1
|
Kropaneva M, Khramtsov P, Bochkova M, Lazarev S, Kiselkov D, Rayev M. Vertical Flow Immunoassay Based on Carbon Black Nanoparticles for the Detection of IgG against SARS-CoV-2 Spike Protein in Human Serum: Proof-of-Concept. BIOSENSORS 2023; 13:857. [PMID: 37754091 PMCID: PMC10526127 DOI: 10.3390/bios13090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Point-of-care tests play an important role in serological diagnostics of infectious diseases and post-vaccination immunity monitoring, including in COVID-19. Currently, lateral flow tests dominate in this area and show good analytical performance. However, studies to improve the effectiveness of such tests remain important. In comparison with lateral flow tests, vertical flow immunoassays allow for a reduction in assay duration and the influence of the hook effect. Additionally, the use of carbon black nanoparticles (CNPs) as a color label can provide a lower detection limit (LOD) compared to conventional colloidal gold. Therefore, we have developed a vertical flow immunoassay for the detection of IgG against SARS-CoV-2 spike protein in human serum samples by applying a conjugate of CNPs with anti-human IgG mouse monoclonal antibodies (CNP@MAb). The vertical flow assay device consists of a plastic cassette with a hole on its top containing a nitrocellulose membrane coated with spike protein and an absorbent pad. The serum sample, washing buffer, and CNP@MAb flow vertically through the nitrocellulose membrane and absorbent pads, reducing assay time and simplifying the procedure. In positive samples, the interaction of CNP@MAb with anti-spike antibodies leads to the appearance of black spots, which can be visually detected. The developed method allows for rapid visual detection (5-7 min) of IgG vs. spike protein, with a LOD of 7.81 BAU/mL. It has been shown that an untrained operator can perform the assay and visually evaluate its results. Thus, the presented assay can be used in the further development of test systems for the serological diagnostics of COVID-19 or post-vaccination immunity monitoring.
Collapse
Affiliation(s)
- Maria Kropaneva
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Pavel Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Maria Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Sergey Lazarev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| | - Dmitriy Kiselkov
- Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, 614013 Perm, Russia
| | - Mikhail Rayev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of Russian Academy of Sciences, 614081 Perm, Russia; (M.K.); (M.R.)
- Biology Faculty, Perm State University, 614990 Perm, Russia
| |
Collapse
|
2
|
Rungrojcharoenkit K, Suthangkornkul R, Utennam D, Buddhari D, Pinpaiboon S, Mongkolsirichaikul D, Fernandez S, Jones AR, Cotrone TS, Hunsawong T. Standardization of in-house anti-IgG and IgA ELISAs for the detection of COVID-19. PLoS One 2023; 18:e0287107. [PMID: 37294808 PMCID: PMC10256204 DOI: 10.1371/journal.pone.0287107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/29/2023] [Indexed: 06/11/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). RT-PCR detection of viral RNA represents the gold standard method for diagnosis of COVID-19. However, multiple diagnostic tests are needed for acute disease diagnosis and assessing immunity during the COVID-19 outbreak. Here, we developed in-house anti-RBD IgG and IgA enzyme-linked immunosorbent assays (ELISAs) using a well-defined serum sample panel for screening and identification of human SARS-CoV-2 infection. We found that our in-house anti-SARS-CoV-2 IgG ELISA displayed a 93.5% sensitivity and 98.8% specificity whereas our in-house anti-SARS-CoV-2 IgA ELISA provided assay sensitivity and specificity at 89.5% and 99.4%, respectively. The agreement kappa values of our in-house anti-SARS-CoV-2 IgG and IgA ELISA assays were deemed to be excellent and fair, respectively, when compared to RT-PCR and excellent for both assays when compared to Euroimmun anti-SARS-CoV-2 IgG and IgA ELISAs. These data indicate that our in-house anti-SARS-CoV-2 IgG and IgA ELISAs are compatible performing assays for the detection of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Rungarun Suthangkornkul
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Darunee Utennam
- Research Division, Royal Thai Army-Armed Forces Research Institute of Medical Sciences (RTA-AFRIMS), Bangkok, Thailand
| | - Darunee Buddhari
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Soontorn Pinpaiboon
- Department of Internal Medicine, Kamphaeng Phet Provincial Hospital (KPPH), Kamphaeng Phet, Thailand
| | | | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Anthony R. Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Thomas S. Cotrone
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Taweewun Hunsawong
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
3
|
Vilca-Alosilla JJ, Candia-Puma MA, Coronel-Monje K, Goyzueta-Mamani LD, Galdino AS, Machado-de-Ávila RA, Giunchetti RC, Ferraz Coelho EA, Chávez-Fumagalli MA. A Systematic Review and Meta-Analysis Comparing the Diagnostic Accuracy Tests of COVID-19. Diagnostics (Basel) 2023; 13:diagnostics13091549. [PMID: 37174941 PMCID: PMC10177430 DOI: 10.3390/diagnostics13091549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In this paper, we present a systematic review and meta-analysis that aims to evaluate the reliability of coronavirus disease diagnostic tests in 2019 (COVID-19). This article seeks to describe the scientific discoveries made because of diagnostic tests conducted in recent years during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Between 2020 and 2021, searches for published papers on the COVID-19 diagnostic were made in the PubMed database. Ninety-nine scientific articles that satisfied the requirements were analyzed and included in the meta-analysis, and the specificity and sensitivity of the diagnostic accuracy were assessed. When compared to serological tests such as the enzyme-linked immunosorbent assay (ELISA), chemiluminescence immunoassay (CLIA), lateral flow immunoassay (LFIA), and chemiluminescent microparticle immunoassay (CMIA), molecular tests such as reverse transcription polymerase chain reaction (RT-PCR), reverse transcription loop-mediated isothermal amplification (RT-LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR) performed better in terms of sensitivity and specificity. Additionally, the area under the curve restricted to the false-positive rates (AUCFPR) of 0.984 obtained by the antiviral neutralization bioassay (ANB) diagnostic test revealed significant potential for the identification of COVID-19. It has been established that the various diagnostic tests have been effectively adapted for the detection of SARS-CoV-2; nevertheless, their performance still must be enhanced to contain potential COVID-19 outbreaks, which will also help contain potential infectious agent outbreaks in the future.
Collapse
Affiliation(s)
- Juan Jeferson Vilca-Alosilla
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Katiusca Coronel-Monje
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40015-970, BA, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| |
Collapse
|
4
|
Spicuzza L, Campagna D, Di Maria C, Sciacca E, Mancuso S, Vancheri C, Sambataro G. An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiol 2023; 9:375-401. [PMID: 37091823 PMCID: PMC10113162 DOI: 10.3934/microbiol.2023020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
Over the last three years, after the outbreak of the COVID-19 pandemic, an unprecedented number of novel diagnostic tests have been developed. Assays to evaluate the immune response to SARS-CoV-2 have been widely considered as part of the control strategy. The lateral flow immunoassay (LFIA), to detect both IgM and IgG against SARS-CoV-2, has been widely studied as a point-of-care (POC) test. Compared to laboratory tests, LFIAs are faster, cheaper and user-friendly, thus available also in areas with low economic resources. Soon after the onset of the pandemic, numerous kits for rapid antibody detection were put on the market with an emergency use authorization. However, since then, scientists have tried to better define the accuracy of these tests and their usefulness in different contexts. In fact, while during the first phase of the pandemic LFIAs for antibody detection were auxiliary to molecular tests for the diagnosis of COVID-19, successively these tests became a tool of seroprevalence surveillance to address infection control policies. When in 2021 a massive vaccination campaign was implemented worldwide, the interest in LFIA reemerged due to the need to establish the extent and the longevity of immunization in the vaccinated population and to establish priorities to guide health policies in low-income countries with limited access to vaccines. Here, we summarize the accuracy, the advantages and limits of LFIAs as POC tests for antibody detection, highlighting the efforts that have been made to improve this technology over the last few years.
Collapse
Affiliation(s)
- Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Shafie MH, Antony Dass M, Ahmad Shaberi HS, Zafarina Z. Screening and confirmation tests for SARS-CoV-2: benefits and drawbacks. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023; 12:6. [PMID: 36647397 PMCID: PMC9833029 DOI: 10.1186/s43088-023-00342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Background Coronavirus disease 2019 is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that emerged in late 2019 and has activated an ongoing international public health emergency. SARS-CoV-2 was discovered in Wuhan, China, in December 2019 and rapidly spread to other cities and countries. Currently, SARS-CoV-2 diagnostic tests have relied heavily on detecting viral genes, antigens, and human antibodies. Hence, this review discusses and analyses the existing screening and confirmation tests for SARS-CoV-2, including the real-time reverse transcriptase polymerase chain reaction (RT-PCR), lateral flow immunoassay (LFIA), and enzyme-linked immunosorbent assay (ELISA). Main body The illustrations of each testing were presented to provide the readers with an understanding of the scientific principles behind the testing methods. The comparison was made by highlighting the advantages and disadvantages of each testing. ELISA is ideal for performing the maximum population screening to determine immunological capacity, although its inability to provide reliable results on the status of the infection. Recently, LFIA has been approved as a quicker way of determining whether a patient is infected at the analysis time without using particular instruments and non-laboratory settings. RT-PCR is the gold-standard approach in terms of sensitivity and specificity. Conclusion However, the combination of LFIA or ELISA with RT-PCR is also proposed in this review to obtain an adequate level of sensitivity and specificity. Graphic Abstract
Collapse
Affiliation(s)
- Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), Bangunan Inkubator Inovasi Universiti (I2U), Kampus Sains@usm, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang Malaysia
| | - Marie Antony Dass
- Analytical Biochemistry Research Centre (ABrC), Bangunan Inkubator Inovasi Universiti (I2U), Kampus Sains@usm, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang Malaysia
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, 3216 Australia
| | - Hazlam Shamin Ahmad Shaberi
- Analytical Biochemistry Research Centre (ABrC), Bangunan Inkubator Inovasi Universiti (I2U), Kampus Sains@usm, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang Malaysia
- Department of Life Sciences, Imperial College London, Exhibition Rd, London, SW7 2AZ UK
| | - Zainuddin Zafarina
- Analytical Biochemistry Research Centre (ABrC), Bangunan Inkubator Inovasi Universiti (I2U), Kampus Sains@usm, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang Malaysia
| |
Collapse
|
6
|
Zhang X, Fishlock S, Sharpe P, McLaughlin J. Cystatin C as a biomarker for cardiorenal syndrome diseases quantitative diagnostics and monitoring via point-of-care. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1428-1431. [PMID: 36086551 DOI: 10.1109/embc48229.2022.9871131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With heart failure (HF) and renal malfunction becoming global public health issues, there is an urgent need to monitor diseases at home or in the community. Point-of-care testing (POC) would shorten the patients waiting time compared with laboratory molecular analysis. This work evaluates two types of gold nanomaterials, and two assay protocols, to develop a lateral flow (LF) system for Cystatin C (CysC) quantification. Of the protocols, the 'delayed-release' shows the alleviation of the hook effects with 1% BSA running buffer (RB), albeit at increased complexity with three steps of washing. The standard method with sample dilution (1: 150 sample dilution for GNPs, and 1:10 sample dilution for GNRs) can ensure the clinical range detection of CysC as 1 mg/L with partial LF assays. GNPs have stronger optical signal intensity compared with GNRs and developed full LF assays with GNPs require 1:1.5 sample dilution in recombinant Cys C detection. The ideal sample dilution ratio is different for partial and full LF assays. Clinical Relevance- This work is the basis of future work that will use LF devices for human serum/plasma monitoring to assess kidney function related to heart failure during medication. The specificity, sensitivity, and limit of detection will be validated via a clinical trial before potential clinical use.
Collapse
|
7
|
Soto JA, Díaz FE, Retamal-Díaz A, Gálvez NMS, Melo-González F, Piña-Iturbe A, Ramírez MA, Bohmwald K, González PA, Bueno SM, Kalergis AM. BCG-Based Vaccines Elicit Antigen-Specific Adaptive and Trained Immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines (Basel) 2022; 10:vaccines10050721. [PMID: 35632475 PMCID: PMC9143576 DOI: 10.3390/vaccines10050721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Background:Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is a live attenuated vaccine mainly administered to newborns and used for over 100 years to prevent the disease caused by Mycobacterium tuberculosis (M. tb). This vaccine can induce immune response polarization towards a Th1 profile, which is desired for counteracting M. tb, other mycobacteria, and unrelated intracellular pathogens. The vaccine BCG has been used as a vector to express recombinant proteins and has been shown to protect against several diseases, particularly respiratory viruses. Methods: BCG was used to develop recombinant vaccines expressing either the Nucleoprotein from SARS-CoV-2 or Andes orthohantavirus. Mice were immunized with these vaccines with the aim of evaluating the safety and immunogenicity parameters. Results: Immunization with two doses of 1 × 108 CFU or one dose of 1 × 105 CFU of these BCGs was safe in mice. A statistically significant cellular immune response was induced by both formulations, characterized as the activation of CD4+ and CD8+ T cells. Stimulation with unrelated antigens resulted in increased expression of activation markers by T cells and secretion of IL-2 and IFN-γ, while increased secretion of IL-6 was found for both recombinant vaccines; all of these parameters related to a trained immunity profile. The humoral immune response elicited by both vaccines was modest, but further exposure to antigens could increase this response. Conclusions: The BCG vaccine is a promising platform for developing vaccines against different pathogens, inducing a marked antigen-specific immune response.
Collapse
Affiliation(s)
- Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Fabián E. Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Angello Retamal-Díaz
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Nicolás M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Felipe Melo-González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 7550196, Chile
| | - Alejandro Piña-Iturbe
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Karen Bohmwald
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Pablo A. González
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Portugal 49, Santiago 8320000, Chile; (J.A.S.); (F.E.D.); (A.R.-D.); (N.M.S.G.); (F.M.-G.); (A.P.-I.); (M.A.R.); (K.B.); (P.A.G.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Correspondence: or ; Tel.: +56-2-686-2842
| |
Collapse
|
8
|
IgG antibody production and persistence to 6 months following SARS-CoV-2 vaccination: a Northern Ireland observational study. Vaccine 2022; 40:2535-2539. [PMID: 35346536 PMCID: PMC8900637 DOI: 10.1016/j.vaccine.2022.02.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
|
9
|
User experience of home-based AbC-19 SARS-CoV-2 antibody rapid lateral flow immunoassay test. Sci Rep 2022; 12:1173. [PMID: 35064150 PMCID: PMC8782985 DOI: 10.1038/s41598-022-05097-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023] Open
Abstract
The urgent need to scale up testing capacity during the COVID-19 pandemic has prompted the rapid development of point-of-care diagnostic tools such as lateral flow immunoassays (LFIA) for large-scale community-based rapid testing. However, studies of how the general public perform when using LFIA tests in different environmental settings are scarce. This user experience (UX) study of 264 participants in Northern Ireland aimed to gather a better understanding of how self-administered LFIA tests were performed by the general public at home. The UX performance was assessed via analysis of a post-test questionnaire including 30 polar questions and 11 7-point Likert scale questions, which covers the multidimensional aspects of UX in terms of ease of use, effectiveness, efficiency, accuracy and satisfaction. Results show that 96.6% of participants completed the test with an overall average UX score of 95.27% [95% confidence interval (CI) 92.71–97.83%], which suggests a good degree of user experience and effectiveness. Efficiency was assessed based on the use of physical resources and human support received, together with the mental effort of self-administering the test measured via NASA Task Load Index (TLX). The results for six TLX subscales show that the participants scored the test highest for mental demand and lowest for physical demand, but the average TLX score suggests that the general public have a relatively low level of mental workload when using LFIA self-testing at home. Five printed LFIA testing results (i.e. the ‘simulated’ results) were used as the ground truth to assess the participant’s performance in interpreting the test results. The overall agreement (accuracy) was 80.63% [95% CI 75.21–86.05%] with a Kappa score 0.67 [95% CI 0.58–0.75] indicating substantial agreement. The users scored lower in confidence when interpreting test results that were weak positive cases (due to the relatively low signal intensity in the test-line) compared to strong positive cases. The end-users also found that the kit was easier to use than they expected (p < 0.001) and 231 of 264 (87.5%) reported that the test kit would meet their requirements if they needed an antibody testing kit. The overall findings provide an insight into the opportunities for improving the design of self-administered SARS-CoV-2 antibody testing kits for the general public and to inform protocols for future UX studies of LFIA rapid test kits.
Collapse
|
10
|
Persistence of SARS-CoV-2-Specific Antibodies for 13 Months after Infection. Viruses 2021; 13:v13112313. [PMID: 34835119 PMCID: PMC8622371 DOI: 10.3390/v13112313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Dynamics of antibody responses were investigated after a SARS-CoV-2 outbreak in a private company during the first wave of the pandemic. METHODS Workers of a sewing company (Lithuania) with known SARS-CoV-2 RT-PCR result during the outbreak (April 2020) were invited to participate in the study. Virus-specific IgG and IgM were monitored 2, 6 and 13 months after the outbreak via rapid IgG/IgM serological test and SARS-CoV-2 S protein-specific IgG ELISA. RESULTS Six months after the outbreak, 95% (CI 86-99%) of 59 previously infected individuals had virus-specific antibodies irrespective of the severity of infection. One-third of seropositive individuals had virus-specific IgM along with IgG indicating that IgM may persist for 6 months. Serological testing 13 months after the outbreak included 47 recovered individuals that remained non-vaccinated despite a wide accessibility of COVID-19 vaccines. The seropositivity rate was 83% (CI 69-91%) excluding one case of confirmed asymptomatic reinfection in this group. Between months 6 and 13, IgG levels either declined or remained stable in 31 individual and increased in 7 individuals possibly indicating an exposure to SARS-CoV-2 during the second wave of the pandemic. CONCLUSIONS Detectable levels of SARS-CoV-2-specific antibodies persist up to 13 months after infection for the majority of the cases.
Collapse
|
11
|
Kealy L, Good-Jacobson KL. Advances in understanding the formation and fate of B-cell memory in response to immunization or infection. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab018. [PMID: 36845573 PMCID: PMC8499879 DOI: 10.1093/oxfimm/iqab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre (GC), a site where responding B cells undergo affinity maturation and are one of the major routes for memory B cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the GC and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of GC and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,Correspondence address. Department of Biochemistry and Molecular Biology, Monash University, Ground floor reception, 23 Innovation Walk (Bldg 77), Clayton, Victoria 3800 Australia. Tel: (+613) 990-29510; E-mail: ; Twitter: @KimLJacobson
| |
Collapse
|
12
|
Ebanks D, Faustini S, Shields A, Parry H, Moss P, Plant T, Richter A, Drayson M. Cross reactivity of serological response to SARS-CoV-2 vaccination with viral variants of concern detected by lateral flow immunoassays. J Infect 2021; 83:e18-e20. [PMID: 34324939 PMCID: PMC8312050 DOI: 10.1016/j.jinf.2021.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Ebanks
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - Sian Faustini
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - Adrian Shields
- Institute of Immunology and Immunotherapy, University of Birmingham and Birmingham Health Partners, University Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Helen Parry
- Institute of Immunology and Immunotherapy, University of Birmingham and Birmingham Health Partners, University Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham and Birmingham Health Partners, University Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Tim Plant
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, University of Birmingham and Birmingham Health Partners, University Hospitals NHS Foundation Trust, Birmingham, United Kingdom
| | - Mark Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham and Birmingham Health Partners, University Hospitals NHS Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
13
|
Jing M, Mclaughlin D, Mcnamee SE, Raj S, Namee BM, Steele D, Finlay D, Mclaughlin J. A Novel Method for Quantitative Analysis of C-Reactive Protein Lateral Flow Immunoassays Images via CMOS Sensor and Recurrent Neural Networks. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2021; 9:1900415. [PMID: 34873497 PMCID: PMC8641912 DOI: 10.1109/jtehm.2021.3130494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022]
Abstract
Objective: To design and implement an easy-to-use, Point-of-Care (PoC) lateral flow immunoassays (LFA) reader and data analysis system, which provides a more in-depth quantitative analysis for LFA images than conventional approaches thereby supporting efficient decision making for potential early risk assessment of cardiovascular disease (CVD). Methods and procedures: A novel end-to-end system was developed including a portable device with CMOS camera integrated with optimized illumination and optics to capture the LFA images produced using high-sensitivity C-Reactive Protein (hsCRP) (concentration level < 5 mg/L). The images were transmitted via WiFi to a back-end server system for image analysis and classification. Unlike common image classification approaches which are based on averaging image intensity from a region-of-interest (ROI), a novel approach was developed which considered the signal along the sample’s flow direction as a time series and, consequently, no need for ROI detection. Long Short-Term Memory (LSTM) networks were deployed for multilevel classification. The features based on Dynamic Time Warping (DTW) and histogram bin counts (HBC) were explored for classification. Results: For the classification of hsCRP, the LSTM outperformed the traditional machine learning classifiers with or without DTW and HBC features performed the best (with mean accuracy of 94%) compared to other features. Application of the proposed method to human plasma also suggests that HBC features from LFA time series performed better than the mean from ROI and raw LFA data. Conclusion: As a proof of concept, the results demonstrate the capability of the proposed framework for quantitative analysis of LFA images and suggest the potential for early risk assessment of CVD. Clinical impact: The hsCRP levels < 5 mg/L were aligned with clinically actionable categories for early risk assessment of CVD. The outcomes demonstrated the real-world applicability of the proposed system for quantitative analysis of LFA images, which is potentially useful for more LFA applications beyond presented in this study.
Collapse
Affiliation(s)
- Min Jing
- School of EngineeringUlster University Jordanstown BT37 0QB U.K
| | - Donal Mclaughlin
- Department of Physics and AstronomyUniversity College London London WC1E 6BT U.K
| | - Sara E Mcnamee
- School of EngineeringUlster University Jordanstown BT37 0QB U.K
| | - Shasidran Raj
- School of EngineeringUlster University Jordanstown BT37 0QB U.K
| | - Brian Mac Namee
- School of Computer ScienceUniversity College Dublin Dublin 4 D04 V1W8 Ireland
| | | | - Dewar Finlay
- School of EngineeringUlster University Jordanstown BT37 0QB U.K
| | | |
Collapse
|