1
|
Bernabéu-Herrero ME, Patel D, Bielowka A, Zhu J, Jain K, Mackay IS, Chaves Guerrero P, Emanuelli G, Jovine L, Noseda M, Marciniak SJ, Aldred MA, Shovlin CL. Mutations causing premature termination codons discriminate and generate cellular and clinical variability in HHT. Blood 2024; 143:2314-2331. [PMID: 38457357 PMCID: PMC11181359 DOI: 10.1182/blood.2023021777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.
Collapse
Affiliation(s)
- Maria E. Bernabéu-Herrero
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Dilipkumar Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Adrianna Bielowka
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - JiaYi Zhu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kinshuk Jain
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Ian S. Mackay
- Ear, Nose and Throat Surgery, Charing Cross and Royal Brompton Hospitals, London, United Kingdom
| | | | - Giulia Emanuelli
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Micheala A. Aldred
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- NIHR Imperial Biomedical Research Centre, London, United Kingdom
- Specialist Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
2
|
Balachandar S, Graves TJ, Shimonty A, Kerr K, Kilner J, Xiao S, Slade R, Sroya M, Alikian M, Curetean E, Thomas E, McConnell VPM, McKee S, Boardman-Pretty F, Devereau A, Fowler TA, Caulfield MJ, Alton EW, Ferguson T, Redhead J, McKnight AJ, Thomas GA, Aldred MA, Shovlin CL. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations. Am J Med Genet A 2022; 188:959-964. [PMID: 34904380 PMCID: PMC9939255 DOI: 10.1002/ajmg.a.62584] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/02/2021] [Indexed: 01/14/2023]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.
Collapse
Affiliation(s)
- Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tamara J. Graves
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anika Shimonty
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katie Kerr
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Jill Kilner
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Sihao Xiao
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Richard Slade
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Manveer Sroya
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mary Alikian
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK,West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Emanuel Curetean
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Ellen Thomas
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK,Genomics England, London, UK
| | | | - Shane McKee
- Regional Genetics Service, Belfast Health and Social Care Trust, Belfast, UK
| | | | | | - Tom A. Fowler
- Genomics England, London, UK,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Mark J. Caulfield
- Genomics England, London, UK,William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Eric W. Alton
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Teena Ferguson
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Julian Redhead
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| | - Amy J. McKnight
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | | | | | - Micheala A. Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Claire L. Shovlin
- National Heart and Lung Institute, Imperial College London, London, UK,Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK,West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
3
|
Burkes RM, Couper DJ, Barjaktarevic IZ, Cooper CB, Labaki WW, Han MK, Woodruff PG, Lazarus SC, Parekh TM, Paine, III R, Comellas AP, Bowler RP, Loehr LR, Putcha N, Wise RA, Brown TT, Drummond MB. Age-Dependent Associations Between 25-Hydroxy Vitamin D Levels and COPD Symptoms: Analysis of SPIROMICS. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2021; 8:277-291. [PMID: 33829714 PMCID: PMC8237982 DOI: 10.15326/jcopdf.2020.0180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Age and vitamin D levels may affect symptom burden in chronic obstructive pulmonary disease (COPD). We used the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) to determine independent associations between vitamin D levels and COPD symptoms in different age strata. METHODS Serum 25-hydroxy (OH)-vitamin D levels were modeled continuously and categorically (<20 ng/ml versus ≥20 ng/ml). Stratifying by age group (middle-age: 40-64 years old and older: >65 years old), multivariable modeling was performed to identify relationships between 25-OH-vitamin D levels and the COPD Assessment Test (CAT), the modified Medical Research Council score (mMRC), the St George's Respiratory Questionnaire (SGRQ) total and subdomain scores, the Veterans' Specific Activity Questionnaire, and the 6-minute walk test distance. RESULTS InIn the middle-aged group, each 5 ng/ml higher 25-OH-vitamin D level was independently associated with more favorable CAT score (-0.35 [-0.67 to -0.03], P=0.03), total SGRQ (-0.91 [-1.65 to -0.17]; P=0.02), and the SGRQ subdomains (Symptoms:-1.07 [-1.96 to -0.18], P=0.02; Impact: -0.77 [-1.53 to -0.003], P=0.049; Activity: -1.07 [-1.96 to -0.18], P=0.02). These associations persisted after the addition of comorbidity score, reported vitamin D supplementation, outdoor time, or season of blood draw to models. No associations were observed between 25-OH-vitamin D levels and symptom scores in the older age group. DISCUSSION When controlled for clinically relevant covariates, higher 25-OH-vitamin D levels are associated with more favorable respiratory-specific symptoms and quality-of-life assessments in middle-age but not older COPD individuals. Study of the role of vitamin D supplementation in the symptom burden of younger COPD patients is needed.
Collapse
Affiliation(s)
- Robert M. Burkes
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - David J. Couper
- Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| | - Igor Z. Barjaktarevic
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Christopher B. Cooper
- Departments of Medicine and Physiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Meilan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California-San Francisco, San Francisco, California, United States
| | - Stephen C. Lazarus
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California-San Francisco, San Francisco, California, United States
| | - Trisha M. Parekh
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Robert Paine, III
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Alejandro P. Comellas
- Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Hospital, Denver, Colorado, United States
| | - Laura R. Loehr
- Division of General Medicine and Clinical Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, United States
| | - Robert A. Wise
- Division of Pulmonary and Critical Care, Johns Hopkins University, Baltimore, Maryland, United States
| | - Todd T. Brown
- Division of Endocrinology and Metabolism, Johns Hopkins University, Baltimore, Maryland, United States
| | - M. Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
4
|
Gawecki F, Strangeways T, Amin A, Perks J, McKernan H, Thurainatnam S, Rizvi A, Jackson JE, Santhirapala V, Myers J, Brown J, Howard LSGE, Tighe HC, Shovlin CL. Exercise capacity reflects airflow limitation rather than hypoxaemia in patients with pulmonary arteriovenous malformations. QJM 2019; 112:335-342. [PMID: 30657990 DOI: 10.1093/qjmed/hcz023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pulmonary arteriovenous malformations (PAVMs) generate a right-to-left shunt. Impaired gas exchange results in hypoxaemia and impaired CO2 clearance. Most patients compensate effectively but some are dyspneic, and these are rarely the most hypoxaemic. AIM To test degrees of concurrent pathology influencing exercise capacity. DESIGN Replicate, sequential single centre, prospective studies. METHODS Cardiopulmonary exercise tests (CPETs) were performed in 26 patients with PAVMs, including individuals with and without known airflow obstruction. To replicate, relationships were tested prospectively in an independent cohort where self-reported exercise capacity evaluated by the Veterans Specific Activity Questionnaire (VSAQ) was used to calculate metabolic equivalents (METs) at peak exercise (n = 71). Additional measurements included oxygen saturation (SpO2), forced expiratory volume in 1 s (FEV1), vital capacity (VC), fractional exhaled nitric oxide (FeNO), haemoglobin and iron indices. RESULTS By CPET, the peak work rate was only minimally associated with low SpO2 or low arterial oxygen content (calculated as CaO2=1.34 × SpO2 × haemoglobin), but was reduced in patients with low FEV1 or VC. Supranormal work rates were seen in patients with severe right-to-left shunting and SpO2 < 90%, but only if FEV1 was >80% predicted. VSAQ-calculated METS also demonstrated little relationship with SpO2, and in crude and CaO2-adjusted regression, were lower in patients with lower FEV1 or VC. Bronchodilation increased airflow even where spirometry was in the normal range: exhaled nitric oxide measurements were normal in 80% of cases, and unrelated to any PAVM-specific variable. CONCLUSIONS Exercise capacity is reduced by relatively mild airflow limitation (obstructive or restrictive) in the setting of PAVMs.
Collapse
Affiliation(s)
- F Gawecki
- School of Medicine, Imperial College, London, UK
| | | | - A Amin
- School of Medicine, Imperial College, London, UK
| | - J Perks
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - H McKernan
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | | | - A Rizvi
- School of Medicine, Imperial College, London, UK
| | - J E Jackson
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | | | - J Myers
- Cardiology Division, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - J Brown
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - L S G E Howard
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - H C Tighe
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
| | - C L Shovlin
- Respiratory Medicine, Imperial College Healthcare NHS Trust, London, UK
- NHLI Cardiovascular Sciences, Imperial College, London, UK
| |
Collapse
|