1
|
Shuey MM, Lee KM, Keaton J, Khankari NK, Breeyear JH, Walker VM, Miller DR, Heberer KR, Reaven PD, Clarke SL, Lee J, Lynch JA, Vujkovic M, Edwards TL. A genetically supported drug repurposing pipeline for diabetes treatment using electronic health records. EBioMedicine 2023; 94:104674. [PMID: 37399599 PMCID: PMC10328805 DOI: 10.1016/j.ebiom.2023.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The identification of new uses for existing drug therapies has the potential to identify treatments for comorbid conditions that have the added benefit of glycemic control while also providing a rapid, low-cost approach to drug (re)discovery. METHODS We developed and tested a genetically-informed drug-repurposing pipeline for diabetes management. This approach mapped genetically-predicted gene expression signals from the largest genome-wide association study for type 2 diabetes mellitus to drug targets using publicly available databases to identify drug-gene pairs. These drug-gene pairs were then validated using a two-step approach: 1) a self-controlled case-series (SCCS) using electronic health records from a discovery and replication population, and 2) Mendelian randomization (MR). FINDINGS After filtering on sample size, 20 candidate drug-gene pairs were validated and various medications demonstrated evidence of glycemic regulation including two anti-hypertensive classes: angiotensin-converting enzyme inhibitors as well as calcium channel blockers (CCBs). The CCBs demonstrated the strongest evidence of glycemic reduction in both validation approaches (SCCS HbA1c and glucose reduction: -0.11%, p = 0.01 and -0.85 mg/dL, p = 0.02, respectively; MR: OR = 0.84, 95% CI = 0.81, 0.87, p = 5.0 x 10-25). INTERPRETATION Our results support CCBs as a strong candidate medication for blood glucose reduction in addition to cardiovascular disease reduction. Further, these results support the adaptation of this approach for use in future drug-repurposing efforts for other conditions. FUNDING National Institutes of Health, Medical Research Council Integrative Epidemiology Unit at the University of Bristol, UK Medical Research Council, American Heart Association, and Department of Veterans Affairs (VA) Informatics and Computing Infrastructure and VA Cooperative Studies Program.
Collapse
Affiliation(s)
- Megan M Shuey
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyung Min Lee
- VA Informatics and Computer Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Jacob Keaton
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikhil K Khankari
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph H Breeyear
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA
| | - Venexia M Walker
- Medical Research Council, Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol Medical School, UK; Population Health Sciences, University of Bristol, Bristol, UK; Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Bedford VA Healthcare System, Bedford, MA, USA; Center for Population Health, Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Kent R Heberer
- VA Palo Alto Health Care System, Palo Alto, CA, USA; Departments of Medicine and Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA; College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Shoa L Clarke
- Departments of Medicine and Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Julie A Lynch
- VA Informatics and Computer Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA; School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Nashville VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Aryal SR, Siddiqui M, Sharifov OF, Coffin MD, Zhang B, Gaddam KK, Gupta H, Denney TS, Dell'Italia LJ, Oparil S, Calhoun DA, Lloyd SG. Spironolactone Reduces Aortic Stiffness in Patients With Resistant Hypertension Independent of Blood Pressure Change. J Am Heart Assoc 2021; 10:e019434. [PMID: 34459249 PMCID: PMC8649301 DOI: 10.1161/jaha.120.019434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Aortic stiffness is an independent predictor of cardiovascular events in patients with arterial hypertension. Resistant hypertension is often linked to hyperaldosteronism and associated with adverse outcomes. Spironolactone, a mineralocorticoid receptor antagonist, has been shown to reduce both the arterial blood pressure (BP) and aortic stiffness in resistant hypertension. However, the mechanism of aortic stiffness reduction by spironolactone is not well understood. We hypothesized that spironolactone reduces aortic stiffness in resistant hypertension independently of BP change. Methods and Results Patients with uncontrolled BP (≥140/90 mm Hg) despite use of ≥3 antihypertensive medications (including diuretics) were prospectively recruited. Participants were started on spironolactone at 25 mg/d, and increased to 50 mg/d at 4 weeks while other antihypertensive medications were withdrawn to maintain constant mean BP. Phase‐contrast cardiac magnetic resonance imaging of the ascending aorta was performed in 30 participants at baseline and after 6 months of spironolactone treatment to measure aortic pulsatility, distensibility, and pulse wave velocity. Pulse wave velocity decreased (6.3±2.3 m/s to 4.5±1.8 m/s, P<0.001) and pulsatility and distensibility increased (15.9%±5.3% to 22.1%±7.9%, P<0.001; and 0.28%±0.10%/mm Hg to 0.40%±0.14%/mm Hg, P<0.001, respectively) following 6 months of spironolactone. Conclusions Our results suggest that spironolactone improves aortic properties in resistant hypertension independently of BP, which may support the hypothesis of an effect of aldosterone on the arterial wall. A larger prospective study is needed to confirm our findings.
Collapse
Affiliation(s)
- Sudeep R Aryal
- Division of Cardiovascular Disease University of Alabama at Birmingham Birmingham AL
| | - Mohammed Siddiqui
- Vascular Biology and Hypertension Program University of Alabama at Birmingham Birmingham AL
| | - Oleg F Sharifov
- Division of Cardiovascular Disease University of Alabama at Birmingham Birmingham AL
| | - Megan D Coffin
- School of Medicine University of Alabama at Birmingham Birmingham AL
| | - Bin Zhang
- Division of Biostatistics and Epidemiology Cincinnati Children's Hospital Medical Center Cincinnati OH.,Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH
| | - Krishna K Gaddam
- Division of Cardiovascular Disease University of Alabama at Birmingham Birmingham AL
| | | | - Thomas S Denney
- Department of Electrical and Computer Engineering Auburn University Auburn AL
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease University of Alabama at Birmingham Birmingham AL.,VA Medical Center Birmingham AL
| | - Suzanne Oparil
- Division of Cardiovascular Disease University of Alabama at Birmingham Birmingham AL.,Vascular Biology and Hypertension Program University of Alabama at Birmingham Birmingham AL
| | - David A Calhoun
- Vascular Biology and Hypertension Program University of Alabama at Birmingham Birmingham AL
| | - Steven G Lloyd
- Division of Cardiovascular Disease University of Alabama at Birmingham Birmingham AL.,VA Medical Center Birmingham AL
| |
Collapse
|