICs). We sought their insights on ICP monitoring, particularly focusing on the impact of NIM and ICPW in various clinical scenarios. RESULTS From October to December 2023, 109 professionals from the Americas and Europe participated in the survey, evenly distributed between LMIC and HIC. When ICP ranged from 22 to 25 mm Hg, 62.3% of respondents were open to considering additional information, such as ICPW and other monitoring techniques, before adjusting therapy intensity levels. Moreover, 77% of respondents were inclined to reassess patients with ICP in the 18-22 mm Hg range, potentially escalating therapy intensity levels with the support of ICPW and NIM. Differences emerged between LMIC and HIC participants, with more LMIC respondents preferring arterial blood pressure transducer leveling at the heart and endorsing the use of NIM techniques and ICPW as ancillary information. CONCLUSIONS Experienced clinicians tend to personalize ICP management, emphasizing the importance of considering various monitoring techniques. ICPW and noninvasive techniques, particularly in LMIC settings, warrant further exploration and could potentially enhance individualized patient care. The study suggests updating guidelines to include these additional components for a more personalized approach to ICP management.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | | | - Walter Videtta
- Intensive Care Unit, Hospital Posadas, Buenos Aires, Argentina
| | | | - Davi Solla
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Chiara Robba
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Frank Rasulo
- Neuroanesthesia, Neurocritical and Postoperative Care, Spedali Civili University Affiliated Hospital of Brescia, Brescia, Italy
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Peter Smielewski
- Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Denise Battaglini
- Anesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare, Policlínico San Martino, Genoa, Italy
| | - Mohammad I Hirzallah
- Departments of Neurology, Neurosurgery, and Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robson Amorim
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Gisele Sampaio
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Fabiano Moulin
- Neurology Department, São Paulo Federal University Medical School, São Paulo, Brazil
| | - Cristian Deana
- Department of Anesthesia and Intensive Care, Health Integrated Agency of Friuli Centrale, Udine, Italy
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | | | | | - Gregory W Hawryluk
- Cleveland Clinic Neurological Institute, Akron General Hospital, Fairlawn, OH, USA
- Uniformed Services University, Bethesda, USA
- Brain Trauma Foundation, New York, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lori A Shutter
- Departments of Critical Care Medicine, Neurology and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian Hospital, New York, NY, USA
| | - Carla Rynkowski
- Department of Urgency and Trauma, Medical Faculty, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jorge Paranhos
- Intensive Care and Neuroemergency, Santa Casa de Misericórdia, São João del Rei, Brazil
| | - Thiago H S Silva
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Luiz M S Malbouisson
- Department of Intensive Care, School of Medicine University of São Paulo, São Paulo, Brazil
| | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| |
Collapse
|
13
|
Bhattacharyay S, Beqiri E, Zuercher P, Wilson L, Steyerberg EW, Nelson DW, Maas AIR, Menon DK, Ercole A. Therapy Intensity Level Scale for Traumatic Brain Injury: Clinimetric Assessment on Neuro-Monitored Patients Across 52 European Intensive Care Units. J Neurotrauma 2024; 41:887-909. [PMID: 37795563 PMCID: PMC11005383 DOI: 10.1089/neu.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Intracranial pressure (ICP) data from traumatic brain injury (TBI) patients in the intensive care unit (ICU) cannot be interpreted appropriately without accounting for the effect of administered therapy intensity level (TIL) on ICP. A 15-point scale was originally proposed in 1987 to quantify the hourly intensity of ICP-targeted treatment. This scale was subsequently modified-through expert consensus-during the development of TBI Common Data Elements to address statistical limitations and improve usability. The latest 38-point scale (hereafter referred to as TIL) permits integrated scoring for a 24-h period and has a five-category, condensed version (TIL(Basic)) based on qualitative assessment. Here, we perform a total- and component-score analysis of TIL and TIL(Basic) to: 1) validate the scales across the wide variation in contemporary ICP management; 2) compare their performance against that of predecessors; and 3) derive guidelines for proper scale use. From the observational Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study, we extract clinical data from a prospective cohort of ICP-monitored TBI patients (n = 873) from 52 ICUs across 19 countries. We calculate daily TIL and TIL(Basic) scores (TIL24 and TIL(Basic)24, respectively) from each patient's first week of ICU stay. We also calculate summary TIL and TIL(Basic) scores by taking the first-week maximum (TILmax and TIL(Basic)max) and first-week median (TILmedian and TIL(Basic)median) of TIL24 and TIL(Basic)24 scores for each patient. We find that, across all measures of construct and criterion validity, the latest TIL scale performs significantly greater than or similarly to all alternative scales (including TIL(Basic)) and integrates the widest range of modern ICP treatments. TILmedian outperforms both TILmax and summarized ICP values in detecting refractory intracranial hypertension (RICH) during ICU stay. The RICH detection thresholds which maximize the sum of sensitivity and specificity are TILmedian ≥ 7.5 and TILmax ≥ 14. The TIL24 threshold which maximizes the sum of sensitivity and specificity in the detection of surgical ICP control is TIL24 ≥ 9. The median scores of each TIL component therapy over increasing TIL24 reflect a credible staircase approach to treatment intensity escalation, from head positioning to surgical ICP control, as well as considerable variability in the use of cerebrospinal fluid drainage and decompressive craniectomy. Since TIL(Basic)max suffers from a strong statistical ceiling effect and only covers 17% (95% confidence interval [CI]: 16-18%) of the information in TILmax, TIL(Basic) should not be used instead of TIL for rating maximum treatment intensity. TIL(Basic)24 and TIL(Basic)median can be suitable replacements for TIL24 and TILmedian, respectively (with up to 33% [95% CI: 31-35%] information coverage) when full TIL assessment is infeasible. Accordingly, we derive numerical ranges for categorising TIL24 scores into TIL(Basic)24 scores. In conclusion, our results validate TIL across a spectrum of ICP management and monitoring approaches. TIL is a more sensitive surrogate for pathophysiology than ICP and thus can be considered an intermediate outcome after TBI.
Collapse
Affiliation(s)
- Shubhayu Bhattacharyay
- Division of Anaesthesia, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Zuercher
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, United Kingdom
| | - Ewout W. Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - David W. Nelson
- Department of Physiology and Pharmacology, Section for Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Andrew I. R. Maas
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neuroscience, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - David K. Menon
- Division of Anaesthesia, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
| | - Ari Ercole
- Division of Anaesthesia, Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom
- Cambridge Center for Artificial Intelligence in Medicine, Cambridge, United Kingdom
| |
Collapse
|
14
|
Stein KY, Froese L, Sekhon M, Griesdale D, Thelin EP, Raj R, Tas J, Aries M, Gallagher C, Bernard F, Gomez A, Kramer AH, Zeiler FA. Intracranial Pressure-Derived Cerebrovascular Reactivity Indices and Their Critical Thresholds: A Canadian High Resolution-Traumatic Brain Injury Validation Study. J Neurotrauma 2024; 41:910-923. [PMID: 37861325 DOI: 10.1089/neu.2023.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Current neurointensive care guidelines recommend intracranial pressure (ICP) and cerebral perfusion pressure (CPP) centered management for moderate-severe traumatic brain injury (TBI) because of their demonstrated associations with patient outcome. Cerebrovascular reactivity metrics, such as the pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC index, have also demonstrated significant prognostic capabilities with regard to outcome. However, critical thresholds for cerebrovascular reactivity indices have only been identified in two studies conducted at the same center. In this study, we aim to determine the critical thresholds of these metrics by leveraging a unique multi-center database. The study included a total of 354 patients from the CAnadian High-Resolution TBI (CAHR-TBI) Research Collaborative. Based on 6-month Glasgow Outcome Scores, patients were dichotomized into alive versus dead and favorable versus unfavorable. Chi-square values were then computed for incrementally increasing values of each physiological parameter of interest against outcome. The values that generated the greatest chi-squares for each parameter were considered to be the thresholds with the greatest outcome discriminatory capacity. To confirm that the identified thresholds provide prognostic utility, univariate and multivariable logistical regression analyses were performed adjusting for the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) variables. Through the chi-square analysis, a lower limit CPP threshold of 60 mm Hg and ICP thresholds of 18 mm Hg and 22 mm Hg were identified for both survival and favorable outcome predictions. For the cerebrovascular reactivity metrics, different thresholds were identified for the two outcome dichotomizations. For survival prediction, thresholds of 0.35, 0.25, and 0 were identified for PRx, PAx, and RAC, respectively. For favorable outcome prediction, thresholds of 0.325, 0.20, and 0.05 were found. Univariate logistical regression analysis demonstrated that the time spent above/below thresholds were associated with outcome. Further, multivariable logistical regression analysis found that percent time above/below the identified thresholds added additional variance to the IMPACT core model for predicting both survival and favorable outcome. In this study, we were able to validate the results of the previous two works as well as to reaffirm the ICP and CPP guidelines from the Brain Trauma Foundation (BTF) and the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC).
Collapse
Affiliation(s)
- Kevin Y Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mypinder Sekhon
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jeanette Tas
- Department of Intensive Care, Maastricht University Medical Center+, and School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center+, and School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Clare Gallagher
- Section of Neurosurgery, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andreas H Kramer
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Gomez A, Froese L, Griesdale D, Thelin EP, Raj R, van Iperenburg L, Tas J, Aries M, Stein KY, Gallagher C, Bernard F, Kramer AH, Zeiler FA. Prognostic value of near-infrared spectroscopy regional oxygen saturation and cerebrovascular reactivity index in acute traumatic neural injury: a CAnadian High-Resolution Traumatic Brain Injury (CAHR-TBI) Cohort Study. Crit Care 2024; 28:78. [PMID: 38486211 PMCID: PMC10938687 DOI: 10.1186/s13054-024-04859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Near-infrared spectroscopy regional cerebral oxygen saturation (rSO2) has gained interest as a raw parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed to identify threshold values of rSO2 and rSO2-based CVR at which outcomes worsened following traumatic brain injury (TBI). METHODS A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using rSO2 and cerebral perfusion pressure) as well as COx_a (using rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logistic regression, respectively. RESULTS In the cohort of 129 patients, there was no identifiable threshold for raw rSO2 at which outcomes were found to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival and favorable outcomes, while percent time above - 0.05 was uniformly found to have the best discriminative value. CONCLUSIONS In this multi-institutional cohort study, raw rSO2was found to contain no significant prognostic information. However, rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold of 0.2 and exposure-based threshold of - 0.05, above which clinical outcomes markedly worsened. This study lays the groundwork to transition to less invasive means of continuously measuring CVR.
Collapse
Affiliation(s)
- Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Donald Griesdale
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Eric P Thelin
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Levi van Iperenburg
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Jeanette Tas
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, University Maastricht, Maastricht, The Netherlands
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Clare Gallagher
- Section of Neurosurgery, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Francis Bernard
- Section of Critical Care, Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Andreas H Kramer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, University of Calgary, Calgary, AB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Gritti P, Bonfanti M, Zangari R, Bonanomi E, Farina A, Pezzetti G, Pelliccioli I, Longhi L, Di Matteo M, Viscone A, Lando G, Cavalleri G, Gerevini S, Biroli F, Lorini FL. Cerebral autoregulation in traumatic brain injury: ultra-low-frequency pressure reactivity index and intracranial pressure across age groups. Crit Care 2024; 28:33. [PMID: 38263241 PMCID: PMC10807228 DOI: 10.1186/s13054-024-04814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The ultra-low-frequency pressure reactivity index (UL-PRx) has been established as a surrogate method for bedside estimation of cerebral autoregulation (CA). Although this index has been shown to be a predictor of outcome in adult and pediatric patients with traumatic brain injury (TBI), a comprehensive evaluation of low sampling rate data collection (0.0033 Hz averaged over 5 min) on cerebrovascular reactivity has never been performed. OBJECTIVE To evaluate the performance and predictive power of the UL-PRx for 12-month outcome measures, alongside all International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) models and in different age groups. To investigate the potential for optimal cerebral perfusion pressure (CPPopt). METHODS Demographic data, IMPACT variables, in-hospital mortality, and Glasgow Outcome Scale Extended (GOSE) at 12 months were extracted. Filtering and processing of the time series and creation of the indices (cerebral intracranial pressure (ICP), cerebral perfusion pressure (CPP), UL-PRx, and deltaCPPopt (ΔCPPopt and CPPopt-CPP)) were performed using an in-house algorithm. Physiological parameters were assessed as follows: mean index value, % time above threshold, and mean hourly dose above threshold. RESULTS A total of 263 TBI patients were included: pediatric (17.5% aged ≤ 16 y) and adult (60.5% aged > 16 and < 70 y and 22.0% ≥ 70 y, respectively) patients. In-hospital and 12-month mortality were 25.9% and 32.7%, respectively, and 60.0% of patients had an unfavorable outcome at 12 months (GOSE). On univariate analysis, ICP, CPP, UL-PRx, and ΔCPPopt were associated with 12-month outcomes. The cutoff of ~ 20-22 for mean ICP and of ~ 0.30 for mean UL-PRx were confirmed in all age groups, except in patients older than 70 years. Mean UL-PRx remained significantly associated with 12-month outcomes even after adjustment for IMPACT models. This association was confirmed in all age groups. UL-PRx resulted associate with CPPopt. CONCLUSIONS The study highlights UL-PRx as a tool for assessing CA and valuable outcome predictor for TBI patients. The results emphasize the potential clinical utility of the UL-PRx and its adaptability across different age groups, even after adjustment for IMPACT models. Furthermore, the correlation between UL-PRx and CPPopt suggests the potential for more targeted treatment strategies. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05043545, principal investigator Paolo Gritti, date of registration 2021.08.21.
Collapse
Affiliation(s)
- Paolo Gritti
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | - Marco Bonfanti
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Rosalia Zangari
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ezio Bonanomi
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessia Farina
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Giulio Pezzetti
- Department of Neuroradiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Isabella Pelliccioli
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luca Longhi
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Maria Di Matteo
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Andrea Viscone
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Gabriele Lando
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Gaia Cavalleri
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Simonetta Gerevini
- Department of Neuroradiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Biroli
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ferdinando Luca Lorini
- Department of Anesthesia and Critical Care Medicine, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
17
|
Stein KY, Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Ibrahim Y, Islam A, Marquez I, Amenta F, Bergmann T, Zeiler FA. Time spent above optimal cerebral perfusion pressure is not associated with failure to improve in outcome in traumatic brain injury. Intensive Care Med Exp 2023; 11:92. [PMID: 38095819 PMCID: PMC10721751 DOI: 10.1186/s40635-023-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Optimal cerebral perfusion pressure (CPPopt) has emerged as a promising personalized medicine approach to the management of moderate-to-severe traumatic brain injury (TBI). Though literature demonstrating its association with poor outcomes exists, there is yet to be work done on its association with outcome transition due to a lack of serial outcome data analysis. In this study we investigate the association between various metrics of CPPopt and failure to improve in outcome over time. METHODS CPPopt was derived using three different cerebrovascular reactivity indices; the pressure reactivity index (PRx), the pulse amplitude index (PAx), and the RAC index. For each index, % times spent with cerebral perfusion pressure (CPP) above and below its CPPopt and upper and lower limits of reactivity were calculated. Patients were dichotomized based on improvement in Glasgow Outcome Scale-Extended (GOSE) scores into Improved vs. Not Improved between 1 and 3 months, 3 and 6 months, and 1- and 6-month post-TBI. Logistic regression analyses were then conducted, adjusting for the International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) variables. RESULTS This study included a total of 103 patients from the Winnipeg Acute TBI Database. Through Mann-Whitney U testing and logistic regression analysis, it was found that % time spent with CPP below CPPopt was associated with failure to improve in outcome, while % time spent with CPP above CPPopt was generally associated with improvement in outcome. CONCLUSIONS Our study supports the existing narrative that time spent with CPP below CPPopt results in poorer outcomes. However, it also suggests that time spent above CPPopt may not be associated with worse outcomes and is possibly even associated with improvement in outcome.
Collapse
Affiliation(s)
- Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Younis Ibrahim
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abrar Islam
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Tobias Bergmann
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Pan Am Clinic Foundation, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Brasil S, Godoy DA, Paiva WS. Doing More with Less on Intracranial Pressure Monitoring. World Neurosurg 2023; 178:93-95. [PMID: 37482089 DOI: 10.1016/j.wneu.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Intracranial pressure (ICP) management based on predetermined thresholds is not accurate in light of recent research on cerebrovascular physiology. Interpersonal and intrapersonal variations will lead ICP elevations to reach individualized thresholds for intracranial compliance impairment from one subject to another. Therefore reuniting the modern techniques of neuromonitoring besides ICP enables practitioners to have a more whole picture in anticipating neuro worsening and improving timing in decision making. METHODS Brief literature review. RESULTS For the severely brain-injured patient, current evidence indicates a personalized and physiology-based multimodal monitoring care to be required rather than decision making according to ICP predetermined cut-offs. CONCLUSIONS The authors' point of view is of particular importance for regions with resource heterogeneity and scarcity, where ICP monitoring is not available for all those in need and noninvasive techniques may provide a surrogate approach. If physicians who deal with acute-brain-injured patients in lower-resource areas understand that several tools besides ICP may improve their practice, it is possible to reduce acute brain injury morbimortality.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, São Paulo, Brazil.
| | - Daniel A Godoy
- Medical Director of Neurointensive Care Unit, Sanatório Pasteur, Catamarca, Argentina
| | - Wellingson S Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Hazenberg L, Aries M, Beqiri E, Mess WH, van Mook W, Delnoij T, Zeiler FA, van Kuijk S, Tas J. Are NIRS-derived cerebral autoregulation and ABPopt values different between hemispheres in hypoxic-ischemic brain injury patients following cardiac arrest? J Clin Monit Comput 2023; 37:1427-1430. [PMID: 37195622 DOI: 10.1007/s10877-023-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Near-infrared spectroscopy (NIRS) has been suggested as a non-invasive monitoring technique to set cerebral autoregulation (CA) guided ABP targets (ABPopt) in comatose patients with hypoxic-ischemic brain injury (HIBI) following cardiac arrest. We aimed to determine whether NIRS-derived CA and ABPopt values differ between left and right-sided recordings in these patients. METHODS Bifrontal regional oxygen saturation (rSO2) was measured using INVOS or Fore-Sight devices. The Cerebral Oximetry index (COx) was determined as a CA measure. ABPopt was calculated using a published algorithm with multi-window weighted approach. A paired Wilcoxon signed rank test and intraclass correlation coefficients (ICC) were used to compare (1) systematic differences and (2) degree of agreement between left and right-sided measurements. RESULTS Eleven patients were monitored. In one patient there was malfunctioning of the right-sided optode and in one patient not any ABPopt value was calculated. Comparison of rSO2 and COx was possible in ten patients and ABPopt in nine patients. The average recording time was 26 (IQR, 22-42) hours. The ABPopt values were not significantly different between the bifrontal recordings (80 (95%-CI 76-84) and 82 (95%-CI 75-84) mmHg) for the left and right recordings, p = 1.0). The ICC for ABPopt was high (0.95, 0.78-0.98, p < 0.001). Similar results were obtained for rSO2 and COx. CONCLUSION We found no differences between left and right-sided NIRS recordings or CA estimation in comatose and ventilated HIBI patients. This suggests that in these patients without signs of localized pathology unilateral recordings might be sufficient to estimate CA status or provide ABPopt targets.
Collapse
Affiliation(s)
- L Hazenberg
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Mjh Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - E Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - W H Mess
- Department of Clinical Neurophysiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Wnka van Mook
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Academy for Postgraduate Training, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Health Professions Education, Maastricht University, Maastricht, The Netherlands
| | - T Delnoij
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Manitoba, Canada
- Division of Anesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Smj van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Tas
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
20
|
Sarwal A, Robba C, Venegas C, Ziai W, Czosnyka M, Sharma D. Are We Ready for Clinical Therapy based on Cerebral Autoregulation? A Pro-con Debate. Neurocrit Care 2023; 39:269-283. [PMID: 37165296 DOI: 10.1007/s12028-023-01741-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Cerebral autoregulation (CA) is a physiological mechanism that maintains constant cerebral blood flow regardless of changes in cerebral perfusion pressure and prevents brain damage caused by hypoperfusion or hyperperfusion. In recent decades, researchers have investigated the range of systemic blood pressures and clinical management strategies over which cerebral vasculature modifies intracranial hemodynamics to maintain cerebral perfusion. However, proposed clinical interventions to optimize autoregulation status have not demonstrated clear clinical benefit. As future trials are designed, it is crucial to comprehend the underlying cause of our inability to produce robust clinical evidence supporting the concept of CA-targeted management. This article examines the technological advances in monitoring techniques and the accuracy of continuous assessment of autoregulation techniques used in intraoperative and intensive care settings today. It also examines how increasing knowledge of CA from recent clinical trials contributes to a greater understanding of secondary brain injury in many disease processes, despite the fact that the lack of robust evidence influencing outcomes has prevented the translation of CA-guided algorithms into clinical practice.
Collapse
Affiliation(s)
- Aarti Sarwal
- Atrium Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | | | - Carla Venegas
- Mayo Clinic School of Medicine, Jacksonville, FL, USA
| | - Wendy Ziai
- Johns Hopkins University School of Medicine and Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Cambridge University Hospital, Cambridge, UK
| | | |
Collapse
|
21
|
Stein KY, Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Ibrahim Y, Zeiler FA. Intracranial Pressure Monitoring and Treatment Thresholds in Acute Neural Injury: A Narrative Review of the Historical Achievements, Current State, and Future Perspectives. Neurotrauma Rep 2023; 4:478-494. [PMID: 37636334 PMCID: PMC10457629 DOI: 10.1089/neur.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Since its introduction in the 1960s, intracranial pressure (ICP) monitoring has become an indispensable tool in neurocritical care practice and a key component of the management of moderate/severe traumatic brain injury (TBI). The primary utility of ICP monitoring is to guide therapeutic interventions aimed at maintaining physiological ICP and preventing intracranial hypertension. The rationale for such ICP maintenance is to prevent secondary brain injury arising from brain herniation and inadequate cerebral blood flow. There exists a large body of evidence indicating that elevated ICP is associated with mortality and that aggressive ICP control protocols improve outcomes in severe TBI patients. Therefore, current management guidelines recommend a cerebral perfusion pressure (CPP) target range of 60-70 mm Hg and an ICP threshold of >20 or >22 mm Hg, beyond which therapeutic intervention should be initiated. Though our ability to achieve these thresholds has drastically improved over the past decades, there has been little to no change in the mortality and morbidity associated with moderate-severe TBI. This is a result of the "one treatment fits all" dogma of current guideline-based care that fails to take individual phenotype into account. The way forward in moderate-severe TBI care is through the development of continuously derived individualized ICP thresholds. This narrative review covers the topic of ICP monitoring in TBI care, including historical context/achievements, current monitoring technologies and indications, treatment methods, associations with patient outcome and multi-modal cerebral physiology, present controversies surrounding treatment thresholds, and future perspectives on personalized approaches to ICP-directed therapy.
Collapse
Affiliation(s)
- Kevin Y. Stein
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Younis Ibrahim
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Gritti P, Bonfanti M, Zangari R, Farina A, Longhi L, Rasulo FA, Bertuetti R, Biroli A, Biroli F, Lorini FL. Evaluation and Application of Ultra-Low-Resolution Pressure Reactivity Index in Moderate or Severe Traumatic Brain Injury. J Neurosurg Anesthesiol 2023; 35:313-321. [PMID: 35499152 DOI: 10.1097/ana.0000000000000847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/24/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The pressure reactivity index (PRx) has emerged as a surrogate method for the continuous bedside estimation of cerebral autoregulation and a predictor of unfavorable outcome after traumatic brain injury (TBI). However, calculation of PRx require continuous high-resolution monitoring currently limited to specialized intensive care units. The aim of this study was to evaluate a new index, the ultra-low-frequency PRx (UL-PRx) sampled at ∼0.0033 Hz at ∼5 minutes periods, and to investigate its association with outcome. METHODS Demographic data, admission Glasgow coma scale, in-hospital mortality and Glasgow outcome scale extended at 12 months were extracted from electronic records. The filtering and preparation of time series of intracranial pressure (ICP), mean arterial pressure and cerebral perfusion pressure (CPP), and calculation of the indices (UL-PRx, Δ-optimal CPP), were performed in MATLAB using an in-house algorithm. RESULTS A total of 164 TBI patients were included in the study; in-hospital and 12-month mortality was 29.3% and 38.4%, respectively, and 64% of patients had poor neurological outcome at 12 months. On univariate analysis, ICP, CPP, UL-PRx, and ΔCPPopt were associated with 12-month mortality. After adjusting for age, Glasgow coma scale, ICP and CPP, mean UL-PRx and UL-PRx thresholds of 0 and +0.25 remained associated with 12-month mortality. Similar findings were obtained for in-hospital mortality. For mean UL-PRx, the area under the receiver operating characteristic curves for in-hospital and 12-month mortality were 0.78 (95% confidence interval [CI]: 0.69-0.87; P <0.001) and 0.70 (95% CI: 0.61-0.79; P <0.001), respectively, and 0.65 (95% CI: 0.57-0.74; P =0.001) for 12-month neurological outcome. CONCLUSIONS Our findings indicate that ultra-low-frequency sampling might provide sufficient resolution to derive information about the state of cerebrovascular autoregulation and prediction of 12-month outcome in TBI patients.
Collapse
Affiliation(s)
- Paolo Gritti
- Department of Anesthesia and Critical Care Medicine
| | | | - Rosalia Zangari
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo
| | | | - Luca Longhi
- Department of Anesthesia and Critical Care Medicine
| | - Frank A Rasulo
- Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Rita Bertuetti
- Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Antonio Biroli
- Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | | |
Collapse
|
23
|
Beqiri E, Ercole A, Aries MJH, Placek MM, Tas J, Czosnyka M, Stocchetti N, Smielewski P. Towards autoregulation-oriented management after traumatic brain injury: increasing the reliability and stability of the CPPopt algorithm. J Clin Monit Comput 2023:10.1007/s10877-023-01009-1. [PMID: 37119323 PMCID: PMC10371880 DOI: 10.1007/s10877-023-01009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/01/2023] [Indexed: 05/01/2023]
Abstract
PURPOSE CPPopt denotes a Cerebral Perfusion Pressure (CPP) value at which the Pressure-Reactivity index, reflecting the global state of Cerebral Autoregulation, is best preserved. CPPopt has been investigated as a potential dynamically individualised CPP target in traumatic brain injury patients admitted in intensive care unit. The prospective bedside use of the concept requires ensured safety and reliability of the CPP recommended targets based on the automatically-generated CPPopt. We aimed to: Increase stability and reliability of the CPPopt automated algorithm by fine-tuning; perform outcome validation of the adjusted algorithm in a multi-centre TBI cohort. METHODS ICM + software was used to derive CPPopt and fine-tune the algorithm. Parameters for improvement of the algorithm were selected based on qualitative and quantitative assessment of stability and reliability metrics. Patients enrolled in the Collaborative European Neuro Trauma Effectiveness Research in TBI (CENTER-TBI) high-resolution cohort were included for retrospective validation. Yield and stability of the new algorithm were compared to the previous algorithm using Mann-U test. Area under the curves for mortality prediction at 6 months were compared with the DeLong Test. RESULTS CPPopt showed higher stability (p < 0.0001), but lower yield compared to the previous algorithm [80.5% (70-87.5) vs 85% (75.7-91.2), p < 0.001]. Deviation of CPPopt could predict mortality with an AUC of [AUC = 0.69 (95% CI 0.59-0.78), p < 0.001] and was comparable with the previous algorithm. CONCLUSION The CPPopt calculation algorithm was fine-tuned and adapted for prospective use with acceptable lower yield, improved stability and maintained prognostic power.
Collapse
Affiliation(s)
- Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Marcel J H Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - Michal M Placek
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jeanette Tas
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Nino Stocchetti
- Department of Anaesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Zubair AS, Sheth KN. Hemorrhagic Conversion of Acute Ischemic Stroke. Neurotherapeutics 2023; 20:705-711. [PMID: 37085684 PMCID: PMC10275827 DOI: 10.1007/s13311-023-01377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide; a serious complication of ischemic stroke is hemorrhagic transformation. Current treatment of acute ischemic stroke includes endovascular thrombectomy and thrombolytic therapy. Both of these treatment options are linked with increased risks of hemorrhagic conversion. The diagnosis and timely management of patients with hemorrhagic conversion is critically important to patient outcomes. This review aims to discuss hemorrhagic conversion of acute ischemic stroke including discussion of the pathophysiology, review of risk factors, imaging considerations, and treatment of patients with hemorrhagic conversion.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Kevin N Sheth
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Division of Neurocritical Care and Emergency Neurology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Gritti P, Bonfanti M, Zangari R, Bonanomi E, Pellicioli I, Mandelli P, Longhi L, Rasulo FA, Bertuetti R, Farina A, Biroli F, Lorini FL. Evaluation and application of ultra-low-frequency pressure reactivity index in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 2023; 165:865-874. [PMID: 36847979 DOI: 10.1007/s00701-023-05538-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE While clinical practice suggests that knowing the cerebral autoregulation (CA) status of traumatic brain injury (TBI) patients is crucial in assessing the best treatment, evidence in pediatric TBI (pTBI) is limited. The pressure reactivity index (PRx) is a surrogate method for the continuous estimation of CA in adults; however, calculations require continuous, high-resolution monitoring data. We evaluate an ultra-low-frequency pressure reactivity index (UL-PRx), based on data sampled at ∼5-min periods, and test its association with 6-month mortality and unfavorable outcome in a cohort of pTBI patients. METHODS Data derived from pTBI patients (0-18 years) requiring intracranial pressure (ICP) monitoring were retrospectively collected and processed in MATLAB using an in-house algorithm. RESULTS Data on 47 pTBI patients were included. UL-PRx mean values, ICP, cerebral perfusion pressure (CPP), and derived indices showed significant association with 6-month mortality and unfavorable outcome. A value of UL-PRx of 0.30 was identified as the threshold to better discriminate both surviving vs deceased patients (AUC: 0.90), and favorable vs unfavorable outcomes (AUC: 0.70) at 6 months. At multivariate analysis, mean UL-PRx and % time with ICP > 20 mmHg, remained significantly associated with 6-month mortality and unfavorable outcome, even when adjusted for International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)-Core variables. In six patients undergoing secondary decompressive craniectomy, no significant changes in UL-PRx were found after surgery. CONCLUSIONS UL-PRx is associated with a 6-month outcome even if adjusted for IMPACT-Core. Its application in pediatric intensive care unit could be useful to evaluate CA and offer possible prognostic and therapeutic implications in pTBI patients. CLINICALTRIALS GOV: NCT05043545, September 14, 2021, retrospectively registered.
Collapse
Affiliation(s)
- Paolo Gritti
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | - Marco Bonfanti
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Rosalia Zangari
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ezio Bonanomi
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Isabella Pellicioli
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Pietro Mandelli
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luca Longhi
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Frank A Rasulo
- Anesthesiology, Intensive Care and Emergency Medicine, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Rita Bertuetti
- Anesthesiology, Intensive Care and Emergency Medicine, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Alessia Farina
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Francesco Biroli
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ferdinando Luca Lorini
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
26
|
Brasil S, Nogueira RC, Salinet ASM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Contribution of intracranial pressure to human dynamic cerebral autoregulation after acute brain injury. Am J Physiol Regul Integr Comp Physiol 2023; 324:R216-R226. [PMID: 36572556 DOI: 10.1152/ajpregu.00252.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cerebral perfusion pressure (CPP) is normally expressed by the difference between mean arterial blood pressure (MAP) and intracranial pressure (ICP) but comparison of the separate contributions of MAP and ICP to human cerebral blood flow autoregulation has not been reported. In patients with acute brain injury (ABI), internal jugular vein compression (IJVC) was performed for 60 s. Dynamic cerebral autoregulation (dCA) was assessed in recordings of middle cerebral artery blood velocity (MCAv, transcranial Doppler), and invasive measurements of MAP and ICP. Patients were separated according to injury severity as having whole/undamaged skull, large fractures, or craniotomies, or following decompressive craniectomy. Glasgow coma score was not different for the three groups. IJVC induced changes in MCAv, MAP, ICP, and CPP in all three groups. The MCAv response to step changes in MAP and ICP expressed the dCA response to these two inputs and was quantified with the autoregulation index (ARI). In 85 patients, ARI was lower for the ICP input as compared with the MAP input (2.25 ± 2.46 vs. 3.39 ± 2.28; P < 0.0001), and particularly depressed in the decompressive craniectomy (DC) group (n = 24, 0.35 ± 0.62 vs. 2.21 ± 1.96; P < 0.0005). In patients with ABI, the dCA response to changes in ICP is less efficient than corresponding responses to MAP changes. These results should be taken into consideration in studies aimed to optimize dCA by manipulation of CPP in neurocritical patients.
Collapse
Affiliation(s)
- Sérgio Brasil
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Ricardo C Nogueira
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Angela S M Salinet
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Márcia H Yoshikawa
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Manoel J Teixeira
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Wellingson Paiva
- Department of Neurology, School of Medicine University of São Paulo, Brazil
| | - Luiz M S Malbouisson
- Department of Intensive Care, School of Medicine University of São Paulo, Brazil
| | | | - Ronney B Panerai
- Cardiovascular Sciences Department, University of Leicester, United Kingdom.,National Institute for Health and Care Research, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, United Kingdom
| |
Collapse
|
27
|
Dhaliwal P, Gomez A, Zeiler FA. Case report: Continuous spinal cord physiologic monitoring following traumatic spinal cord injury-A report from the Winnipeg Intraspinal Pressure Study (WISP). Front Neurol 2023; 14:1069623. [PMID: 37114219 PMCID: PMC10128987 DOI: 10.3389/fneur.2023.1069623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Acute traumatic spinal cord injury is routinely managed by surgical decompression and instrumentation of the spine. Guidelines also suggest elevating mean arterial pressure to 85 mmHg to mitigate secondary injury. However, the evidence for these recommendations remains very limited. There is now considerable interest in measuring spinal cord perfusion pressure by monitoring mean arterial pressure and intraspinal pressure. Here, we present our first institutional experience of using a strain gauge pressure transducer monitor to measure intraspinal pressure and subsequent derivation of spinal cord perfusion pressure. Case presentation The patient presented to medical attention after a fall off of scaffolding. A trauma assessment was completed at a local emergency room. He did not have any motor strength or sensation to the lower extremities. A computed tomography (CT) scan of the thoracolumbar spine confirmed a T12 burst fracture with retropulsion of bone fragments into the spinal canal. He was taken to surgery for urgent decompression of the spinal cord and instrumentation of the spine. A subdural strain gauge pressure monitor was placed at the site of injury through a small dural incision. Mean arterial pressure and intraspinal pressure were then monitored for 5 days after surgery. Spinal cord perfusion pressure was derived. The procedure was performed without complication and the patient underwent rehabilitation for 3 months where he regained some motor and sensory function in his lower extremities. Conclusion The first North American attempt at insertion of a strain gauge pressure monitor into the subdural space at the site of injury following acute traumatic spinal cord injury was performed successfully and without complication. Spinal cord perfusion pressure was derived successfully using this physiological monitoring. Further research efforts to validate this technique are required.
Collapse
Affiliation(s)
- Perry Dhaliwal
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Perry Dhaliwal,
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick Adam Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Park K, Stein KY, Thelin EP, Zeiler FA. Cerebrovascular Reactivity Is Not Associated With Therapeutic Intensity in Adult Traumatic Brain Injury: A Validation Study. Neurotrauma Rep 2023; 4:307-317. [PMID: 37187506 PMCID: PMC10181802 DOI: 10.1089/neur.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Address correspondence to: Logan Froese, BSc (Eng), Biomedical Engineering, Faculty of Engineering, University of Manitoba, 75 Chancellor's Circle, Winnipeg, Manitoba R3T 5V6, Canada;
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izzy Marquez
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kangyun Park
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric P. Thelin
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Frederick A. Zeiler
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
The utility of therapeutic hypothermia on cerebral autoregulation. JOURNAL OF INTENSIVE MEDICINE 2022; 3:27-37. [PMID: 36789361 PMCID: PMC9924009 DOI: 10.1016/j.jointm.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/07/2022]
Abstract
Cerebral autoregulation (CA) dysfunction is a strong predictor of clinical outcome in patients with acute brain injury (ABI). CA dysfunction is a potential pathologic defect that may lead to secondary injury and worse functional outcomes. Early therapeutic hypothermia (TH) in patients with ABI is controversial. Many factors, including patient selection, timing, treatment depth, duration, and rewarming strategy, impact its clinical efficacy. Therefore, optimizing the benefit of TH is an important issue. This paper reviews the state of current research on the impact of TH on CA function, which may provide the basis and direction for CA-oriented target temperature management.
Collapse
|
30
|
Abstract
The pressure reactivity index (PRx) is a parameter for the assessment of cerebrovascular autoregulation, but its calculation is affected by artifacts in the source biosignals—intracranial pressure (ICP) and arterial blood pressure. We sought to describe the most common short-duration artifacts and their effect on the PRx. A retrospective analysis of 935 h of multimodal monitoring data was conducted, and five types of artifacts, characterized by their shape, duration, and amplitude, were identified: rectangular, fast impulse, isoline drift, saw tooth, and constant ICP value. Subsequently, all types of artifacts were mathematically modeled and inserted into undisturbed segments of biosignals. Fast impulse, the most common artifact, did not alter the PRx index significantly when inserted into one or both signals. Artifacts present in one signal exceeded the threshold PRx in less than 5% of samples, except for isoline drift. Compared to that, the shortest rectangular artifact inserted into both signals changed PRx to a value above the set threshold in 55.4% of cases. Our analysis shows that the effect of individual artifacts on the PRx index is variable, depending on their occurrence in one or both signals, duration, and shape. This different effect suggests that potentially not all artifacts need to be removed.
Collapse
|
31
|
Tas J, Bos KDJ, Le Feber J, Beqiri E, Czosnyka M, Haeren R, van der Horst ICC, van Kuijk SMJ, Strauch U, Brady KM, Smielewski P, Aries MJH. Inducing oscillations in positive end-expiratory pressure improves assessment of cerebrovascular pressure reactivity in patients with traumatic brain injury. J Appl Physiol (1985) 2022; 133:585-592. [PMID: 35796613 PMCID: PMC9448337 DOI: 10.1152/japplphysiol.00199.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
The cerebral pressure reactivity index (PRx), through intracranial pressure (ICP) measurements, informs clinicians about the cerebral autoregulation (CA) status in adult-sedated patients with traumatic brain injury (TBI). Using PRx in clinical practice is currently limited by variability over shorter monitoring periods. We applied an innovative method to reduce the PRx variability by ventilator-induced slow (1/min) positive end-expiratory pressure (PEEP) oscillations. We hypothesized that, as seen in a previous animal model, the PRx variability would be reduced by inducing slow arterial blood pressure (ABP) and ICP oscillations without other clinically relevant physiological changes. Patients with TBI were ventilated with a static PEEP for 30 min (PRx period) followed by a 30-min period of slow [1/min (0.0167 Hz)] +5 cmH2O PEEP oscillations (induced (iPRx period). Ten patients with TBI were included. No clinical monitoring was discontinued and no additional interventions were required during the iPRx period. The PRx variability [measured as the standard deviation (SD) of PRx] decreased significantly during the iPRx period from 0.25 (0.22-0.30) to 0.14 (0.09-0.17) (P = 0.006). There was a power increase around the induced frequency (1/min) for both ABP and ICP (P = 0.002). In conclusion, 1/min PEEP-induced oscillations reduced the PRx variability in patients with TBI with ICP levels <22 mmHg. No other clinically relevant physiological changes were observed. Reduced PRx variability might improve CA-guided perfusion management by reducing the time to find "optimal" perfusion pressure targets. Larger studies with prolonged periods of PEEP-induced oscillations are required to take it to routine use.NEW & NOTEWORTHY Cerebral autoregulation assessment requires sufficient slow arterial blood pressure (ABP) waves. However, spontaneous ABP waves may be insufficient for reliable cerebral autoregulation estimations. Therefore, we applied a ventilator "sigh-function" to generate positive end-expiratory pressure oscillations that induce slow ABP waves. This method demonstrated a reduced variability of the pressure reactivity index, commonly used as continuous cerebral autoregulation measure in a traumatic brain injury population.
Collapse
Affiliation(s)
- Jeanette Tas
- Department of Intensive Care Medicine, University Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, The Netherlands
| | - Kirsten D J Bos
- Department of Intensive Care Medicine, University Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Joost Le Feber
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Roel Haeren
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, The Netherlands
- Department of Neurosurgery, University Maastricht, Maastricht University Medical Center+ Maastricht, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, University Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ulrich Strauch
- Department of Intensive Care Medicine, University Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ken M Brady
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Marcel J H Aries
- Department of Intensive Care Medicine, University Maastricht, Maastricht University Medical Center+, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), University Maastricht, Maastricht, The Netherlands
| |
Collapse
|
32
|
Froese L, Gomez A, Sainbhi AS, Batson C, Slack T, Stein KY, Mathieu F, Zeiler FA. Optimal bispectral index level of sedation and cerebral oximetry in traumatic brain injury: a non-invasive individualized approach in critical care? Intensive Care Med Exp 2022; 10:33. [PMID: 35962913 PMCID: PMC9375800 DOI: 10.1186/s40635-022-00460-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Impaired cerebral autoregulation has been linked with worse outcomes, with literature suggesting that current therapy guidelines fail to significantly impact cerebrovascular reactivity. The cerebral oximetry index (COx_a) is a surrogate measure of cerebrovascular reactivity which can in theory be obtained non-invasively using regional brain tissue oxygen saturation and arterial blood pressure. The goal of this study was to assess the relationship between objectively measured depth of sedation through BIS and autoregulatory capacity measured through COx_a. Methods In a prospectively maintained observational study, we collected continuous regional brain tissue oxygen saturation, intracranial pressure, arterial blood pressure and BIS in traumatic brain injury patients. COx_a was obtained using the Pearson’s correlation between regional brain tissue oxygen saturation and arterial blood pressure and ranges from − 1 to 1 with higher values indicating impairment of cerebrovascular reactivity. Using BIS values and COx_a, a curve-fitting method was applied to determine the minimum value for the COx_a. The associated BIS value with the minimum COx_a is called BISopt. This BISopt was both visually and algorithmically determined, which were compared and assessed over the whole dataset. Results Of the 42 patients, we observed that most had a parabolic relationship between BIS and COx_a. This suggests a potential “optimal” depth of sedation where COx_a is the most intact. Furthermore, when comparing the BISopt algorithm with visual inspection of BISopt, we obtained similar results. Finally, BISopt % yield (determined algorithmically) appeared to be independent from any individual sedative or vasopressor agent, and there was agreement between BISopt found with COx_a and the pressure reactivity index (another surrogate for cerebrovascular reactivity). Conclusions This study suggests that COx_a is capable of detecting disruption in cerebrovascular reactivity which occurs with over-/under-sedation, utilizing a non-invasive measure of determination and assessment. This technique may carry implications for tailoring sedation in patients, focusing on individualized neuroprotection. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-022-00460-9.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Trevor Slack
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
34
|
Comparison of different metrics of cerebral autoregulation in association with major morbidity and mortality after cardiac surgery. Br J Anaesth 2022; 129:22-32. [PMID: 35597624 PMCID: PMC9428920 DOI: 10.1016/j.bja.2022.03.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cardiac surgery studies have established the clinical relevance of personalised arterial blood pressure management based on cerebral autoregulation. However, variabilities exist in autoregulation evaluation. We compared the association of several cerebral autoregulation metrics, calculated using different methods, with outcomes after cardiac surgery. METHODS Autoregulation was measured during cardiac surgery in 240 patients. Mean flow index and cerebral oximetry index were calculated as Pearson's correlations between mean arterial pressure (MAP) and transcranial Doppler blood flow velocity or near-infrared spectroscopy signals. The lower limit of autoregulation and optimal mean arterial pressure were identified using mean flow index and cerebral oximetry index. Regression models were used to examine associations of area under curve and duration of mean arterial pressure below thresholds with stroke, acute kidney injury (AKI), and major morbidity and mortality. RESULTS Both mean flow index and cerebral oximetry index identified the cerebral lower limit of autoregulation below which MAP was associated with a higher incidence of AKI and major morbidity and mortality. Based on magnitude and significance of the estimates in adjusted models, the area under curve of MAP < lower limit of autoregulation had the strongest association with AKI and major morbidity and mortality. The odds ratio for area under the curve of MAP < lower limit of autoregulation was 1.05 (95% confidence interval, 1.01-1.09), meaning every 1 mm Hg h increase of area under the curve was associated with an average increase in the odds of AKI by 5%. CONCLUSIONS For cardiac surgery patients, area under curve of MAP < lower limit of autoregulation using mean flow index or cerebral oximetry index had the strongest association with AKI and major morbidity and mortality. Trials are necessary to evaluate this target for MAP management.
Collapse
|
35
|
Kirschen MP, Majmudar T, Diaz-Arrastia R, Berg R, Abella BS, Topjian A, Balu R. Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest. Resuscitation 2022; 175:81-87. [PMID: 35276311 PMCID: PMC9135307 DOI: 10.1016/j.resuscitation.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
AIM Pressure reactivity index (PRx) provides a surrogate measurement of cerebrovascular autoregulation (CAR). We determined whether deviations from PRx-derived optimal mean arterial pressure (MAPopt) were associated with in-hospital mortality after adult cardiac arrest. METHODS Retrospective analysis of post-cardiac arrest patients who had continuously recorded intracranial pressure (ICP) and MAP. PRx was calculated as a moving, linear correlation between ICP and MAP. Impaired CAR was defined as PRx ≥ 0.3. MAPopt was calculated using a multi-window weighted algorithm. The burdens of MAP < 5 mmHg below MAPopt (MAPopt-5) and > 5 mmHg above MAPopt (MAPopt + 5) were calculated by integrating the area between MAP and MAPopt-5 or MAPopt + 5 curves, respectively. Univariate logistic regression tested the association between burden of MAP < MAPopt-5 and outcome. RESULTS Twenty-two patients were analyzed. Thirteen (59%) patients died before hospital discharge. Time (median [IQR]) between ROSC and monitoring initiation was 16 [14, 21] hours and duration of monitoring was 35 [22, 48] hours; neither differed between survivors and non-survivors. Median MAPopt was 89 [85, 97] mmHg and did not differ between survivors and non-survivors (89 [83, 94] vs. 91 [85, 105] mmHg, p = 0.64). Burden of MAP < MAPopt-5 was greater for non-survivors compared to survivors (OR 3.6 [95% CI 1.2-15.6]). Range of intact CAR (upper-lower limit) was narrower for non-survivors when compared to survivors (5 [0, 22] vs. 24 [7, 36] mmHg, p = 0.03). CONCLUSION A greater burden of MAP below PRx-derived MAPopt-5 was associated with mortality after cardiac arrest. Non-survivors had a narrower range of intact CAR than survivors.
Collapse
Affiliation(s)
- Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, United States.
| | | | | | - Robert Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, United States
| | - Benjamin S Abella
- Department of Emergency Medicine, University of Pennsylvania, United States; Center for Resuscitation Science, University of Pennsylvania, United States
| | - Alexis Topjian
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, United States
| | - Ramani Balu
- Department of Emergency Medicine, University of Pennsylvania, United States; Center for Resuscitation Science, University of Pennsylvania, United States
| |
Collapse
|
36
|
Evaluation and Application of Ultra-Low-Resolution Pressure Reactivity Index in Moderate or Severe Traumatic Brain Injury. J Neurosurg Anesthesiol 2022. [DOI: 10.1097/ana.0000000000000847 10.1097/ana.0000000000000847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
37
|
Casault C, Couillard P, Kromm J, Rosenthal E, Kramer A, Brindley P. Multimodal brain monitoring following traumatic brain injury: A primer for intensive care practitioners. J Intensive Care Soc 2022; 23:191-202. [PMID: 35615230 PMCID: PMC9125434 DOI: 10.1177/1751143720980273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Traumatic brain injury (TBI) is common and potentially devastating. Traditional examination-based patient monitoring following TBI may be inadequate for frontline clinicians to reduce secondary brain injury through individualized therapy. Multimodal neurologic monitoring (MMM) offers great potential for detecting early injury and improving outcomes. By assessing cerebral oxygenation, autoregulation and metabolism, clinicians may be able to understand neurophysiology during acute brain injury, and offer therapies better suited to each patient and each stage of injury. Hence, we offer this primer on brain tissue oxygen monitoring, pressure reactivity index monitoring and cerebral microdialysis. This narrative review serves as an introductory guide to the latest clinically-relevant evidence regarding key neuromonitoring techniques.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
| | - Philippe Couillard
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Julie Kromm
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Eric Rosenthal
- Department of Critical Care
Medicine, University of Alberta, Edmonton, Canada
| | - Andreas Kramer
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Peter Brindley
- Department of Neurology, Harvard
University, Boston, MA, USA
| |
Collapse
|
38
|
Mainali S, Cardim D, Sarwal A, Merck LH, Yeatts SD, Czosnyka M, Shutter L. Prolonged Automated Robotic TCD Monitoring in Acute Severe TBI: Study Design and Rationale. Neurocrit Care 2022; 37:267-275. [PMID: 35381966 DOI: 10.1007/s12028-022-01483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transcranial Doppler ultrasonography (TCD) is a portable, bedside, noninvasive diagnostic tool used for the real-time assessment of cerebral hemodynamics. Despite the evident utility of TCD and the ability of this technique to function as a stethoscope to the brain, its use has been limited to specialized centers because of the dearth of technical and clinical expertise required to acquire and interpret the cerebrovascular parameters. Additionally, the conventional pragmatic episodic TCD monitoring protocols lack dynamic real-time feedback to guide time-critical clinical interventions. Fortunately, with the recent advent of automated robotic TCD technology in conjunction with the automated software for TCD data processing, we now have the technology to automatically acquire TCD data and obtain clinically relevant information in real-time. By obviating the need for highly trained clinical personnel, this technology shows great promise toward a future of widespread noninvasive monitoring to guide clinical care in patients with acute brain injury. METHODS Here, we describe a proposal for a prospective observational multicenter clinical trial to evaluate the safety and feasibility of prolonged automated robotic TCD monitoring in patients with severe acute traumatic brain injury (TBI). We will enroll patients with severe non-penetrating TBI with concomitant invasive multimodal monitoring including, intracranial pressure, brain tissue oxygenation, and brain temperature monitoring as part of standard of care in centers with varying degrees of TCD availability and experience. Additionally, we propose to evaluate the correlation of pertinent TCD-based cerebral autoregulation indices such as the critical closing pressure, and the pressure reactivity index with the brain tissue oxygenation values obtained invasively. CONCLUSIONS The overarching goal of this study is to establish safety and feasibility of prolonged automated TCD monitoring for patients with TBI in the intensive care unit and identify clinically meaningful and pragmatic noninvasive targets for future interventions.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, Virginial Commonwealth University, Richmond, VA, USA.
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aarti Sarwal
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lisa H Merck
- Departments of Emergency Medicine and Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sharon D Yeatts
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marek Czosnyka
- Brain Physics Laboratory, Neurosurgical Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lori Shutter
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Individualized cerebral perfusion pressure in acute neurological injury: are we ready for clinical use? Curr Opin Crit Care 2022; 28:123-129. [PMID: 35058408 DOI: 10.1097/mcc.0000000000000919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Individualizing cerebral perfusion pressure based on cerebrovascular autoregulation assessment is a promising concept for neurological injuries where autoregulation is typically impaired. The purpose of this review is to describe the status quo of autoregulation-guided protocols and discuss steps towards clinical use. RECENT FINDINGS Retrospective studies have indicated an association of impaired autoregulation and poor clinical outcome in traumatic brain injury (TBI), hypoxic-ischemic brain injury (HIBI) and aneurysmal subarachnoid hemorrhage (aSAH). The feasibility and safety to target a cerebral perfusion pressure optimal for cerebral autoregulation (CPPopt) after TBI was recently assessed by the COGITATE trial. Similarly, the feasibility to calculate a MAP target (MAPopt) based on near-infrared spectroscopy was demonstrated for HIBI. Failure to meet CPPopt is associated with the occurrence of delayed cerebral ischemia in aSAH but interventional trials in this population are lacking. No level I evidence is available on potential effects of autoregulation-guided protocols on clinical outcomes. SUMMARY The effect of autoregulation-guided management on patient outcomes must still be demonstrated in prospective, randomized, controlled trials. Selection of disease-specific protocols and endpoints may serve to evaluate the overall benefit from such approaches.
Collapse
|
40
|
Nogueira RC, Aries M, Minhas JS, H Petersen N, Xiong L, Kainerstorfer JM, Castro P. Review of studies on dynamic cerebral autoregulation in the acute phase of stroke and the relationship with clinical outcome. J Cereb Blood Flow Metab 2022; 42:430-453. [PMID: 34515547 PMCID: PMC8985432 DOI: 10.1177/0271678x211045222] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acute stroke is associated with high morbidity and mortality. In the last decades, new therapies have been investigated with the aim of improving clinical outcomes in the acute phase post stroke onset. However, despite such advances, a large number of patients do not demonstrate improvement, furthermore, some unfortunately deteriorate. Thus, there is a need for additional treatments targeted to the individual patient. A potential therapeutic target is interventions to optimize cerebral perfusion guided by cerebral hemodynamic parameters such as dynamic cerebral autoregulation (dCA). This narrative led to the development of the INFOMATAS (Identifying New targets FOr Management And Therapy in Acute Stroke) project, designed to foster interventions directed towards understanding and improving hemodynamic aspects of the cerebral circulation in acute cerebrovascular disease states. This comprehensive review aims to summarize relevant studies on assessing dCA in patients suffering acute ischemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage. The review will provide to the reader the most consistent findings, the inconsistent findings which still need to be explored further and discuss the main limitations of these studies. This will allow for the creation of a research agenda for the use of bedside dCA information for prognostication and targeted perfusion interventions.
Collapse
Affiliation(s)
- Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Department of Neurology, Hospital Nove de Julho, São Paulo, Brazil
| | - Marcel Aries
- Department of Intensive Care, University of Maastricht, Maastricht University Medical Center+, School for Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nils H Petersen
- Department of Neurology, Yale University School of Medicine, New Haven, USA
| | - Li Xiong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jana M Kainerstorfer
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
| | - Pedro Castro
- Department of Neurology, Faculty of Medicine of University of Porto, Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
41
|
Bittencourt Rynkowski C, Caldas J. Ten Good Reasons to Practice Neuroultrasound in Critical Care Setting. Front Neurol 2022; 12:799421. [PMID: 35095741 PMCID: PMC8793827 DOI: 10.3389/fneur.2021.799421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
In the beginning, cerebral ultrasound (US) was not considered feasible because the intact skull was a seemingly impenetrable obstacle. For this reason, obtaining a clear image resolution had been a challenge since the first use of neuroultrasound (NUS) for the assessment of small deep brain structures. However, the improvements in transducer technologies and advances in signal processing have refined the image resolution, and the role of NUS has evolved as an imaging modality for the brain parenchyma within multiple pathologies. This article summarizes ten crucial applications of cerebral ultrasonography for the evaluation and management of neurocritical patients, whose transfer from and to intensive care units poses a real problem to medical care staff. This also encompasses ease of use, low cost, wide acceptance by patients, no radiation risk, and relative independence from movement artifacts. Bedsides, availability and reliability raised the interest of critical care intensivists in using it with increasing frequency. In this mini-review, the usefulness and the advantages of US in the neurocritical care setting are discussed regarding ten aspects to encourage the intensivist physician to practice this important tool.
Collapse
Affiliation(s)
- Carla Bittencourt Rynkowski
- Intensive Care Unit of Cristo Redentor Hospital, Porto Alegre, Brazil.,Intensive Care Unit, Hospital Ernesto Dornelles, Porto Alegre, Brazil
| | - Juliana Caldas
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil.,Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Brazil
| |
Collapse
|
42
|
Optimal Cerebral Perfusion Pressure During Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Crit Care Med 2022; 50:183-191. [PMID: 35100191 DOI: 10.1097/ccm.0000000000005396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The recommendation of induced hypertension for delayed cerebral ischemia treatment after aneurysmal subarachnoid hemorrhage has been challenged recently and ideal pressure targets are missing. A new concept advocates an individual cerebral perfusion pressure where cerebral autoregulation functions best to ensure optimal global perfusion. We characterized optimal cerebral perfusion pressure at time of delayed cerebral ischemia and tested the conformity of induced hypertension with this target value. DESIGN Retrospective analysis of prospectively collected data. SETTING University hospital neurocritical care unit. PATIENTS Thirty-nine aneurysmal subarachnoid hemorrhage patients with invasive neuromonitoring (20 with delayed cerebral ischemia, 19 without delayed cerebral ischemia). INTERVENTIONS Induced hypertension greater than 180 mm Hg systolic blood pressure. MEASUREMENTS AND MAIN RESULTS Changepoint analysis was used to calculate significant changes in cerebral perfusion pressure, optimal cerebral perfusion pressure, and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure 48 hours before delayed cerebral ischemia diagnosis. Optimal cerebral perfusion pressure increased 30 hours before the onset of delayed cerebral ischemia from 82.8 ± 12.5 to 86.3 ± 11.4 mm Hg (p < 0.05). Three hours before delayed cerebral ischemia, a changepoint was also found in the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure (decrease from -0.2 ± 11.2 to -7.7 ± 7.6 mm Hg; p < 0.05) with a corresponding increase in pressure reactivity index (0.09 ± 0.33 to 0.19 ± 0.37; p < 0.05). Cerebral perfusion pressure at time of delayed cerebral ischemia was lower than in patients without delayed cerebral ischemia in a comparable time frame (cerebral perfusion pressure delayed cerebral ischemia 81.4 ± 8.3 mm Hg, no delayed cerebral ischemia 90.4 ± 10.5 mm Hg; p < 0.05). Inducing hypertension resulted in a cerebral perfusion pressure above optimal cerebral perfusion pressure (+12.4 ± 8.3 mm Hg; p < 0.0001). Treatment response (improvement of delayed cerebral ischemia: induced hypertension+ [n = 15] or progression of delayed cerebral ischemia: induced hypertension- [n = 5]) did not correlate to either absolute values of cerebral perfusion pressure or optimal cerebral perfusion pressure, nor the resulting difference (cerebral perfusion pressure [p = 0.69]; optimal cerebral perfusion pressure [p = 0.97]; and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure [p = 0.51]). CONCLUSIONS At the time of delayed cerebral ischemia occurrence, there is a significant discrepancy between cerebral perfusion pressure and optimal cerebral perfusion pressure with worsening of autoregulation, implying inadequate but identifiable individual perfusion. Standardized induction of hypertension resulted in cerebral perfusion pressures that exceeded individual optimal cerebral perfusion pressure in delayed cerebral ischemia patients. The potential benefit of individual blood pressure management guided by autoregulation-based optimal cerebral perfusion pressure should be explored in future intervention studies.
Collapse
|
43
|
Batson C, Stein KY, Gomez A, Sainbhi AS, Froese L, Alizadeh A, Mathieu F, Zeiler FA. Intracranial Pressure-Derived Cerebrovascular Reactivity Indices, Chronological Age, and Biological Sex in Traumatic Brain Injury: A Scoping Review. Neurotrauma Rep 2022; 3:44-56. [PMID: 35112107 PMCID: PMC8804238 DOI: 10.1089/neur.2021.0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To date, there has been limited literature exploring the association between age and sex with cerebrovascular reactivity (CVR) in moderate/severe traumatic brain injury (TBI). Given the known link between age, sex, and cerebrovascular function, knowledge of the impacts on continuously assessed CVR is critical for the development of future therapeutics. We conducted a scoping review of the literature for studies that had a direct statistical interrogation of the relationship between age, sex, and continuous intracranial pressure (ICP)-based indices of CVR in moderate/severe TBI. The ICP-based indices researched included: pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC. MEDLINE, BIOSIS, EMBASE, SCOPUS, Global Health, and the Cochrane library were searched from inception to June 2021 for relevant articles. A total of 10 original studies fulfilled our inclusion criteria. Nine of the articles documented a correlation between advanced age and worse CVR, with eight using PRx (2192 total patients), three using PAx (978 total patients), and one using RAC (358 total patients), p < 0.05; R ranging from 0.17 to 0.495 for all indices across all studies. Three articles (1256 total patients) displayed a correlation between biological sex and PRx, with females trending towards higher PRx values (p < 0.05) in the limited available literature. However, no literature exists comparing PAx or RAC with biological sex. Findings showed that aging was associated with impaired CVR. We observed a trend between female sex and worse PRx values, but the literature was limited and statistical significance was borderline. The identified studies were few in number, carried significant population heterogeneity, and utilized grand averaging of large epochs of physiology during statistical comparisons with age and biological sex. Because of the heterogeneous nature of TBI populations and limited focus on the effects of age and sex on outcomes in TBI, it is challenging to highlight the differences between the indices and patient age groups and sex. The largest study showing an association between PRx and age was done by Zeiler and colleagues, where 165 patients were studied noting that patients with a mean PRx value above zero had a mean age above 51.4 years versus a mean age of 41.4 years for those with a mean PRx value below zero (p = 0.0007). The largest study showing an association between PRx and sex was done by Czosnyka and colleagues, where 469 patients were studied noting that for patients <50 years of age, PRx was worse in females (0.11 ± 0.047) compared to males (0.044 ± 0.031), p < 0.05. The findings from these 10 studies provide preliminary data, but are insufficient to definitively characterize the impact of age and sex on CVR in moderate/severe TBI. Future work in the field should focus on the impact of age and sex on multi-modal cerebral physiological monitoring.
Collapse
Affiliation(s)
- Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Klein SP, De Sloovere V, Meyfroidt G, Depreitere B. Differential Hemodynamic Response of Pial Arterioles Contributes to a Quadriphasic Cerebral Autoregulation Physiology. J Am Heart Assoc 2022; 11:e022943. [PMID: 34935426 PMCID: PMC9075199 DOI: 10.1161/jaha.121.022943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/03/2021] [Indexed: 12/28/2022]
Abstract
Background Cerebrovascular autoregulation (CA) regulates cerebral vascular tone to maintain near-constant cerebral blood flow during fluctuations in cerebral perfusion pressure (CPP). Preclinical and clinical research has challenged the classic triphasic pressure-flow relationship, leaving the normal pressure-flow relationship unclear. Methods and Results We used in vivo imaging of the hemodynamic response in pial arterioles to study CA in a porcine closed cranial window model during nonpharmacological blood pressure manipulation. Red blood cell flux was determined in 52 pial arterioles during 10 hypotension and 10 hypertension experiments to describe the pressure-flow relationship. We found a quadriphasic pressure-flow relationship with 4 distinct physiological phases. Smaller arterioles demonstrated greater vasodilation during low CPP when compared with large arterioles (P<0.01), whereas vasoconstrictive capacity during high CPP was not significantly different between arterioles (P>0.9). The upper limit of CA was defined by 2 breakpoints. Increases in CPP lead to a point of maximal vasoconstriction of the smallest pial arterioles (upper limit of autoregulation [ULA] 1). Beyond ULA1, only larger arterioles maintain a limited additional vasoconstrictive capacity, extending the buffer for high CPP. Beyond ULA2, vasoconstrictive capacity is exhausted, and all pial arterioles passively dilate. There was substantial intersubject variability, with ranges of 29.2, 47.3, and 50.9 mm Hg for the lower limit, ULA1, and ULA2, respectively. Conclusions We provide new insights into the quadriphasic physiology of CA, differentiating between truly active CA and an extended capacity to buffer increased CPP with progressive failure of CA. In this experimental model, the limits of CA widely varied between subjects.
Collapse
Affiliation(s)
- Samuel P. Klein
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | | | - Geert Meyfroidt
- Department of Intensive Care MedicineUniversity Hospitals LeuvenLeuvenBelgium
| | - Bart Depreitere
- Department of NeurosurgeryUniversity Hospitals LeuvenLeuvenBelgium
| |
Collapse
|
45
|
Luostarinen T, Vehviläinen J, Lindfors M, Reinikainen M, Bendel S, Laitio R, Hoppu S, Ala-Kokko T, Skrifvars M, Raj R. Trends in mortality after intensive care of patients with traumatic brain injury in Finland from 2003 to 2019: a Finnish Intensive Care Consortium study. Acta Neurochir (Wien) 2022; 164:87-96. [PMID: 34725728 PMCID: PMC8761133 DOI: 10.1007/s00701-021-05034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/16/2021] [Indexed: 11/28/2022]
Abstract
Background Several studies have suggested no change in the outcome of patients with traumatic brain injury (TBI) treated in intensive care units (ICUs). This is mainly due to the shift in TBI epidemiology toward older and sicker patients. In Finland, the share of the population aged 65 years and over has increased the most in Europe during the last decade. We aimed to assess changes in 12-month and hospital mortality of patients with TBI treated in the ICU in Finland. Methods We used a national benchmarking ICU database (Finnish Intensive Care Consortium) to study adult patients who had been treated for TBI in four tertiary ICUs in Finland during 2003–2019. We divided admission years into quartiles and used multivariable logistic regression analysis, adjusted for case-mix, to assess the association between admission year and mortality. Results A total of 4535 patients were included. Between 2003–2007 and 2016–2019, the patient median age increased from 54 to 62 years, the share of patients having significant comorbidity increased from 8 to 11%, and patients being dependent on help in activities of daily living increased from 7 to 15%. Unadjusted hospital and 12-month mortality decreased from 18 and 31% to 10% and 23%, respectively. After adjusting for case-mix, a reduction in odds of 12-month and hospital mortality was seen in patients with severe TBI, intracranial pressure monitored patients, and mechanically ventilated patients. Despite a reduction in hospital mortality, 12-month mortality remained unchanged in patients aged ≥ 70 years. Conclusion A change in the demographics of ICU-treated patients with TBI care is evident. The outcome of younger patients with severe TBI appears to improve, whereas long-term mortality of elderly patients with less severe TBI has not improved. This has ramifications for further efforts to improve TBI care, especially among the elderly. Supplementary Information The online version contains supplementary material available at 10.1007/s00701-021-05034-4.
Collapse
Affiliation(s)
- Teemu Luostarinen
- Anaesthesiology and Intensive Care, Hyvinkää Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| | - Juho Vehviläinen
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Matias Lindfors
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Matti Reinikainen
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
| | - Stepani Bendel
- Department of Anaesthesiology and Intensive Care, Kuopio University Hospital & University of Eastern Finland, Kuopio, Finland
| | - Ruut Laitio
- Department of Perioperative Services, Intensive Care and Pain Management, Turku University Hospital & University of Turku, Turku, Finland
| | - Sanna Hoppu
- Department of Intensive Care and Emergency Medicine Services, Tampere University Hospital & University of Tampere, Tampere, Finland
| | - Tero Ala-Kokko
- Department of Intensive Care, Oulu University Hospital & University of Oulu, Oulu, Finland
| | - Markus Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Robba C, Cardim D, Ball L, Battaglini D, Dabrowski W, Bassetti M, Giacobbe DR, Czosnyka M, Badenes R, Pelosi P, Matta B. The Use of Different Components of Brain Oxygenation for the Assessment of Cerebral Haemodynamics: A Prospective Observational Study on COVID-19 Patients. Front Neurol 2021; 12:735469. [PMID: 34987461 PMCID: PMC8722102 DOI: 10.3389/fneur.2021.735469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction: The role of near-infrared spectroscopy (NIRS) for the evaluation of cerebral haemodynamics is gaining increasing popularity because of its noninvasive nature. The aim of this study was to evaluate the role of the integral components of regional cerebral oxygenation (rSO2) measured by NIRS [i.e., arterial-oxyhemoglobin (O2Hbi) and venous-deoxyhemoglobin (HHbi)-components], as indirect surrogates of cerebral blood flow (CBF) in a cohort of critically ill patients with coronavirus disease 2019 (COVID-19). We compared these findings to the gold standard technique for noninvasive CBF assessment, Transcranial Doppler (TCD). Methods: Mechanically ventilated patients with COVID-19 admitted to the Intensive Care Unit (ICU) of Policlinico San Martino Hospital, Genova, Italy, who underwent multimodal neuromonitoring (including NIRS and TCD), were included. rSO2 and its components [relative changes in O2Hbi, HHbi, and total haemoglobin (cHbi)] were compared with TCD (cerebral blood flow velocity, CBFV). Changes (Δ) in CBFV and rSO2, ΔO2Hbi, ΔHHbi, and ΔcHbi after systemic arterial blood pressure (MAP) modifications induced by different manoeuvres (e.g., rescue therapies and haemodynamic manipulation) were assessed using mixed-effect linear regression analysis and repeated measures correlation coefficients. All values were normalised as percentage changes from the baseline (Δ%). Results: One hundred and four measurements from 25 patients were included. Significant effects of Δ%MAP on Δ%CBF were observed after rescue manoeuvres for CBFV, ΔcHbi, and ΔO2Hbi. The highest correlation was found between ΔCBFV and ΔΔO2Hbi (R = 0.88, p < 0.0001), and the poorest between ΔCBFV and ΔΔHHbi (R = 0.34, p = 0.002). Conclusions: ΔO2Hbi had the highest accuracy to assess CBF changes, reflecting its role as the main component for vasomotor response after changes in MAP. The use of indexes derived from the different components of rSO2 can be useful for the bedside evaluation of cerebral haemodynamics in mechanically ventilated patients with COVID-19.
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Denise Battaglini
- San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Wojciech Dabrowski
- Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy,Infectious Diseases Unit, Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Marek Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Neurosurgery Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rafael Badenes
- Department of Anesthesia and Intensive Care, Hospital Clinic Universitari, INCLIVA Research Health Institute, University of Valencia, Valencia, Spain,*Correspondence: Rafael Badenes
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy,San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
47
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
Svedung Wettervik T, Fahlström M, Enblad P, Lewén A. Cerebral Pressure Autoregulation in Brain Injury and Disorders-A Review on Monitoring, Management, and Future Directions. World Neurosurg 2021; 158:118-131. [PMID: 34775084 DOI: 10.1016/j.wneu.2021.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The role of cerebral pressure autoregulation (CPA) in brain injury and disorders has gained increased interest. The CPA is often disturbed as a consequence of acute brain injury, which contributes to further brain damage and worse outcome. Specifically, in severe traumatic brain injury, CPA disturbances predict worse clinical outcome and targeting an autoregulatory-oriented optimal cerebral perfusion pressure threshold may improve brain energy metabolism and clinical outcome. In aneurysmal subarachnoid hemorrhage, cerebral vasospasm in combination with distal autoregulatory disturbances precipitate delayed cerebral ischemia. The role of optimal cerebral perfusion pressure targets is less clear in aneurysmal subarachnoid hemorrhage, but high cerebral perfusion pressure targets are generally favorable in the vasospasm phase. In acute ischemia, autoregulatory disturbances may occur and autoregulatory-oriented blood pressure (optimal mean arterial pressure) management reduces the risk of hemorrhagic transformation, brain edema, and unfavorable outcome. In chronic occlusive disease such as moyamoya, the gradual reduction of the cerebral circulation leads to compensatory distal vasodilation and the residual CPA capacity predicts the risk for cerebral ischemia. In spontaneous intracerebral hemorrhage, the role of autoregulatory disturbances is less clear, but CPA disturbances correlate with worse clinical outcome. Also, in community-acquired bacterial meningitis, CPA dysfunction is frequent and correlates with worse clinical outcome, but autoregulatory management is yet to be evaluated. In this review, we discuss the role of CPA in different types of brain injury and disease, the strengths and limitations of the monitoring methods, the potentials of autoregulatory management, and future directions in the field.
Collapse
Affiliation(s)
| | - Markus Fahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Tas J, Beqiri E, van Kaam RC, Czosnyka M, Donnelly J, Haeren RH, van der Horst ICC, Hutchinson PJ, van Kuijk SMJ, Liberti AL, Menon DK, Hoedemaekers CWE, Depreitere B, Smielewski P, Meyfroidt G, Ercole A, Aries MJH. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial. J Neurotrauma 2021; 38:2790-2800. [PMID: 34407385 DOI: 10.1089/neu.2021.0197] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Managing traumatic brain injury (TBI) patients with a cerebral perfusion pressure (CPP) near to the cerebral autoregulation (CA)-guided "optimal" CPP (CPPopt) value is associated with improved outcome and might be useful to individualize care, but has never been prospectively evaluated. This study evaluated the feasibility and safety of CA-guided CPP management in TBI patients requiring intracranial pressure monitoring and therapy (TBIicp patients). The CPPopt Guided Therapy: Assessment of Target Effectiveness (COGiTATE) parallel two-arm feasibility trial took place in four tertiary centers. TBIicp patients were randomized to either the Brain Trauma Foundation (BTF) guideline CPP target range (control group) or to the individualized CA-guided CPP targets (intervention group). CPP targets were guided by six times daily software-based alerts for up to 5 days. The primary feasibility end-point was the percentage of time with CPP concordant (±5 mm Hg) with the set CPP targets. The main secondary safety end-point was an increase in therapeutic intensity level (TIL) between the control and intervention group. Twenty-eight patients were randomized to the control and 32 patients to the intervention group. CPP in the intervention group was in the target range for 46.5% (interquartile range, 41.2-58) of the monitored time, significantly higher than the feasibility target specified in the published protocol (36%; p < 0.001). There were no significant differences between groups for TIL or for other safety end-points. Conclusively, targeting an individual and dynamic CA-guided CPP is feasible and safe in TBIicp patients. This encourages a prospective trial powered for clinical outcomes.
Collapse
Affiliation(s)
- Jeanette Tas
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ruud C van Kaam
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Poland
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Roel H Haeren
- School for Mental Health and Neuroscience (MHeNS), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Neurosurgery, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Analisa L Liberti
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Anaesthesia and Intensive Care, San Carlo Borromeo Hospital, Milan, Italy
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | | | - Bart Depreitere
- Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Marcel J H Aries
- Department of Intensive Care Medicine, University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), University Maastricht (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
50
|
Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest. Resuscitation 2021; 168:110-118. [PMID: 34600027 DOI: 10.1016/j.resuscitation.2021.09.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
AIM Evaluate cerebrovascular autoregulation (CAR) using near-infrared spectroscopy (NIRS) after pediatric cardiac arrest and determine if deviations from CAR-derived optimal mean arterial pressure (MAPopt) are associated with outcomes. METHODS CAR was quantified by a moving, linear correlation between time-synchronized mean arterial pressure (MAP) and regional cerebral oxygenation, called cerebral oximetry index (COx). MAPopt was calculated using a multi-window weighted algorithm. We calculated burden (magnitude and duration) of MAP less than 5 mmHg below MAPopt (MAPopt - 5), as the area between MAP and MAPopt - 5 curves using numerical integration and normalized as percentage of monitoring duration. Unfavorable outcome was defined as death or pediatric cerebral performance category (PCPC) at hospital discharge ≥3 with ≥1 change from baseline. Univariate logistic regression tested association between burden of MAP less than MAPopt - 5 and outcome. RESULTS Thirty-four children (median age 2.9 [IQR 1.5,13.4] years) were evaluated. Median COx in the first 24 h post-cardiac arrest was 0.06 [0,0.20]; patients spent 27% [19,43] of monitored time with COx ≥ 0.3. Patients with an unfavorable outcome (n = 24) had a greater difference between MAP and MAPopt - 5 (13 [11,19] vs. 9 [8,10] mmHg, p = 0.01) and spent more time with MAP below MAPopt - 5 (38% [26,61] vs. 24% [14,28], p = 0.03). Patients with unfavorable outcome had a higher burden of MAP less than MAPopt - 5 than patients with favorable outcome in the first 24 h post-arrest (187 [107,316] vs. 62 [43,102] mmHg × Min/Hr; OR 4.93 [95% CI 1.16-51.78]). CONCLUSIONS Greater burden of MAP below NIRS-derived MAPopt - 5 during the first 24 h after cardiac arrest was associated with unfavorable outcomes.
Collapse
|