1
|
Tian Y, Lin Y, Qu C, Arndt V, Baurley JW, Berndt SI, Bien SA, Bishop DT, Brenner H, Buchanan DD, Budiarto A, Campbell PT, Carreras-Torres R, Casey G, Chan AT, Chen R, Chen X, Conti DV, Díez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Gallinger S, Giles GG, Gruber SB, Gunter MJ, Harlid S, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Joshi AD, Keku TO, Kawaguchi E, Kim AE, Kundaje A, Larsson SC, Marchand LL, Lewinger JP, Li L, Moreno V, Morrison J, Murphy N, Nan H, Nassir R, Newcomb PA, Obón-Santacana M, Ogino S, Ose J, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Prentice RL, Rennert G, Ruiz-Narvaez EA, Sakoda LC, Schoen RE, Shcherbina A, Stern MC, Su YR, Thibodeau SN, Thomas DC, Tsilidis KK, van Duijnhoven FJB, Van Guelpen B, Visvanathan K, White E, Wolk A, Woods MO, Wu AH, Peters U, Gauderman WJ, Hsu L, Chang-Claude J. Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk. Br J Cancer 2024; 130:1687-1696. [PMID: 38561434 PMCID: PMC11091089 DOI: 10.1038/s41416-024-02638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
Collapse
Affiliation(s)
- Yu Tian
- School of Public Health, Capital Medical University, Beijing, China
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute Dr Josep Trueta (IDIBGI), Salt, 17190, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kristina M Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indianapolis, IN, USA
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indianapolis, Indianapolis, IN, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Tokyo Medical and Dental University (Institute of Science Tokyo), Tokyo, Japan
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- Hochschule Hannover, University of Applied Sciences and Arts, Department III: Media, Information and Design, Hannover, Germany
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward A Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anna Shcherbina
- Biomedical Informatics Program, Department of Biomedical Data Sciences, Stanford University, Stanford, CA, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Biostatistics, University of Washington, Seattle, WA, USA.
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University Cancer Centre Hamburg (UCCH), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Li Y, Su J, Tan S, Luo Y, Zhang L. Research progress on novel antibody drug conjugates in cancer therapy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:296-304. [PMID: 38755726 PMCID: PMC11103054 DOI: 10.11817/j.issn.1672-7347.2024.230418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 05/18/2024]
Abstract
Traditional antibody drug conjugates (ADC) combine monoclonal antibodies with cytotoxic drugs to accurately strike cancer cells, but there are still many shortcomings in stability, targeting, efficacy, and safety. Novel ADC, such as bi-specific, site-specific, dual-payload, and pro-drug type ADC, can be optimized by simultaneously binding 2 different antigens or epitopes, selecting more stable linkers, coupling with specific amino acid sites of antibodies, carrying different drug payloads, and adopting prodrug strategies, while retaining the characteristics of traditional ADC. Significantly improving the stability, targeting, efficacy and safety of drugs can better meet the needs of clinical treatment. Novel ADC will play a more important role in cancer treatment in the future. Discussing the progress of novel ADC in cancer treatment and analyzing their advantages and challenges can provide theoretical support for the development of anti-cancer strategies and provide directions for drug research and development.
Collapse
Affiliation(s)
- Yuning Li
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013.
- College of Life Science and Health, Hunan University of Science and Technology, Xiangtan Hunan 411201, China.
| | - Jialin Su
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013
- College of Life Science and Health, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
| | - Shuhua Tan
- College of Life Science and Health, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013
| | - Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha 410013.
| |
Collapse
|
3
|
Aljama S, Lago EP, Zafra O, Sierra J, Simón D, Santos C, Pascual JR, Garcia-Romero N. Dichotomous colorectal cancer behaviour. Crit Rev Oncol Hematol 2023; 189:104067. [PMID: 37454703 DOI: 10.1016/j.critrevonc.2023.104067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and one of the deadliest cancers. At molecular level, CRC is a heterogeneous disease that could be divided in four Consensus Molecular Subtypes. Given the differences in the disease due to its anatomical location (proximal and distal colon), another classification should be considered. Here, we review the current knowledge on CRC dichotomic´s behaviour based on two different entities; right and left-sided tumors, their impact on clinical trial data, microbiota spatial composition and the interaction with the nervous system. We discuss recent advances in understanding how the spatial tumor heterogeneity influences the tumor growth, progression, and responses to current therapies.
Collapse
Affiliation(s)
- Sara Aljama
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Estela P Lago
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Olga Zafra
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Javier Sierra
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Diana Simón
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Cruz Santos
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | | | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain.
| |
Collapse
|
4
|
Zhou M, Tang Y, Xu W, Hao X, Li Y, Huang S, Xiang D, Wu J. Bacteria-based immunotherapy for cancer: a systematic review of preclinical studies. Front Immunol 2023; 14:1140463. [PMID: 37600773 PMCID: PMC10436994 DOI: 10.3389/fimmu.2023.1140463] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has been emerging as a powerful strategy for cancer management. Recently, accumulating evidence has demonstrated that bacteria-based immunotherapy including naive bacteria, bacterial components, and bacterial derivatives, can modulate immune response via various cellular and molecular pathways. The key mechanisms of bacterial antitumor immunity include inducing immune cells to kill tumor cells directly or reverse the immunosuppressive microenvironment. Currently, bacterial antigens synthesized as vaccine candidates by bioengineering technology are novel antitumor immunotherapy. Especially the combination therapy of bacterial vaccine with conventional therapies may further achieve enhanced therapeutic benefits against cancers. However, the clinical translation of bacteria-based immunotherapy is limited for biosafety concerns and non-uniform production standards. In this review, we aim to summarize immunotherapy strategies based on advanced bacterial therapeutics and discuss their potential for cancer management, we will also propose approaches for optimizing bacteria-based immunotherapy for facilitating clinical translation.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yucheng Tang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenjie Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongjiang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Si Huang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| |
Collapse
|
5
|
Mokhtari Z, Rezaei M, Sanei MH, Dehghanian A, Faghih Z, Heidari Z, Tavana S. Tim3 and PD-1 as a therapeutic and prognostic targets in colorectal cancer: Relationship with sidedness, clinicopathological parameters, and survival. Front Oncol 2023; 13:1069696. [PMID: 37035199 PMCID: PMC10076872 DOI: 10.3389/fonc.2023.1069696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease that complicates predicting patients' prognosis and their response to treatment. CRC prognosis is influenced by the tumor microenvironment (TME). The immune system is a critical component of the TME. Programmed cell death receptor 1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (Tim3) are inhibitory immune checkpoints that regulate immune response and may provide prognostic power. However, the effect of their expressions and co-expressions on the CRC prognosis remains unclear. Accordingly, this study aimed to investigate the prognostic value of the CD8, CD3, PD-1, Tim3 expression, and PD-1/Tim3 co-expression in patients with CRC. Materials and Methods One hundred and thirty six patients with CRC who underwent curative surgery were enrolled in the study. Immunohistochemical staining was performed for PD-1, Tim3, CD8, and CD3, and the expression of each marker was evaluated in the center of the tumor (CT), invasive margin (IM), and adjacent normal-like tissue. Result Our results indicated that high expression of PD-1 in IM was significantly associated with lower TNM stage, T-stage, M-stage, lack of metastasis, the presence of tertiary lymphoid structure (TLS), lack of recurrence (in the left-sided tumors), and larger tumor size (in right-sided tumors) (P<0.05). High expression of PD-1 in IM was also associated with improved overall survival (OS) in a subgroup of patients with high CD8 expression. High Tim3 expression in CT was associated with higher M-stage (M1) (in left-sided CRCs) (P<0.05). It was also associated with decreased OS in total cohort and left-sided CRCs and represented an independent prognostic factor for CRC patients in multivariate analysis. PD-1 and Tim3 co-expression had no synergistic effects on predicting OS. Conclusion Our findings suggest that the clinicopathological and prognostic significance of immune system-related markers such as CD8, PD-1, and Tim3 depends on the primary tumor sides. We also showed that Tim3 could act as a prognostic factor and therapeutic target in CRC. This marker is probably a more preferred target for immunotherapy than PD-1, especially in left-sided CRCs.
Collapse
Affiliation(s)
- Zahra Mokhtari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Marzieh Rezaei,
| | - Mohammad Hossein Sanei
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirreza Dehghanian
- Department of Pathology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Zahra Faghih
- Institute for Cancer Research (ICR), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Heidari
- Department of Biostatistics & Epidemiologyt, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Tavana
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Ma B, Ueda H, Okamoto K, Bando M, Fujimoto S, Okada Y, Kawaguchi T, Wada H, Miyamoto H, Shimada M, Sato Y, Takayama T. TIMP1 promotes cell proliferation and invasion capability of right-sided colon cancers via the FAK/Akt signaling pathway. Cancer Sci 2022; 113:4244-4257. [PMID: 36073574 DOI: 10.1111/cas.15567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Although right-sided colorectal cancer (CRC) shows a worse prognosis than left-sided CRC, the underlying mechanism remains unclear. We established patient-derived organoids (PDOs) from left- and right-sided CRCs and directly compared cell proliferation and invasion capability between them. We then analyzed the expression of numerous genes in signal transduction pathways to clarify the mechanism of the differential prognosis. Cell proliferation activity and invasion capability in right-sided cancer PDOs were significantly higher than in left-sided cancer PDOs and normal PDOs, as revealed by Cell Titer Glo and transwell assays, respectively. We then used quantitative RT-PCR to compare 184 genes in 30 pathways among right-sided and left-sided cancer and normal PDOs and found that the TIMP1 mRNA level was highest in right-sided PDOs. TIMP1 protein levels were upregulated in right-sided PDOs compared with normal PDOs but was downregulated in left-sided PDOs. TIMP1 knockdown with shRNA significantly decreased cell proliferation activity and invasion capability in right-sided PDOs but not in left-sided PDOs. Moreover, TIMP1 knockdown significantly decreased pFAK and pAkt expression levels in right-sided PDOs but not in left-sided PDOs. A database analysis of The Cancer Genome Atlas revealed that TIMP1 expression in right-sided CRCs was significantly higher than in left-sided CRCs. Kaplan-Meier survival analysis showed significantly shorter overall survival in high-TIMP1 patients versus low-TIMP1 patients with right-sided CRCs but not left-sided CRCs. Our data suggest that TIMP1 is overexpressed in right-sided CRCs and promotes cell proliferation and invasion capability through the TIMP1/FAK/Akt pathway, leading to a poor prognosis. The TIMP1/FAK/Akt pathway can be a target for therapeutic agents in right-sided CRCs.
Collapse
Affiliation(s)
- Beibei Ma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroyuki Ueda
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuyuki Okada
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hironori Wada
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
8
|
Application of mTORC1 Inhibitors for Tissue-Agnostic Management of Standard-Therapy-Refractory Solid Tumors. Cancers (Basel) 2022; 14:cancers14081936. [PMID: 35454843 PMCID: PMC9032789 DOI: 10.3390/cancers14081936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
In this analysis, we examined the efficacy, feasibility, and limitations of the application of mTOR inhibitors based on the individual molecular profiles of pretreated cancer patients after the failure of all standard treatments in the palliative setting. In this single-center, real-world analysis of our platform for precision medicine, we analyzed the molecular characteristics of 71 cancer patients. The tumor samples of the patients were analyzed using next-generation sequencing panels of mutation hotspots, microsatellite stability testing, and immunohistochemistry. All profiles were reviewed by a multidisciplinary team to provide a targeted treatment recommendation after a consensus discussion. Seventy-one cancer patients with activation of the mTOR pathway were offered an mTORC1-inhibitor-based targeted therapy, and twenty-three (32.4%) of them eventually received the targeted therapy. Only three patients (4.2%) achieved stable disease, of whom one experienced progressive disease again after 9.1 months. The median time to treatment failure was 2.8 months. In total, 110 mutations were detected in 60 patients (84.5%). The three most frequent mutations were found in TP53, PTEN, and KRAS, which accounted for over 50% (56.4%) of all mutations. In sum, in selected patients with heavily pretreated solid tumors with activation of the mTOR pathway, the antitumoral activity of mTORC1 inhibition was weak.
Collapse
|
9
|
Flores-Téllez TDNJ, Baena E. Experimental challenges to modeling prostate cancer heterogeneity. Cancer Lett 2022; 524:194-205. [PMID: 34688843 DOI: 10.1016/j.canlet.2021.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/23/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Tumor heterogeneity plays a key role in prostate cancer prognosis, therapy selection, relapse, and acquisition of treatment resistance. Prostate cancer presents a heterogeneous diversity at inter- and intra-tumor and inter-patient levels which are influenced by multiple intrinsic and/or extrinsic factors. Recent studies have started to characterize the complexity of prostate tumors and these different tiers of heterogeneity. In this review, we discuss the most common factors that contribute to tumoral diversity. Moreover, we focus on the description of the in vitro and in vivo approaches, as well as high-throughput technologies, that help to model intra-tumoral diversity. Further understanding tumor heterogeneities and the challenges they present will guide enhanced patient risk stratification, aid the design of more precise therapies, and ultimately help beat this chameleon-like disease.
Collapse
Affiliation(s)
- Teresita Del N J Flores-Téllez
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Alderley Edge, Macclesfield, SK10 4TG, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK.
| |
Collapse
|
10
|
He W, Wang B, He J, Zhao Y, Zhao W. SSR4 as a prognostic biomarker and related with immune infiltration cells in colon adenocarcinoma. Expert Rev Mol Diagn 2021; 22:223-231. [PMID: 34904499 DOI: 10.1080/14737159.2022.2019015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Signal sequence receptor subunit delta (SSR4) gene is reported to encode the translocon-associated protein δ and related with the human immune regulation. However, the expression of SSR4 in colon adenocarcinoma (COAD) and its correlation with clinical treatment remains unclear. RESEARCH DESIGN AND METHODS SSR4 mRNA expression level and its relationship with tumor infiltrating lymphocytes (TILs) in COAD were evaluated through several databases. Furthermore, the study collected 238 cases of COAD tissue samples to detect the association of SSR4 protein expression level in TILs with clinical pathological information, and the prognosis of COAD. RESULTS SSR4 mRNA was significantly highly expressed in COAD tissues and significantly correlated with several types of TILs in COAD. Moreover, SSR4 highly expressed in many types of TILs, especially highly expressed in plasma cell from COAD patients with advanced TNM stage. High SSR4 protein expression in TILs was associated with lymph node metastasis, distant metastasis, American Joint Committee on Cancer (AJCC) staging, and Response Evaluation Criteria in Solid Tumors (RECIST) efficacy. COAD patients with high SSR4 expression in TILs had better overall survival. CONCLUSIONS In conclusion, high SSR4 mRNA and protein expression in TILs can be used as a prognostic biomarker for predicting better overall survival and treatment efficacy in COAD patients.
Collapse
Affiliation(s)
- Weiwei He
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Wang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jikai He
- Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Youcai Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
11
|
Wallace K, El Nahas GJ, Bookhout C, Thaxton JE, Lewin DN, Nikolaishvili-Feinberg N, Cohen SM, Brazeal JG, Hill EG, Wu JD, Baron JA, Alekseyenko AV. Immune Responses Vary in Preinvasive Colorectal Lesions by Tumor Location and Histology. Cancer Prev Res (Phila) 2021; 14:885-892. [PMID: 34341013 PMCID: PMC8811707 DOI: 10.1158/1940-6207.capr-20-0592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
Immune responses vary in colorectal cancers, which strongly influence prognosis. However, little is known about the variance in immune response within preinvasive lesions. The study aims to investigate how the immune contexture differs by clinicopathologic features (location, histology, dysplasia) associated with progression and recurrence in early carcinogenesis. We performed a cross-sectional study using preinvasive lesions from the surgical pathology laboratory at the Medical University of South Carolina. We stained the tissues with immunofluorescence antibodies, then scanned and analyzed expression using automated image analysis software. We stained CD117 as a marker of mast cells, CD4/RORC to indicate Th17 cells, MICA/B as a marker of NK-cell ligands, and also used antibodies directed against cytokines IL6, IL17A, and IFNγ. We used negative binomial regression analysis to compare analyte density counts by location, histology, degree of dysplasia adjusted for age, sex, race, and batch. All immune markers studied (except IL17a) had significantly higher density counts in the proximal colon than distal colon and rectum. Increases in villous histology were associated with significant decreases in immune responses for IL6, IL17a, NK ligand, and mast cells. No differences were observed in lesions with low- and high-grade dysplasia, except in mast cells. The lesions of the proximal colon were rich in immune infiltrate, paralleling the responses observed in normal mucosa and invasive disease. The diminishing immune response with increasing villous histology suggests an immunologically suppressive tumor environment. Our findings highlight the heterogeneity of the immune responses in preinvasive lesions, which may have implications for prevention strategies. PREVENTION RELEVANCE: Our study is focused on immune infiltrate expression in preinvasive colorectal lesions; our results suggest important differences by clinicopathologic features that have implications for immune prevention research.
Collapse
Affiliation(s)
- Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina.
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
| | - Georges J El Nahas
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, South Carolina
| | - Christine Bookhout
- Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jessica E Thaxton
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Microbiology and Immunology, MUSC, Charleston, South Carolina
- Department of Orthopedics and Physical Medicine, MUSC, Charleston, South Carolina
| | - David N Lewin
- Department of Pathology and Laboratory Medicine, MUSC, Charleston, South Carolina
| | | | - Stephanie M Cohen
- Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - J Grant Brazeal
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
| | - Elizabeth G Hill
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
| | - Jennifer D Wu
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - John A Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Alexander V Alekseyenko
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, South Carolina
- Department of Public Health Sciences, MUSC, Charleston, South Carolina
- Department of Oral Health Sciences, The Biomedical Informatics Center, MUSC, Charleston, South Carolina
- Department of Healthcare Leadership and Management, MUSC, Charleston, South Carolina
| |
Collapse
|
12
|
Ying HQ, Sun F, Liao YC, Cai D, Yang Y, Cheng XX. The value of circulating fibrinogen-to-pre-albumin ratio in predicting survival and benefit from chemotherapy in colorectal cancer. Ther Adv Med Oncol 2021; 13:17588359211022886. [PMID: 34262615 PMCID: PMC8243139 DOI: 10.1177/17588359211022886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
Background: To evaluate the prognostic role of circulating fibrinogen-to-pre-albumin
(FPR) in colorectal cancer (CRC) with different tumor locations, and its
involvement in chemosensitivity and chemoresistance. Patients and methods: A total of 2917 eligible CRC patients from multiple centers were enrolled in
this prospective study, and 3 years follow-up was carried out to obtain the
outcome of these patients. Circulating fibrinogen (Fib), pre-albumin (pAlb),
carcinoembryonic antigen (CEA), and carbohydrate antigen 19-9 (CA19-9) were
detected, and we calculated FPR according to the detected results.
Kaplan–Meier curves, Cox proportional regression, time-dependent receiver
operating characteristic curves, Harrell’s concordance index, calibration,
and decision curves were used to investigate the role of FPR in predicting
chemotherapy efficacy and prognosis of CRC patients. Results: Our results showed that cancer bulk, its infiltrating depth, and the distal
metastasis status of CRC determined circulating FPR levels. A high FPR was
associated with a significantly inferior prognosis, while the outcomes of
right-sided patients with stage III and IV CRC were worse than left-sided
cases. Only FPR was found to be a reliable and independent prognostic factor
for each stage of CRC. In addition, the prognostic FPR-contained nomograms
were superior to the non-FPR nomograms and FPR in predicting the outcomes in
both localized and metastatic CRC patients. The circulating FPR was
significantly associated with chemotherapeutic efficacy in stage III and IV
CRC patients. In particular, low-grade (FPR < 15) and medium-grade
(15 ⩽ FPR < 20) FPR patients exhibited a complete response to
chemotherapy and attenuated chemosensitivity, respectively; in contrast,
high-grade inflammation (FPR ⩾ 20) conferred resistance to the
treatment. Conclusion: Circulating FPR is a robust and independent prognostic factor, a simple and
economically-friendly predictor of chemotherapy efficacy within cases of
localized and metastatic CRC. FPR-contained nomograms are more effective in
predicting the prognosis of these patients. FPR and the nomogram can be
recommended for the evaluation of chemotherapy efficacy and to aid
decision-making associated with the management of these patients.
Collapse
Affiliation(s)
| | | | | | - Dan Cai
- Jiangxi Provincial Key Laboratory of Preventive
Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi,
China
| | - Ying Yang
- Jiangxi Provincial Key Laboratory of Preventive
Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi,
China
| | | |
Collapse
|
13
|
Lin Q, Luo L, Wang H. A New Oxaliplatin Resistance-Related Gene Signature With Strong Predicting Ability in Colon Cancer Identified by Comprehensive Profiling. Front Oncol 2021; 11:644956. [PMID: 34026619 PMCID: PMC8138443 DOI: 10.3389/fonc.2021.644956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous colon cancer cases are resistant to chemotherapy based on oxaliplatin and suffer from relapse. A number of survival- and prognosis-related biomarkers have been identified based on database mining for patients who develop drug resistance, but the single individual gene biomarker cannot attain high specificity and sensitivity in prognosis prediction. This work was conducted aiming to establish a new gene signature using oxaliplatin resistance-related genes to predict the prognosis for colon cancer. To this end, we downloaded gene expression profile data of cell lines that are resistant and not resistant to oxaliplatin from the Gene Expression Omnibus (GEO) database. Altogether, 495 oxaliplatin resistance-related genes were searched by weighted gene co-expression network analysis (WGCNA) and differential expression analysis. As suggested by functional analysis, the above genes were mostly enriched into cell adhesion and immune processes. Besides, a signature was built based on four oxaliplatin resistance-related genes selected from the training set to predict the overall survival (OS) by stepwise regression and least absolute shrinkage and selection operator (LASSO) Cox analysis. Relative to the low risk score group, the high risk score group had dismal OS (P < 0.0001). Moreover, the area under the curve (AUC) value regarding the 5-year OS was 0.72, indicating that the risk score was accurate in the prediction of OS for colon cancer patients (AUC >0.7). Additionally, multivariate Cox regression suggested that the signature constructed based on four oxaliplatin resistance-related genes predicted the prognosis for colon cancer cases [hazard ratio (HR), 2.77; 95% CI, 2.03–3.78; P < 0.001]. Finally, external test sets were utilized to further validate the stability and accuracy of oxaliplatin resistance-related gene signature for prognosis of colon cancer patients. To sum up, this study establishes a signature based on four oxaliplatin resistance-related genes for predicting the survival of colon cancer patients, which sheds more light on the mechanisms of oxaliplatin resistance and helps identify colon cancer cases with a dismal prognostic outcome.
Collapse
Affiliation(s)
- Qiu Lin
- Department of Colorectal Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Luo
- Department of Colorectal Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Wang
- Department of Colorectal Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Wallace K, Nahhas GJ, Bookhout C, Lewin DN, Paulos CM, Nikolaishvili-Feinberg N, Cohen SM, Guglietta S, Bakhtiari A, Camp ER, Hill EG, Baron JA, Wu JD, Alekseyenko AV. Preinvasive Colorectal Lesions of African Americans Display an Immunosuppressive Signature Compared to Caucasian Americans. Front Oncol 2021; 11:659036. [PMID: 33987094 PMCID: PMC8112239 DOI: 10.3389/fonc.2021.659036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND African Americans (AAs) have higher colorectal cancer (CRC) incidence and mortality rate than Caucasian Americans (CAs). Recent studies suggest that immune responses within CRCs contribute to the disparities. If racially distinct immune signatures are present in the early phases of carcinogenesis, they could be used to develop interventions to prevent or slow disease. METHODS We selected a convenience sample of 95 patients (48 CAs, 47 AAs) with preinvasive colorectal adenomas from the surgical pathology laboratory at the Medical University of South Carolina. Using immunofluorescent-conjugated antibodies on tissue slides from the lesions, we quantified specific immune cell populations: mast cells (CD117+), Th17 cells (CD4+RORC+), and NK cell ligand (MICA/B) and inflammatory cytokines, including IL-6, IL-17A, and IFN-γ. We compared the mean density counts (MDCs) and density rate ratios (RR) and 95% CI of immune markers between AAs to CAs using negative binomial regression analysis. We adjusted our models for age, sex, clinicopathologic characteristics (histology, location, dysplasia), and batch. RESULTS We observed no racial differences in age or sex at the baseline endoscopic exam. AAs compared to CAs had a higher prevalence of proximal adenomas (66% vs. 40%) and a lower prevalence of rectal adenomas (11% vs. 23%) (p =0.04) but no other differences in pathologic characteristics. In age, sex, and batch adjusted models, AAs vs. CAs had lower RRs for cells labeled with IFNγ (RR 0.50 (95% CI 0.32-0.81); p=0.004) and NK cell ligand (RR 0.67 (0.43-1.04); p=0.07). In models adjusted for age, sex, and clinicopathologic variables, AAs had reduced RRs relative to CAs for CD4 (p=0.02), NK cell ligands (p=0.01), Th17 (p=0.005), mast cells (p=0.04) and IFN-γ (p< 0.0001). CONCLUSIONS Overall, the lower RRs in AAs vs. CAs suggests reduced effector response capacity and an immunosuppressive ('cold') tumor environment. Our results also highlight the importance of colonic location of adenoma in influencing these differences; the reduced immune responses in AAs relative to CAs may indicate impaired immune surveillance in early carcinogenesis. Future studies are needed to understand the role of risk factors (such as obesity) in influencing differences in immune responses by race.
Collapse
Affiliation(s)
- Kristin Wallace
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
| | - Georges J. Nahhas
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
- Department of Psychiatry and Behavioral Sciences, MUSC, Charleston, SC, United States
| | - Christine Bookhout
- Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - David N. Lewin
- Department of Pathology and Laboratory Medicine, MUSC, Charleston, SC, United States
| | - Chrystal M. Paulos
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
- Department of Microbiology/Immunology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | | | - Stephanie M. Cohen
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Silvia Guglietta
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Ali Bakhtiari
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
| | - E. Ramsay Camp
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Elizabeth G. Hill
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
| | - John A. Baron
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Jennifer D. Wu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alexander V. Alekseyenko
- Department of Public Health Sciences, MUSC, Charleston, SC, United States
- Bioinformatics Center, MUSC, Charleston, SC, United States
- Department of Oral Health Sciences, MUSC, Charleston, SC, United States
- Department of Healthcare Leadership and Management, MUSC, Charleston, SC, United States
| |
Collapse
|
15
|
Ying HQ, You XH, Liao YC, Sun F, Cheng XX. High-Grade Inflammation Attenuates Chemosensitivity and Confers to Poor Survival of Surgical Stage III CRC Patients. Front Oncol 2021; 11:580455. [PMID: 33968712 PMCID: PMC8103203 DOI: 10.3389/fonc.2021.580455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Heterogeneous clinical and molecular characteristics are reported in colorectal cancer (CRC) with different tumor laterality. However, the outcome of left- and right-sided patients with stage I–III CRC and the role of chronic inflammation in survival differences between them remain unclear. Method: A prospective study including 1,181 surgical patients with stage I–III CRC was carried out to investigate the involvement of circulating fibrinogen-to-pre-albumin (Alb) ratio (FPR) and primary tumor sidedness in the clinical outcome of those patients. We further investigated the effect of FPR on adjuvant chemotherapy response and recurrence in stage III patients. Results: Our study showed that the right tumor location was significantly associated with poor recurrence-free survival (RFS) (p = 0.04, adjusted HR = 1.41, 95% CI = 1.02–1.94) and overall survival (OS) (p = 0.04, adjusted HR = 1.55, 95% CI = 1.01–2.38) only in the stage III disease. In these patients, T4 stage distribution (83.39 vs. 70.94%, p < 0.01) within right-sided cases was significantly higher than left-sided patients. Moreover, preoperative FPR within right-sidedness (p < 0.01), T4 stage (p < 0.05), and large cancer bulk (≥5 cm) (p < 0.05) subgroups was significantly elevated compared to their counterparts, and it was gradually rising following the increased cancer bulk (p trend < 0.01). High-FPR distribution (52.30 vs. 27.00%, p < 0.01) within right-sided patients with the stage III disease was significantly higher than that in the left-sided cases. RFS (plog−rank < 0.01) and OS (plog−rank < 0.01) of the high-FPR patients were extremely inferior to the low-FPR cases, and the significant associations were observed when they were adjusted by other confounders including primary tumor location (p < 0.01, adjusted HR = 1.96, 95% CI = 1.42–2.70 for RFS; p < 0.01, adjusted HR = 2.44, 95% CI = 1.59–3.75 for OS). Additionally, RFS of adjuvant chemotherapy-treated high-FPR patients was superior to the patients without chemotherapy (plog−rank = 0.01) but was inferior to the low-FPR patients undergoing the treatment, especially in the 5-FU- and XELOX-treated subgroup. Conclusion: These findings indicate that chronic high-grade inflammation weakens chemotherapy efficacy and contributes to the poor prognosis of stage III surgical CRC patients.
Collapse
Affiliation(s)
- Hou-Qun Ying
- Department of Nuclear Medicine, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xia-Hong You
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Cui Liao
- School of Public Health, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Fan Sun
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xue-Xin Cheng
- Biological Resource Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Iftikhar MS, Talha GM, Aleem M, Shamim A. Bioinformatics–computer programming. NANOTECHNOLOGY IN CANCER MANAGEMENT 2021:125-148. [DOI: 10.1016/b978-0-12-818154-6.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Berghoff AS, Liao Y, Karreman MA, Ilhan-Mutlu A, Gunkel K, Sprick MR, Eisen C, Kessler T, Osswald M, Wünsche S, Feinauer M, Gril B, Marmé F, Michel LL, Bago-Horvath Z, Sahm F, Becker N, Breckwoldt MO, Solecki G, Gömmel M, Huang L, Rübmann P, Thome CM, Ratliff M, Trumpp A, Steeg PS, Preusser M, Wick W, Winkler F. Identification and Characterization of Cancer Cells That Initiate Metastases to the Brain and Other Organs. Mol Cancer Res 2020; 19:688-701. [PMID: 33443114 DOI: 10.1158/1541-7786.mcr-20-0863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/08/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022]
Abstract
Specific biological properties of those circulating cancer cells that are the origin of brain metastases (BM) are not well understood. Here, single circulating breast cancer cells were fate-tracked during all steps of the brain metastatic cascade in mice after intracardial injection over weeks. A novel in vivo two-photon microscopy methodology was developed that allowed to determine the specific cellular and molecular features of breast cancer cells that homed in the brain, extravasated, and successfully established a brain macrometastasis. Those BM-initiating breast cancer cells (BMIC) were mainly originating from a slow-cycling subpopulation that included only 16% to 20% of all circulating cancer cells. BMICs showed enrichment of various markers of cellular stemness. As a proof of principle for the principal usefulness of this approach, expression profiling of BMICs versus non-BMICs was performed, which revealed upregulation of NDRG1 in the slow-cycling BMIC subpopulation in one BM model. Here, BM development was completely suppressed when NDRG1 expression was downregulated. In accordance, in primary human breast cancer, NDRG1 expression was heterogeneous, and high NDRG1 expression was associated with shorter metastasis-free survival. In conclusion, our data identify temporary slow-cycling breast cancer cells as the dominant source of brain and other metastases and demonstrates that this can lead to better understanding of BMIC-relevant pathways, including potential new approaches to prevent BM in patients. IMPLICATIONS: Cancer cells responsible for successful brain metastasis outgrowth are slow cycling and harbor stemness features. The molecular characteristics of these metastasis-initiating cells can be studied using intravital microscopy technology.
Collapse
Affiliation(s)
- Anna S Berghoff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Yunxiang Liao
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Katharina Gunkel
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin R Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian Eisen
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Osswald
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Wünsche
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Feinauer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Brunhilde Gril
- Women's Malignancies Branch, Laboratory of Pathology, Center for Cancer Research, Biostatistics and Data Management Section, NCI, NIH, Bethesda; Laboratory Animal Sciences Program, SAIC-Frederick, NCI, NIH, Frederick, Maryland
| | - Frederic Marmé
- Department of Gynecology and Obstetrics and National Center for Tumor Diseases, University Hospital, Heidelberg, Germany
| | - Laura L Michel
- Department of Gynecology and Obstetrics and National Center for Tumor Diseases, University Hospital, Heidelberg, Germany
| | | | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls University Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Gergely Solecki
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Gömmel
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Lulu Huang
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Petra Rübmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Carina M Thome
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Patricia S Steeg
- Women's Malignancies Branch, Laboratory of Pathology, Center for Cancer Research, Biostatistics and Data Management Section, NCI, NIH, Bethesda; Laboratory Animal Sciences Program, SAIC-Frederick, NCI, NIH, Frederick, Maryland
| | - Matthias Preusser
- Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Taghizadeh H, Mader RM, Müllauer L, Erhart F, Kautzky-Willer A, Prager GW. Precision Medicine for the Management of Therapy Refractory Colorectal Cancer. J Pers Med 2020; 10:jpm10040272. [PMID: 33322358 PMCID: PMC7768503 DOI: 10.3390/jpm10040272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
In this analysis, we examined the efficacy, feasibility, and limitations of molecular-based targeted therapies in heavily pretreated metastatic colorectal cancer (mCRC) patients after failure of all standard treatments. In this single-center, real-world retrospective analysis of our platform for precision medicine, we mapped the molecular profiles of 60 mCRC patients. Tumor samples of the patients were analyzed using next-generation sequencing panels of mutation hotspots, microsatellite instability testing, and immunohistochemistry. All profiles were reviewed by a multidisciplinary team to provide a targeted treatment recommendation after consensus discussion. In total, we detected 166 mutations in 53 patients. The five most frequently found mutations were TP53, KRAS, APC, PIK3CA, and PTEN. In 28 cases (47% of all patients), a molecularly targeted therapy could be recommended. Eventually, 12 patients (20%) received the recommended therapy. Six patients (10%) had a clinical benefit. The median time to treatment failure was 3.1 months. Our study demonstrates the feasibility and applicability of using targeted therapies in daily clinical practice for heavily pretreated mCRC patients. This could be used as a targeted treatment option in half of the patients.
Collapse
Affiliation(s)
- Hossein Taghizadeh
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.T.); (R.M.M.)
- Comprehensive Cancer Center Vienna, 1090 Vienna, Austria;
| | - Robert M. Mader
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.T.); (R.M.M.)
- Comprehensive Cancer Center Vienna, 1090 Vienna, Austria;
| | - Leonhard Müllauer
- Comprehensive Cancer Center Vienna, 1090 Vienna, Austria;
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| | - Friedrich Erhart
- Department of Internal Medicine, Amstetten Region State Clinic, 3300 Amstetten, Austria;
| | - Alexandra Kautzky-Willer
- Department of Medicine III, Gender Medicine Unit, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gerald W. Prager
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria; (H.T.); (R.M.M.)
- Comprehensive Cancer Center Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-44500
| |
Collapse
|
19
|
Syed Najmuddin SUF, Amin ZM, Tan SW, Yeap SK, Kalyanasundram J, Veerakumarasivam A, Chan SC, Chia SL, Yusoff K, Alitheen NB. Oncolytic effects of the recombinant Newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-Foxn1nu nude mice. PeerJ 2020; 8:e9761. [PMID: 33354412 PMCID: PMC7731658 DOI: 10.7717/peerj.9761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Colon cancer remains one of the main cancers causing death in men and women worldwide as certain colon cancer subtypes are resistant to conventional treatments and the development of new cancer therapies remains elusive. Alternative modalities such as the use of viral-based therapeutic cancer vaccine is still limited, with only the herpes simplex virus (HSV) expressing granulocyte-macrophage colony- stimulating factor (GM-CSF) or talimogene laherparepvec (T-Vec) being approved in the USA and Europe so far. Therefore, it is imperative to continue the search for a new treatment modality. This current study evaluates a combinatorial therapy between the oncolytic Newcastle disease virus (NDV) and interleukin-12 (IL-12) cytokine as a potential therapeutic vaccine to the current anti-cancer drugs. Several in vitro analyses such as MTT assay, Annexin V/FITC flow cytometry, and cell cycle assay were performed to evaluate the cytotoxicity effect of recombinant NDV, rAF-IL12. Meanwhile, serum cytokine, serum biochemical, histopathology of organs and TUNEL assay were carried out to assess the anti-tumoral effects of rAF-IL12 in HT29 tumor-challenged nude mice. The apoptosis mechanism underlying the effect of rAF-IL12 treatment was also investigated using NanoString Gene expression analysis. The recombinant NDV, rAF-IL12 replicated in HT29 colon cancer cells as did its parental virus, AF2240-i. The rAF-IL12 treatment had slightly better cytotoxicity effects towards HT29 cancer cells when compared to the AF2240-i as revealed by the MTT, Annexin V FITC and cell cycle assay. Meanwhile, the 28-day treatment with rAF-IL12 had significantly (p < 0.05) perturbed the growth and progression of HT29 tumor in NCr-Foxn1nu nude mice when compared to the untreated and parental wild-type NDV strain AF2240-i. The rAF-IL12 also modulated the immune system in nude mice by significantly (p < 0.05) increased the level of IL-2, IL-12, and IFN-γ cytokines. Treatment with rAF-IL12 had also significantly (p < 0.05) increased the expression level of apoptosis-related genes such as Fas, caspase-8, BID, BAX, Smad3 and granzyme B in vitro and in vivo. Besides, rAF-IL12 intra-tumoral delivery was considered safe and was not hazardous to the host as evidenced in pathophysiology of the normal tissues and organs of the mice as well as from the serum biochemistry profile of liver and kidney. Therefore, this study proves that rAF-IL12 had better cytotoxicity effects than its parental AF2240-i and could potentially be an ideal treatment for colon cancer in the near future.
Collapse
Affiliation(s)
| | - Zahiah Mohamed Amin
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sheau Wei Tan
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | | | | | - Suet Lin Chia
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Khatijah Yusoff
- Universiti Putra Malaysia, Serdang, Malaysia.,Malaysian Genome Institute, National Institute of Biotechnology Malaysia, Kajang, Malaysia
| | - Noorjahan Banu Alitheen
- Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
20
|
Necroptosis is dispensable for the development of inflammation-associated or sporadic colon cancer in mice. Cell Death Differ 2020; 28:1466-1476. [PMID: 33230260 DOI: 10.1038/s41418-020-00673-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation of the large intestine is associated with an increased risk of developing colorectal cancer (CRC), the second most common cause of cancer-related deaths worldwide. Necroptosis has emerged as a form of lytic programmed cell death that, distinct from apoptosis, triggers an inflammatory response. Dysregulation of necroptosis has been linked to multiple chronic inflammatory diseases, including inflammatory bowel disease and cancer. Here, we used murine models of acute colitis, colitis-associated CRC, sporadic CRC, and spontaneous intestinal tumorigenesis to investigate the role of necroptosis in these gastrointestinal pathologies. In the Dextran Sodium Sulfate-induced acute colitis model, in some experiments, mice lacking the terminal necroptosis effector protein, MLKL, or its activator RIPK3, exhibited greater weight loss compared to wild-type mice, consistent with some earlier reports. However, the magnitude of weight loss and accompanying inflammatory pathology upon Mlkl deletion varied substantially between independent repeats. Such variation provides a possible explanation for conflicting literature reports. Furthermore, contrary to earlier reports, we observed that genetic deletion of MLKL had no impact on colon cancer development using several mouse models. Collectively, these data do not support an obligate role for necroptosis in inflammation or cancer within the gastrointestinal tract.
Collapse
|
21
|
Labadie JD, Harrison TA, Banbury B, Amtay EL, Bernd S, Brenner H, Buchanan DD, Campbell PT, Cao Y, Chan AT, Chang-Claude J, English D, Figueiredo JC, Gallinger SJ, Giles GG, Gunter MJ, Hoffmeister M, Hsu L, Jenkins MA, Lin Y, Milne RL, Moreno V, Murphy N, Ogino S, Phipps AI, Sakoda LC, Slattery ML, Southey MC, Sun W, Thibodeau SN, Van Guelpen B, Zaidi SH, Peters U, Newcomb PA. Postmenopausal Hormone Therapy and Colorectal Cancer Risk by Molecularly Defined Subtypes and Tumor Location. JNCI Cancer Spectr 2020; 4:pkaa042. [PMID: 32923935 PMCID: PMC7477374 DOI: 10.1093/jncics/pkaa042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Postmenopausal hormone therapy (HT) is associated with a decreased colorectal cancer (CRC) risk. As CRC is a heterogeneous disease, we evaluated whether the association of HT and CRC differs across etiologically relevant, molecularly defined tumor subtypes and tumor location. METHODS We pooled data on tumor subtypes (microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, pathway: adenoma-carcinoma, alternate, serrated), tumor location (proximal colon, distal colon, rectum), and HT use among 8220 postmenopausal women (3898 CRC cases and 4322 controls) from 8 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CIs) for the association of ever vs never HT use with each tumor subtype compared with controls. Models were adjusted for study, age, body mass index, smoking status, and CRC family history. All statistical tests were 2-sided. RESULTS Among postmenopausal women, ever HT use was associated with a 38% reduction in overall CRC risk (OR =0.62, 95% CI = 0.56 to 0.69). This association was similar according to microsatellite instability, CpG island methylator phenotype and BRAF or KRAS status. However, the association was attenuated for tumors arising through the serrated pathway (OR = 0.81, 95% CI = 0.66 to 1.01) compared with the adenoma-carcinoma pathway (OR = 0.63, 95% CI = 0.55 to 0.73; P het =.04) and alternate pathway (OR = 0.61, 95% CI = 0.51 to 0.72). Additionally, proximal colon tumors had a weaker association (OR = 0.71, 95% CI = 0.62 to 0.80) compared with rectal (OR = 0.54, 95% CI = 0.46 to 0.63) and distal colon (OR = 0.57, 95% CI = 0.49 to 0.66; P het =.01) tumors. CONCLUSIONS We observed a strong inverse association between HT use and overall CRC risk, which may predominantly reflect a benefit of HT use for tumors arising through the adenoma-carcinoma and alternate pathways as well as distal colon and rectal tumors.
Collapse
Affiliation(s)
- Julia D Labadie
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Barbara Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Efrat L Amtay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Bernd
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Dallas English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Genetic Epidemiology Laboratory, Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Tokunaga R, Nakagawa S, Sakamoto Y, Nakamura K, Naseem M, Izumi D, Kosumi K, Taki K, Higashi T, Miyata T, Miyamoto Y, Yoshida N, Baba H, Lenz HJ. 12-Chemokine signature, a predictor of tumor recurrence in colorectal cancer. Int J Cancer 2020; 147:532-541. [PMID: 32191346 DOI: 10.1002/ijc.32982] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Tertiary lymphoid structures (TLSs) provide an immunological antineoplastic effect. Recent evidences link a unique 12-chemokine (CCL2, -3, -4, -5, -8, -18, -19, -21, CXCL9, -10, -11, -13) signature status from tumor tissue and the TLS expression. However, the potential significance of 12-chemokine signature status for clinical use is unknown. We aimed to evaluate the association of 12-chemokine signature status with patient outcomes in colorectal cancer (CRC). We used integrated data of resected 975 CRC cases within three independent cohorts from France, Japan and the United States (GSE39582, KUMAMOTO from Kumamoto university hospital and TCGA). The association of 12-chemokine signature status with clinicopathological features, patient outcome, TLS expression status and key tumor molecular features was analyzed. Patients with low 12-chemokine signature status had a significant shorter relapse-free survival in discovery cohort (HR: 1.61, 95% CI: 1.11-2.39, p = 0.0123), which was confirmed in validation cohort (HR: 3.31, 95% CI: 1.33-10.08, p = 0.0087). High 12-chemokine signature status had significant associations with right-sided tumor, high tumor-localized TLS expression, BRAF mutant, CIMP-high status and MSI-high status. Furthermore, RNA-seq based analysis showed that high 12-chemokine signature status was strongly associated with inflammation-related, immune cells-related and apoptosis pathways (using gene set enrichment analysis), and more tumor-infiltrating immune cells, such as cytotoxic T lymphocytes and myeloid dendritic cells (using MCP-counter analysis). We investigated a promising effect of 12-chemokine signature status in CRC patients who underwent resection. Our data may be helpful in developing novel immunological treatment strategies for CRC.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunobu Taki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Ricci V, Granetto C, Falletta A, Paccagnella M, Abbona A, Fea E, Fabozzi T, Lo Nigro C, Merlano MC. Circulating cytokines and outcome in metastatic colorectal cancer patients treated with regorafenib. World J Gastrointest Oncol 2020; 12:301-310. [PMID: 32206180 PMCID: PMC7081116 DOI: 10.4251/wjgo.v12.i3.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Regorafenib is an oral small-molecule multikinase inhibitor approved in third or later line of treatment for patients with metastatic colorectal cancer (mCRC). Regorafenib has shown significant benefits in overall survival and progression free survival in two phase III trials compared to placebo in patients with mCRC who had progressed on previous therapy.
AIM To identify an immune profile that might specifically correlate with the outcome in patients treated with regorafenib.
METHODS Blood samples were collected from 17 patients before treatment with regorafenib and from 6 healthy volunteers. The proteins evaluated (TNF-α, TGF-β, VEGF, CCL-2, CCL-4, and CCL-5) were selected on the basis of their roles in angiogenesis and colorectal cancer pathogenesis.
RESULTS We found that TNF-α basal level was significantly higher in mCRC patients compared to healthy individuals. Non Responder (NR) patients showing progression of disease (n = 12) had higher basal level of TGF-β, TNF-α, VEGF, CCL-2 and CCL-5 compared to Responder (R) patients (complete response CR, n = 1; partial response PR, n = 1; Stable Disease SD, n = 3). On the contrary, plasma basal level of CCL-4 was higher in R compared to NR patients. High values of TGF-β and TNF-α negatively correlated with progression free survival.
CONCLUSION These results suggest a cytokine signature potentially able to discriminate between R and NR patients to treatment with regorafenib.
Collapse
Affiliation(s)
- Vincenzo Ricci
- Medical Oncology and Laboratory of Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital Cuneo, Cuneo 12100, Italy
| | - Cristina Granetto
- Medical Oncology and Laboratory of Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital Cuneo, Cuneo 12100, Italy
| | | | | | | | - Elena Fea
- Medical Oncology and Laboratory of Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital Cuneo, Cuneo 12100, Italy
| | - Teresa Fabozzi
- Medical Oncology, S. G. Bosco Hospital, Torino 10154, Italy
| | - Cristiana Lo Nigro
- Laboratory, S. Croce and Carle Teaching Hospital Cuneo, Cuneo 12100, Italy
| | - Marco Carlo Merlano
- Medical Oncology and Laboratory of Translational Oncology, Oncology Department, S. Croce and Carle Teaching Hospital Cuneo, Cuneo 12100, Italy
- Arco Cuneo Foundation, Cuneo 12100, Italy
| |
Collapse
|
24
|
Affiliation(s)
- Seong Kyu Baek
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
25
|
Pinto ML, Rios E, Durães C, Ribeiro R, Machado JC, Mantovani A, Barbosa MA, Carneiro F, Oliveira MJ. The Two Faces of Tumor-Associated Macrophages and Their Clinical Significance in Colorectal Cancer. Front Immunol 2019; 10:1875. [PMID: 31481956 PMCID: PMC6710360 DOI: 10.3389/fimmu.2019.01875] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are one of the immune populations frequently found in colorectal tumors and high macrophage infiltration has been associated with both better and worst prognosis. Importantly, according to microenvironment stimuli, macrophages may adopt different polarization profiles, specifically the pro-inflammatory or M1 and the anti-inflammatory or M2, which display distinct functions. Therefore, concomitantly with the number of tumor-associated macrophages (TAMs), their characterization is fundamental to unravel their relevance in cancer. Here, we profiled macrophages in a series of 150 colorectal cancer (CRC) cases by immunohistochemistry, using CD68 as a macrophage lineage marker, CD80 as a marker of pro-inflammatory macrophages, and CD163 as a marker of anti-inflammatory macrophages. Quantifications were performed by computer-assisted analysis in the intratumoral region, tumor invasive front, and matched tumor adjacent normal mucosa (ANM). Macrophages, specifically the CD163+ ones, were predominantly found at the tumor invasive front, whereas CD80+ macrophages were almost exclusively located in the ANM, which suggests a predominant anti-inflammatory polarization of TAMs. Stratification according to tumor stage revealed that macrophages, specifically the CD163+ ones, are more prevalent in stage II tumors, whereas CD80+ macrophages are predominant in less invasive T1 tumors. Specifically in stage III tumors, higher CD68, and lower CD80/CD163 ratio associated with decreased overall survival. Importantly, despite the low infiltration of CD80+ cells in colorectal tumors, multivariate logistic regression revealed a protective role of these cells regarding the risk for relapse. Overall, this work supports the involvement of distinct microenvironments, present at the intra-tumor, invasive front and ANM regions, on macrophage modulation, and uncovers their prognostic value, further supporting the relevance of including macrophage profiling in clinical settings.
Collapse
Affiliation(s)
- Marta L. Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Elisabete Rios
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Cecília Durães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ricardo Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Laboratory of Genetics and Environmental Health Institute, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José C. Machado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Milan, Italy
- Humanitas University, Milan, Italy
| | - Mário A. Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fatima Carneiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Maria J. Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Jakubowska K, Koda M, Kisielewski W, Kańczuga-Koda L, Famulski W. Prognostic significance of inflammatory cell response in patients with colorectal cancer. Oncol Lett 2019; 18:783-791. [PMID: 31289555 PMCID: PMC6540326 DOI: 10.3892/ol.2019.10343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer cells are characterized by a low antigenic immunogenicity, a rapid growth and an immunosuppressive effect on the extracellular matrix. These properties induce a weak immune response in colorectal cancer (CRC) carcinogenesis. It is therefore crucial to determine the composition of the inflammatory mass, including neutrophils, macrophages and eosinophils in the tumor tissue of patients with CRC, and to analyze other clinicopathological parameters. The present study included 144 patients diagnosed with CRC. Tissue samples obtained from routine histopathological diagnosis were stained with hematoxylin and eosin. Inflammatory cells were assessed in the invasive front and in the center of the tumor by light microscopy under a high-power magnification. The percentage of neutrophils in the invasive front was significantly higher compared with that in the center of the tumor mass (P<0.01). Macrophages and eosinophils were present in the invasive front and in the center of tumor mass in most cases. The presence of neutrophils, macrophages and eosinophils was correlated with various clinicopathological features. Patients with macrophages present in the center of tumor mass had longer disease-free survival time (P=0.041). In conclusion, the present study demonstrated that the inflammatory cell infiltrate served a significant role in the immune response of patients with CRC. It should be noted that the presence of macrophages localized in the stroma of the central part of the primary tumor mass was associated with the survival time of patients with CRC.
Collapse
Affiliation(s)
- Katarzyna Jakubowska
- Department of Pathomorphology, Comprehensive Cancer Center, 15-027 Białystok;, Poland
| | - Mariusz Koda
- Department of General Pathomorphology, Medical University of Białystok, 15-269 Białystok, Poland
| | - Wojciech Kisielewski
- Department of Medical Pathomorphology, Medical University of Białystok, 15-269 Białystok, Poland
| | - Luiza Kańczuga-Koda
- Department of Pathomorphology, Comprehensive Cancer Center, 15-027 Białystok;, Poland
| | - Waldemar Famulski
- Department of Pathomorphology, Comprehensive Cancer Center, 15-027 Białystok;, Poland
- Department of Medical Pathomorphology, Medical University of Białystok, 15-269 Białystok, Poland
| |
Collapse
|
27
|
Affiliation(s)
- Christoph C Zielinski
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Central European Cancer Center, Vienna, Austria.
| |
Collapse
|
28
|
Che J, Wang W, Huang Y, Zhang L, Zhao J, Zhang P, Yuan X. miR-20a inhibits hypoxia-induced autophagy by targeting ATG5/FIP200 in colorectal cancer. Mol Carcinog 2019; 58:1234-1247. [PMID: 30883936 DOI: 10.1002/mc.23006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is a highly conserved lysosome-mediated protective cellular process in which cytosolic components, including damaged organelles and long-lived proteins, are cleared. Many studies have shown that autophagy was upregulated in hypoxic regions. However, the precise molecular mechanism of hypoxia-induced autophagy in colorectal cancer (CRC) is still elusive. In this study, we found that miR-20a was significantly downregulated under hypoxia in colon cancer cells, and overexpression of miR-20a alleviated hypoxia-induced autophagy. Moreover, miR-20a inhibits the hypoxia-induced autophagic flux by targeting multiple key regulators of autophagy, including ATG5 and FIP200. Furthermore, by dual-luciferase assay we demonstrated that miR-20a directly targeted the 3'-untranslated region of ATG5 and FIP200, regulating their messenger RNA and protein levels. In addition, reintroduction of exogenous ATG5 or FIP200 partially reversed miR-20a-mediated autophagy inhibition under hypoxia. A negative correlation between miR-20a and its target genes is observed in the hypoxic region of colon cancer tissues. Taken together, our findings suggest that hypoxia-mediated autophagy was regulated by miR-20a/ATG5/FI200 signaling pathway in CRC. miR-20a-mediated autophagy defect that might play an important role in hypoxia-induced autophagy during colorectal tumorigenesis.
Collapse
Affiliation(s)
- Jing Che
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenshan Wang
- Department of Cell and Developmental Biology, Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Predicting MicroRNA Target Genes and Identifying Hub Genes in IIA Stage Colon Cancer Patients Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6341967. [PMID: 30881993 PMCID: PMC6383401 DOI: 10.1155/2019/6341967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/26/2018] [Indexed: 01/27/2023]
Abstract
Background Colon cancer is a heterogeneous disease, differing in clinical symptoms, epigenetics, and prognosis for each individual patient. Identifying the core genes is important for early diagnoses and it provides a more precise method for treating colon cancer. Materials and Methods In this study, we wanted to pinpoint these core genes so we obtained GSE101502 microRNA profiles from the GEO database, which resulted in 17 differential expressed microRNAs that were identified by GEO2R analysis. Then, 875 upregulated and 2920 downregulated target genes were predicted by FunRich. GO and KEGG pathway were used to do enrich analysis. Results GO analysis indicated that upregulated genes were significantly enriched in the regulation of cell communication and signaling and in nervous system development, while the downregulated genes were significantly enriched in nervous system development and regulation of transcription from the RNA polymerase II promoter. KEGG pathway analysis suggested that the upregulated genes were enriched in axon guidance, MAPK signaling pathway, and endocytosis, while the downregulated genes existed in pathways in cancer, focal adhesion, and PI3K-Akt signaling pathway. The top four molecules including 82 hub genes were identified from the PPI network and involved in endocytosis, spliceosome, TGF-beta signaling pathway, and lysosome. Finally, NUDT21, GNB1, CLINT1, and COL1A2 core gene were selected due to their correlation with the prognosis of IIA stage colon cancer. Conclusion this study suggested that NUDT21, GNB1, CLINT1, and COL1A2 might be the core genes for colon cancer that play an important role in the development and prognosis of IIA stage colon cancer.
Collapse
|
30
|
Local delivery of macromolecules to treat diseases associated with the colon. Adv Drug Deliv Rev 2018; 136-137:2-27. [PMID: 30359631 DOI: 10.1016/j.addr.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022]
Abstract
Current treatments for intestinal diseases including inflammatory bowel diseases, irritable bowel syndrome, and colonic bacterial infections are typically small molecule oral dosage forms designed for systemic delivery. The intestinal permeability hurdle to achieve systemic delivery from oral formulations of macromolecules is challenging, but this drawback can be advantageous if an intestinal region is associated with the disease. There are some promising formulation approaches to release peptides, proteins, antibodies, antisense oligonucleotides, RNA, and probiotics in the colon to enable local delivery and efficacy. We briefly review colonic physiology in relation to the main colon-associated diseases (inflammatory bowel disease, irritable bowel syndrome, infection, and colorectal cancer), along with the impact of colon physiology on dosage form design of macromolecules. We then assess formulation strategies designed to achieve colonic delivery of small molecules and concluded that they can also be applied some extent to macromolecules. We describe examples of formulation strategies in preclinical research aimed at colonic delivery of macromolecules to achieve high local concentration in the lumen, epithelial-, or sub-epithelial tissue, depending on the target, but with the benefit of reduced systemic exposure and toxicity. Finally, the industrial challenges in developing macromolecule formulations for colon-associated diseases are presented, along with a framework for selecting appropriate delivery technologies.
Collapse
|
31
|
Identification of critical genes to predict recurrence and death in colon cancer: integrating gene expression and bioinformatics analysis. Cancer Cell Int 2018; 18:139. [PMID: 30237752 PMCID: PMC6142417 DOI: 10.1186/s12935-018-0640-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background The purpose of this study was to screen the critical genes for future diagnosis and treatment of colon cancer by bioinformatics method. Methods In this study, we used bioinformatics approaches to identify gene alteration that contribute to colon cancer progression via analysis of TCGA RNA sequencing data and other publicly GEO microarray data. The Random forest survival model was used to screen gene sets related to the prognosis in DEGs. Gene ontology and KEGG pathway enrichment analysis were performed to determine the potential function of DEGs. Results We identified versican (VCAN), a member of the aggrecan/versican proteoglycan family, as a key regulator in human colon cancer development and progression involved in cell adhesion, proliferation, migration and angiogenesis and plays a central role in tissue morphogenesis and maintenance. Interestingly, we found that VCAN is highly over-expressed in colon cancer and increased expression of VCAN was associated with the progression of colon cancer. High VCAN levels also predict shorter overall survival of colon cancer patients. Furthermore, in vitro assays of silencing VCAN inhibit HCT116 cell proliferation and invasion. Conclusions These data demonstrated VCAN were associated with tumorigenesis and may be as biomarker for identification of the pathological grade of colon cancer.
Collapse
|
32
|
Grizzi F, Basso G, Borroni EM, Cavalleri T, Bianchi P, Stifter S, Chiriva-Internati M, Malesci A, Laghi L. Evolving notions on immune response in colorectal cancer and their implications for biomarker development. Inflamm Res 2018; 67:375-389. [PMID: 29322204 DOI: 10.1007/s00011-017-1128-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Colorectal cancer (CRC) still represents the third most commonly diagnosed type of cancer in men and women worldwide. CRC is acknowledged as a heterogeneous disease that develops through a multi-step sequence of events driven by clonal selections; this observation is sustained by the fact that histologically similar tumors may have completely different outcomes, including a varied response to therapy. METHODS In "early" and "intermediate" stage of CRC (stages II and III, respectively) there is a compelling need for new biomarkers fit to assess the metastatic potential of their disease, selecting patients with aggressive disease that might benefit from adjuvant and targeted therapies. Therefore, we review the actual notions on immune response in colorectal cancer and their implications for biomarker development. RESULTS The recognition of the key role of immune cells in human cancer progression has recently drawn attention on the tumor immune microenvironment, as a source of new indicators of tumor outcome and response to therapy. Thus, beside consolidated histopathological biomarkers, immune endpoints are now emerging as potential biomarkers. CONCLUSIONS The introduction of immune signatures and cellular and molecular components of the immune system as biomarkers is particularly important considering the increasing use of immune-based cancer therapies as therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Gianluca Basso
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Elena Monica Borroni
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Tommaso Cavalleri
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paolo Bianchi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sanja Stifter
- Department of Pathology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Alberto Malesci
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Department of Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Hereditary Cancer Genetics Clinic, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|