1
|
Knapskog AB, Edwin TH, Ueland PM, Ulvik A, Fang EF, Eldholm RS, Halaas NB, Giil LM, Saltvedt I, Watne LO, Aksnes M. Sex-specific associations of kynurenic acid with neopterin in Alzheimer's disease. Alzheimers Res Ther 2024; 16:167. [PMID: 39068471 PMCID: PMC11282793 DOI: 10.1186/s13195-024-01531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Sex differences in neuroinflammation could contribute to women's increased risk of Alzheimer's disease (AD), providing rationale for exploring sex-specific AD biomarkers. In AD, dysregulation of the kynurenine pathway (KP) contributes to neuroinflammation and there is some evidence of sex differences in KP metabolism. However, the sex-specific associations between KP metabolism and biomarkers of AD and neuroinflammation need to be explored further. METHODS Here we investigate sex differences in cerebrospinal fluid concentrations of seven KP metabolites and sex-specific associations with established AD biomarkers and neopterin, an indicator of neuroinflammation. This study included 311 patients with symptomatic AD and 105 age-matched cognitively unimpaired (CU) controls, followed for up to 5 years. RESULTS We found sex differences in KP metabolites in the AD group, with higher levels of most metabolites in men, while there were no sex differences in the CU group. In line with this, more KP metabolites were significantly altered in AD men compared to CU men, and there was a trend in the same direction in AD women. Furthermore, we found sex-specific associations between kynurenic acid and the kynurenic acid/quinolinic acid ratio with neopterin, but no sex differences in the associations between KP metabolites and clinical progression. DISCUSSION In our cohort, sex differences in KP metabolites were restricted to AD patients. Our results suggest that dysregulation of the KP due to increased inflammation could contribute to higher AD risk in women.
Collapse
Affiliation(s)
- Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Trine Holt Edwin
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | | | | | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
- The Norwegian Centre On Healthy Ageing (NO-Age), Oslo, Norway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Oslo University Hospital, 0450, Oslo, Norway
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway
| | - Lasse M Giil
- Neuro-SysMed, Department of Internal Medicine, Haraldsplass Deaconess Hospital, 5892, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, 7006, Trondheim, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Oslo University Hospital, 0450, Oslo, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, 1478, Lørenskog, Norway
- Department of Geriatric Medicine, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway.
| |
Collapse
|
2
|
Amland R, Selbæk G, Brækhus A, Edwin TH, Engedal K, Knapskog AB, Olsrud ER, Persson K. Clinically feasible automated MRI volumetry of the brain as a prognostic marker in subjective and mild cognitive impairment. Front Neurol 2024; 15:1425502. [PMID: 39011362 PMCID: PMC11248186 DOI: 10.3389/fneur.2024.1425502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Background/aims The number of patients suffering from cognitive decline and dementia increases, and new possible treatments are being developed. Thus, the need for time efficient and cost-effective methods to facilitate an early diagnosis and prediction of future cognitive decline in patients with early cognitive symptoms is becoming increasingly important. The aim of this study was to evaluate whether an MRI based software, NeuroQuant® (NQ), producing volumetry of the hippocampus and whole brain volume (WBV) could predict: (1) conversion from subjective cognitive decline (SCD) at baseline to mild cognitive impairment (MCI) or dementia at follow-up, and from MCI at baseline to dementia at follow-up and (2) progression of cognitive and functional decline defined as an annual increase in the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) score. Methods MRI was performed in 156 patients with SCD or MCI from the memory clinic at Oslo University Hospital (OUH) that had been assessed with NQ and had a clinical follow-up examination. Logistic and linear regression analyses were performed with hippocampus volume and WBV as independent variables, and conversion or progression as dependent variables, adjusting for demographic and other relevant covariates including Mini-Mental State Examination-Norwegian Revised Version score (MMSE-NR) and Apolipoprotein E ɛ4 (APOE ɛ4) carrier status. Results Hippocampus volume, but not WBV, was associated with conversion to MCI or dementia, but neither were associated with conversion when adjusting for MMSE-NR. Both hippocampus volume and WBV were associated with progression as measured by the annual change in CDR-SB score in both unadjusted and adjusted analyses. Conclusion The results indicate that automated regional MRI volumetry of the hippocampus and WBV can be useful in predicting further cognitive decline in patients with early cognitive symptoms.
Collapse
Affiliation(s)
- Rachel Amland
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Geir Selbæk
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Brækhus
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Trine H. Edwin
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Engedal
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | | | - Ellen Regine Olsrud
- Department of Radiography Ullevål, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Karin Persson
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Aksnes M, Schibstad MH, Chaudhry FA, Neerland BE, Caplan G, Saltvedt I, Eldholm RS, Myrstad M, Edwin TH, Persson K, Idland AV, Pollmann CT, Olsen RB, Wyller TB, Zetterberg H, Cunningham E, Watne LO. Differences in metalloproteinases and their tissue inhibitors in the cerebrospinal fluid are associated with delirium. COMMUNICATIONS MEDICINE 2024; 4:124. [PMID: 38937571 PMCID: PMC11211460 DOI: 10.1038/s43856-024-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The aetiology of delirium is not known, but pre-existing cognitive impairment is a predisposing factor. Here we explore the associations between delirium and cerebrospinal fluid (CSF) levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), proteins with important roles in both acute injury and chronic neurodegeneration. METHODS Using a 13-plex Discovery Assay®, we quantified CSF levels of 9 MMPs and 4 TIMPs in 280 hip fracture patients (140 with delirium), 107 cognitively unimpaired individuals, and 111 patients with Alzheimer's disease dementia. The two delirium-free control groups without acute trauma were included to unravel the effects of acute trauma (hip fracture), dementia, and delirium. RESULTS Here we show that delirium is associated with higher levels of MMP-2, MMP-3, MMP-10, TIMP-1, and TIMP-2; a trend suggests lower levels of TIMP-4 are also associated with delirium. Most delirium patients had pre-existing dementia and low TIMP-4 is the only marker associated with delirium in adjusted analyses. MMP-2, MMP-12, and TIMP-1 levels are clearly higher in the hip fracture patients than in both control groups and several other MMP/TIMPs are impacted by acute trauma or dementia status. CONCLUSIONS Several CSF MMP/TIMPs are significantly associated with delirium in hip fracture patients, but alterations in most of these MMP/TIMPs could likely be explained by acute trauma and/or pre-fracture dementia. Low levels of TIMP-4 appear to be directly associated with delirium, and the role of this marker in delirium pathophysiology should be further explored.
Collapse
Affiliation(s)
- Mari Aksnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Erik Neerland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Gideon Caplan
- Department of Geriatric Medicine, Prince of Wales Hospital, Sydney, NSW, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Rannveig S Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Bærum, Norway
| | - Trine Holt Edwin
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Karin Persson
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Vestfold Hospital Trust, Norwegian National Centre for Ageing and Health, Tønsberg, Vestfold, Norway
| | - Ane-Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Department of Anesthesiology, Akershus University Hospital, Lørenskog, Norway
| | | | - Roy Bjørkholt Olsen
- Department of Anesthesiology and Intensive Care, Sørlandet Hospital, Arendal, Norway
| | - Torgeir Bruun Wyller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emma Cunningham
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Leiv Otto Watne
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
4
|
Knapskog AB, Aksnes M, Edwin TH, Ueland PM, Ulvik A, Fang EF, Eldholm RS, Halaas NB, Saltvedt I, Giil LM, Watne LO. Higher concentrations of kynurenic acid in CSF are associated with the slower clinical progression of Alzheimer's disease. Alzheimers Dement 2023; 19:5573-5582. [PMID: 37264981 DOI: 10.1002/alz.13162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The kynurenine pathway's (KP) malfunction is closely related to Alzheimer's disease (AD), for antagonistic kynurenic acid (KA) and agonistic quinolinic acid act on the N-methyl-D-aspartate receptor, a possible therapeutic target in treating AD. METHODS In our longitudinal case-control study, KP metabolites in the cerebrospinal fluid were analyzed in 311 patients with AD and 105 cognitively unimpaired controls. RESULTS Patients with AD exhibited higher concentrations of KA (β = 0.18, P < 0.01) and picolinic acid (β = 0.20, P < 0.01) than the controls. KA was positively associated with tau pathology (β = 0.29, P < 0.01), and a higher concentration of KA was associated with the slower progression of dementia. DISCUSSION The higher concentrations of neuroprotective metabolites KA and picolinic acid suggest that the activation of the KP's neuroprotective branch is an adaptive response in AD and may be a promising target for intervention and treatment. Highlights Patients with Alzheimer's disease (AD) exhibited higher concentrations of kynurenic acid and picolinic acid than controls. Higher concentrations of kynurenic acid were associated with slower progression of AD. Potential neurotoxic kynurenines were not increased among patients with AD. Activation of the kynurenine pathway's neuroprotective branch may be an adaptive response in AD.
Collapse
Affiliation(s)
| | - Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, Oslo, Norway
| | - Trine Holt Edwin
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Rannveig Sakshaug Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Geriatric Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lasse M Giil
- Neuro-SysMed, Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Lørenskog, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
5
|
Persson K, Leonardsen EH, Edwin TH, Knapskog AB, Tangen GG, Selbæk G, Wolfers T, Westlye LT, Engedal K. Diagnostic accuracy of brain age prediction in a memory clinic population and comparison with clinically available volumetric measures. Sci Rep 2023; 13:14957. [PMID: 37696909 PMCID: PMC10495330 DOI: 10.1038/s41598-023-42354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023] Open
Abstract
The aim of this study was to assess the diagnostic validity of a deep learning-based method estimating brain age based on magnetic resonance imaging (MRI) and to compare it with volumetrics obtained using NeuroQuant (NQ) in a clinical cohort. Brain age prediction was performed on minimally processed MRI data using deep convolutional neural networks and an independent training set. The brain age gap (difference between chronological and biological age) was calculated, and volumetrics were performed in 110 patients with dementia (Alzheimer's disease, frontotemporal dementia (FTD), and dementia with Lewy bodies), and 122 with non-dementia (subjective and mild cognitive impairment). Area-under-the-curve (AUC) based on receiver operating characteristics and logistic regression analyses were performed. The mean age was 67.1 (9.5) years and 48.7% (113) were females. The dementia versus non-dementia sensitivity and specificity of the volumetric measures exceeded 80% and yielded higher AUCs compared to BAG. The explained variance of the prediction of diagnostic stage increased when BAG was added to the volumetrics. Further, BAG separated patients with FTD from other dementia etiologies with > 80% sensitivity and specificity. NQ volumetrics outperformed BAG in terms of diagnostic discriminatory power but the two methods provided complementary information, and BAG discriminated FTD from other dementia etiologies.
Collapse
Affiliation(s)
- Karin Persson
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.
| | - Esten H Leonardsen
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trine Holt Edwin
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Gro Gujord Tangen
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Geir Selbæk
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Wolfers
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Knut Engedal
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Aksnes M, Edwin TH, Saltvedt I, Eldholm RS, Chaudhry FA, Halaas NB, Myrstad M, Watne LO, Knapskog AB. Sex-specific associations of matrix metalloproteinases in Alzheimer's disease. Biol Sex Differ 2023; 14:35. [PMID: 37221606 DOI: 10.1186/s13293-023-00514-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) can be characterised in vivo by biomarkers reflecting amyloid-β (Aβ) and tau pathology. However, there is a need for biomarkers reflecting additional pathological pathways. Matrix metalloproteinases (MMPs) have recently been highlighted as candidate biomarkers for sex-specific mechanisms and progression in AD. METHODS In this cross-sectional study, we investigated nine MMPs and four tissue inhibitors of metalloproteinases (TIMPs) in the cerebrospinal fluid of 256 memory clinic patients with mild cognitive impairment or dementia due to AD and 100 cognitively unimpaired age-matched controls. We studied group differences in MMP/TIMP levels and examined the associations with established markers of Aβ and tau pathology as well as disease progression. Further, we studied sex-specific interactions. RESULTS MMP-10 and TIMP-2 levels differed significantly between the memory clinic patients and the cognitively unimpaired controls. Furthermore, MMP- and TIMP-levels were generally strongly associated with tau biomarkers, whereas only MMP-3 and TIMP-4 were associated with Aβ biomarkers; these associations were sex-specific. In terms of progression, we found a trend towards higher MMP-10 at baseline predicting more cognitive and functional decline over time exclusively in women. CONCLUSION Our results support the use of MMPs/TIMPs as markers of sex differences and progression in AD. Our findings show sex-specific effects of MMP-3 and TIMP-4 on amyloid pathology. Further, this study highlights that the sex-specific effects of MMP-10 on cognitive and functional decline should be studied further if MMP-10 is to be used as a prognostic biomarker for AD.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway.
| | - Trine H Edwin
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Rannveig S Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Farrukh A Chaudhry
- Department of Molecular Medicine, University of Oslo, 0315, Oslo, Norway
| | - Nathalie B Halaas
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | - Leiv O Watne
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| |
Collapse
|
7
|
Engedal K, Benth JŠ, Gjøra L, Skjellegrind HK, Nåvik M, Selbæk G. Normative Scores on the Norwegian Version of the Mini-Mental State Examination. J Alzheimers Dis 2023; 92:831-842. [PMID: 36847004 DOI: 10.3233/jad-221068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND The Mini-Mental State Examination (MMSE), a simple test for measuring global cognitive function, is frequently used to evaluate cognition in older adults. To decide whether a score on the test indicates a significant deviation from the mean score, normative scores should be defined. Moreover, because the test may vary depending on its translation and cultural differences, normative scores should be established for national versions of the MMSE. OBJECTIVE We aimed to examine normative scores for the third Norwegian version of the MMSE. METHODS We used data from two sources: the Norwegian Registry of Persons Assessed for Cognitive Symptoms (NorCog) and the Trøndelag Health Study (HUNT). After persons with dementia, mild cognitive impairment, and disorders that may cause cognitive impairment were excluded, the sample contained 1,050 cognitively healthy persons, 860 from NorCog, and 190 from HUNT, whose data we subjected to regression analyses. RESULTS The normative MMSE score varied from 25 to 29, depending on years of education and age. More years of education and younger age were associated with higher MMSE scores, and years of education was the strongest predictor. CONCLUSION Mean normative MMSE scores depend on test takers' years of education and age, with level of education being the strongest predictor.
Collapse
Affiliation(s)
- Knut Engedal
- The Norwegian National Center for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Norway
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Norway.,Health Service Research Unit, Akershus University Hospital, Lørenskog, Norway
| | - Linda Gjøra
- The Norwegian National Center for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Håvard Kjesbu Skjellegrind
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Levanger, Norway
| | - Marit Nåvik
- The Norwegian National Center for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Telemark Hospital Trust, Skien, Norway
| | - Geir Selbæk
- The Norwegian National Center for Aging and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Norway.,Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Tangen GG, Sverdrup K, Taraldsen K, Persson K, Engedal K, Bekkhus-Wetterberg P, Knapskog AB. Mobility and associations with levels of cerebrospinal fluid amyloid β and tau in a memory clinic cohort. Front Aging Neurosci 2023; 15:1101306. [PMID: 36820757 PMCID: PMC9939466 DOI: 10.3389/fnagi.2023.1101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Background Mobility impairments, in terms of gait and balance, are common in persons with dementia. To explore this relationship further, we examined the associations between mobility and cerebrospinal fluid (CSF) core biomarkers for Alzheimer's disease (AD). Methods In this cross-sectional study, we included 64 participants [two with subjective cognitive decline (SCD), 13 with mild cognitive impairment (MCI) and 49 with dementia] from a memory clinic. Mobility was examined using gait speed, Mini-Balance Evaluation Systems test (Mini-BESTest), Timed Up and Go (TUG), and TUG dual-task cost (TUG DTC). The CSF biomarkers included were amyloid-β 42 (Aβ42), total-tau (t-tau), and phospho tau (p-tau181). Associations between mobility and biomarkers were analyzed through correlations and multiple linear regression analyses adjusted for (1) age, sex, and comorbidity, and (2) SCD/MCI vs. dementia. Results Aβ42 was significantly correlated with each of the mobility outcomes. In the adjusted multiple regression analyses, Aβ42 was significantly associated with Mini-BESTest and TUG in the fully adjusted model and with TUG DTC in step 1 of the adjusted model (adjusting for age, sex, and comorbidity). T-tau was only associated with TUG DTC in step 1 of the adjusted model. P-tau181 was not associated with any of the mobility outcomes in any of the analyses. Conclusion Better performance on mobility outcomes were associated with higher levels of CSF Aβ42. The association was strongest between Aβ42 and Mini-BESTest, suggesting that dynamic balance might be closely related with AD-specific pathology.
Collapse
Affiliation(s)
- Gro Gujord Tangen
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway,*Correspondence: Gro Gujord Tangen,
| | - Karen Sverdrup
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristin Taraldsen
- Department of Rehabilitation Science and Health Technology, Oslo Metropolitan University, Oslo, Norway
| | - Karin Persson
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Engedal
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | | | | |
Collapse
|