1
|
Kováčová M, Bodnár Yankovych H, Augustyniak A, Casas-Luna M, Remešová M, Findoráková L, Stahorský M, Čelko L, Baláž M. Triggering antibacterial activity of a common plant by biosorption of selected heavy metals. J Biol Inorg Chem 2024; 29:201-216. [PMID: 38587623 PMCID: PMC11098919 DOI: 10.1007/s00775-024-02045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/22/2024] [Indexed: 04/09/2024]
Abstract
The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.
Collapse
Affiliation(s)
- Mária Kováčová
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Halyna Bodnár Yankovych
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Adrian Augustyniak
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
- Faculty of Chemical Technology and Engineering, The West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71 065, Szczecin, Poland
- Institute of Biology, University of Szczecin, ul. Wąska 13, 71-415, Szczecin, Poland
| | - Mariano Casas-Luna
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Michaela Remešová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Lenka Findoráková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Martin Stahorský
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia.
| |
Collapse
|
2
|
Bailey KM, Sahota N, To U, Hedera P. "Because it is a rare disease…it needs to be brought to attention that there are things out of the norm": a qualitative study of patient and physician experiences of Wilson disease diagnosis and management in the US. Orphanet J Rare Dis 2023; 18:158. [PMID: 37349760 PMCID: PMC10288732 DOI: 10.1186/s13023-023-02778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Wilson disease (WD) is a genetic disorder of copper metabolism that leads to copper accumulation in various organs, primarily the liver and brain, resulting in heterogenous hepatic, neurologic, and psychiatric symptoms. Diagnosis can occur at any age, requiring lifelong treatment, which can involve liver transplantation. This qualitative study aims to understand the wider patient and physician experience of the diagnosis and management of WD in the US. METHODS Primary data were collected from 1:1 semi structured interviews with US-based patients and physicians and thematically analyzed with NVivo. RESULTS Twelve WD patients and 7 specialist WD physicians (hepatologists and neurologists) were interviewed. Analysis of the interviews revealed 18 themes, which were organized into 5 overarching categories: (1) Diagnosis journey, (2) Multidisciplinary approach, (3) Medication, (4) The role of insurance, and (5) Education, awareness, and support. Patients who presented with psychiatric or neurological symptoms reported longer diagnostic journeys (range 1 to 16 years) than those presenting with hepatic symptoms or through genetic screening (range 2 weeks to 3 years). All were also affected by geographical proximity to WD specialists and access to comprehensive insurance. Exploratory testing was often burdensome for patients, but receipt of a definitive diagnosis led to relief for some. Physicians emphasized the importance of multidisciplinary teams beyond hepatology, neurology, and psychiatry and recommended a combination of chelation, zinc, and a low-copper diet; however, only half the patients in this sample were on a chelator, and some struggled to access prescription zinc due to insurance issues. Caregivers often advocated for and supported adolescents with their medication and dietary regimen. Patients and physicians recommended more education and awareness for the healthcare community. CONCLUSIONS WD requires the coordination of care and medication among several specialists due to its complex nature, but many patients do not have access to multiple specialties due to geographical or insurance barriers. Because some patients cannot be treated in Centers of Excellence, easy access to reliable and up-to-date information is important to empower physicians, patients, and their caregivers in managing the condition, along with general community outreach programs.
Collapse
Affiliation(s)
| | | | - Uyen To
- Yale University, New Haven, Connecticut, United States
| | - Peter Hedera
- University of Louisville, Louisville, KY, USA.
- Department of Neurology Institution, University of Louisville, 220 Abraham Flexner Way, Suite 606, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Washington-Hughes CL, Roy S, Seneviratne HK, Karuppagounder SS, Morel Y, Jones JW, Zak A, Xiao T, Boronina TN, Cole RN, Bumpus NN, Chang CJ, Dawson TM, Lutsenko S. Atp7b-dependent choroid plexus dysfunction causes transient copper deficit and metabolic changes in the developing mouse brain. PLoS Genet 2023; 19:e1010558. [PMID: 36626371 PMCID: PMC9870141 DOI: 10.1371/journal.pgen.1010558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/23/2023] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-β-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.
Collapse
Affiliation(s)
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Herana Kamal Seneviratne
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Senthilkumar S. Karuppagounder
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yulemni Morel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Alex Zak
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tong Xiao
- Department of Chemistry, University of California Berkeley, California, United States of America
| | - Tatiana N. Boronina
- Department of Biological Chemistry Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert N. Cole
- Department of Biological Chemistry Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N. Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J. Chang
- Department of Chemistry, University of California Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, California
- Helen Wills Neuroscience Institute, University of California Berkeley, California
| | - Ted M. Dawson
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; United States of America
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The aim of this article is to review recent developments in the areas of the disease features and treatment of Wilson disease, and survey disorders that share its pathophysiology or clinical symptoms. RECENT FINDINGS Knowledge of the clinical spectrum of Wilson disease has expanded with recognition of patients who present in atypical age groups - patients with very early onset (<5 years) and those in whom symptoms present in mid-to-late adulthood. A disease phenotype with dominant psychiatric features and increased risk of cardiac problems and various sleep disorders have been identified.In addition to a better understanding of the phenotype of Wilson disease itself, features of some related disorders ('Wilson disease-mimics') have been described leading to a better understanding of copper homeostasis in humans. These disorders include diseases of copper disposition, such as mental retardation, enteropathy, deafness, neuropathy, ichthyosis, keratoderma syndrome, Niemann-Pick type C, and certain congenital disorders of glycosylation, as well as analogous disorders of iron and manganese metabolism.Outcomes for existing treatments, including in certain patient subpopulations of interest, are better known. Novel treatment strategies being studied include testing of bis-choline tetrathiomolybdate in phase 2 clinical trial as well as various preclinical explorations of new copper chelators and ways to restore ATP7B function or repair the causative gene. SUMMARY Recent studies have expanded the phenotype of Wilson disease, identified rare inherited metal-related disorders that resemble Wilson disease, and studied long-term outcomes of existing treatments. These developments can be expected to have an immediate as well as a long-term impact on the clinical management of the disease, and point to promising avenues for future research.
Collapse
Affiliation(s)
- Annu Aggarwal
- Wilson Disease Clinic, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute (KDAH)
- Memory Clinic, KDAH
| | - Mohit Bhatt
- Wilson Disease Clinic, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute (KDAH)
- Movement Disorder Clinic, KDAH, Mumbai, Maharashtra, India
| |
Collapse
|