1
|
Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces. Metabolites 2022; 12:metabo12080723. [PMID: 36005595 PMCID: PMC9416035 DOI: 10.3390/metabo12080723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Quantitative analysis of bile acids in human feces can potentially help to better understand the influence of the gut microbiome and diet on human health. Feces is a highly heterogeneous sample matrix, mainly consisting of water and indigestible solid material (as plant fibers) that show high inter-individual variability. To compare bile acid concentrations among different individuals, a reliable normalization approach is needed. Here, we compared the impact of three normalization approaches, namely sample wet weight, dry weight, and protein concentration, on the absolute concentrations of fecal bile acids. Bile acid concentrations were determined in 70 feces samples from healthy humans. Our data show that bile acid concentrations normalized by the three different approaches are substantially different for each individual sample. Fecal bile acid concentrations normalized by wet weight show the narrowest distribution. Therefore, our analysis will provide the basis for the selection of a suitable normalization approach for the quantitative analysis of bile acids in feces.
Collapse
|
2
|
Choudhuri S, Klaassen CD. MOLECULAR REGULATION OF BILE ACID HOMEOSTASIS. Drug Metab Dispos 2021; 50:425-455. [PMID: 34686523 DOI: 10.1124/dmd.121.000643] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022] Open
Abstract
Bile acids have been known for decades to aid in the digestion and absorption of dietary fats and fat-soluble vitamins in the intestine. The development of gene knockout mice models and transgenic humanized mouse models have helped us understand other function of bile acids, such as their role in modulating fat, glucose, and energy metabolism, and in the molecular regulation of the synthesis, transport, and homeostasis of bile acids. The G-protein coupled receptor TGR5 regulates the bile acid induced alterations of intermediary metabolism, while the nuclear receptor FXR regulates bile acid synthesis and homeostasis. However, this review indicates that unidentified factors in addition to FXR must exist to aid in the regulation of bile acid synthesis and homeostasis. Significance Statement This review captures the present understanding of bile acid synthesis, the role of bile acid transporters in the enterohepatic circulation of bile acids, the role of the nuclear receptor FXR on the regulation of bile acid synthesis and bile acid transporters, and the importance of bile acids in activating GPCR signaling via TGR5 to modify intermediary metabolism. This information is useful for developing drugs for the treatment of various hepatic and intestinal diseases, as well as the metabolic syndrome.
Collapse
Affiliation(s)
| | - Curtis D Klaassen
- Environmental & Occupational Health Sciences, Univ Washington, United States
| |
Collapse
|
3
|
Pedersen TL, Gray IJ, Newman JW. Plasma and serum oxylipin, endocannabinoid, bile acid, steroid, fatty acid and nonsteroidal anti-inflammatory drug quantification in a 96-well plate format. Anal Chim Acta 2021; 1143:189-200. [PMID: 33384117 DOI: 10.1016/j.aca.2020.11.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
The goal of this research was to develop a high-throughput, cost-effective method for metabolic profiling of lipid mediators and hormones involved in the regulation of inflammation and energy metabolism, along with polyunsaturated fatty acids and common over-the-counter non-steroidal anti-inflammatory drugs (NSAIDs). We describe a 96-well plate protein precipitation and filtration procedure for 50 μL of plasma or serum in the presence of 37 deuterated analogs and 2 instrument internal standards. Data is acquired in two back-to-back UPLC-MS/MS analyses using electrospray ionization with positive/negative switching and scheduled multiple reaction monitoring for the determination of 145 compounds, including oxylipins, endocannabinoids and like compounds, bile acids, glucocorticoids, sex steroids, polyunsaturated fatty acids, and 3 NSAIDs. Intra- and inter-batch variability was <25% for >70% of metabolites above the LOQ in both matrices, but higher inter-batch variability was observed for serum oxylipins and some bile acids. Results for NIST Standard Reference Material 1950, compared favorably with the 20 certified metabolite values covered by this assay, and we provide new data for oxylipins, N-acylethanolamides, glucocorticoids, and 17-hydroxy-progesterone in this material. Application to two independent cohorts of elderly men and women showed the routine detection of 86 metabolites, identified fasting state influences on essential fatty acid-derived oxylipins, N-acylethanolamides and conjugated bile acids, identified rare presence of high and low testosterone levels and the presence of NSAIDs in ∼10% of these populations. The described method appears valuable for investigations in large cohort studies to provide insight into metabolic cross-talk between the array of mediators assessed here.
Collapse
Affiliation(s)
- Theresa L Pedersen
- Dept of Food Science and Technology, University of California at Davis, Davis, CA, USA
| | - Ira J Gray
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service - Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - John W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture - Agricultural Research Service - Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Dept of Nutrition, University of California Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Sasaki CT, Hajek M, Doukas SG, Vageli DP. The role of bile reflux and its related NF-κB activated pathway in progression of hypopharyngeal squamous cell cancer. Oral Oncol 2020; 105:104668. [PMID: 32247988 DOI: 10.1016/j.oraloncology.2020.104668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prognosis for hypopharyngeal cancer is usually poor, and recurrence is common. Identifying new factors or related mechanisms that promote its progression may have clinical implications. Although, recent studies support bile reflux in hypopharyngeal carcinogenesis, it remains to be explored how bile and its related NF-κB activated pathway may further affects its progression in already established hypopharyngeal cancer. METHODS Hypopharyngeal squamous cell carcinoma (HSCC) cell lines, FaDu and UMSCC11A, both negative for HPV, were repetitively exposed to bile acids (400 μM) at variable pH points (4.0, 5.5 and 7.0). Immunofluorescence, western blotting, luciferase assay, and qPCR were used to detect NF-κB activation, bcl-2 overexpression and gene expression. RESULTS Bile at strongly acidic pH (4.0) potentiated the activation of NF-κB and its related mRNA phenotype in HSCC cells. IL-6, TNF-α, and BCL2 were found among the highest overexpressed genes as was previously found in HSCCs excised from patients with documented biliary reflux. An enhanced transcriptional activity of EGFR, RELA, STAT3, and WNT5Α and higher survival rates were observed in HSCC cells exposed to acidic bile compared to those exposed to bile at weakly acidic or neutral pH. CONCLUSION Our novel findings support the observation that bile reflux has the potential for actively influencing the progression of hypopharyngeal cancer, mediated by NF-κB. In patients with hypopharyngeal cancer and known gastroesophageal reflux disease, antacid therapy may exert a role in furthering control of disease recurrence and progression.
Collapse
Affiliation(s)
- Clarence T Sasaki
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Michael Hajek
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Doukas SG, Cardoso B, Tower JI, Vageli DP, Sasaki CT. Biliary tumorigenic effect on hypopharyngeal cells is significantly enhanced by pH reduction. Cancer Med 2019; 8:4417-4427. [PMID: 31173474 PMCID: PMC6675744 DOI: 10.1002/cam4.2194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Biliary reflux has been considered a potential risk factor in upper aerodigestive tract malignancies. It is not yet clearly known how pH affects the bile-induced activation of NF-κB and its related oncogenic pathway previously linked to hypopharyngeal carcinogenesis. In this study, repetitive applications of conjugated primary bile acids with unconjugated secondary bile acid, deoxycholic acid (DCA), on human hypopharyngeal primary cells reveal that strongly acidic pH (4.0) optimally enhances the tumorigenic effect of bile, by inducing activation of NF-κB, STAT3 nuclear translocation, bcl-2 overexpression and significant overexpression of the oncogenic mRNA phenotype, compared to weakly acidic pH (5.5) or neutral pH (7.0). As the pH becomes less acidic the partially activated primary bile acids and activated DCA begin to exert their influence; however, with significantly less intensity compared to bile acids at strongly acidic pH. Our findings suggest that biliary tumorigenic effect is strongly pH dependent. Controlling pH during reflux events may be therapeutically effective in reducing the potential risk of bile-induced hypopharyngeal cancer.
Collapse
Affiliation(s)
- Sotirios G Doukas
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bruno Cardoso
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacob I Tower
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dimitra P Vageli
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Clarence T Sasaki
- The Yale Larynx Laboratory, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Lin CH, Kohli R. Bile acid metabolism and signaling: potential therapeutic target for nonalcoholic fatty liver disease. Clin Transl Gastroenterol 2018; 9:164. [PMID: 29955036 PMCID: PMC6023895 DOI: 10.1038/s41424-018-0034-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Chuan-Hao Lin
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, and the Department of Pediatrics Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rohit Kohli
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, and the Department of Pediatrics Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Abstract
Bile acids are potent signaling molecules that regulate glucose, lipid and energy homeostasis predominantly via the bile acid receptors farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor 5 (TGR5). The sodium taurocholate cotransporting polypeptide (NTCP) and the apical sodium dependent bile acid transporter (ASBT) ensure an effective circulation of (conjugated) bile acids. The modulation of these transport proteins affects bile acid localization, dynamics and signaling. The NTCP-specific pharmacological inhibitor myrcludex B inhibits hepatic uptake of conjugated bile acids. Multiple ASBT-inhibitors are already in clinical trials to inhibit intestinal bile acid uptake. Here, we discuss current insights into the consequences of targeting bile acid uptake transporters on systemic and intestinal bile acid dynamics and discuss the possible therapeutic applications that evolve as a result.
Collapse
Affiliation(s)
- Davor Slijepcevic
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands,*Stan F.J. van de Graaf, Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Center, NL-1105 BK Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
8
|
Mook-Kanamori DO, de Mutsert R, Rensen PCN, Prehn C, Adamski J, den Heijer M, le Cessie S, Suhre K, Rosendaal FR, van Dijk KW. Type 2 diabetes is associated with postprandial amino acid measures. Arch Biochem Biophys 2015; 589:138-44. [PMID: 26271442 DOI: 10.1016/j.abb.2015.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/15/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
Abstract
Most studies examining the association between type 2 diabetes (T2D) and amino acids have focused on fasting concentrations. We hypothesized that, besides fasting concentrations, amino acid responses to a standardized meal challenge are also associated with T2D. In a cross-sectional study of 525 participants (165 newly-diagnosed T2D, 186 newly-diagnosed impaired fasting glycaemia, and 174 normal fasting glucose), we examined postprandial amino acid concentrations and the responses (defined as the concentrations and responses 150 min after a standardized meal) of fourteen amino acids in relation to T2D. T2D was associated with lower postprandial concentration of seven amino acids compared to the normal fasting glucose group (lowest effect estimate for serine: -0.54 standard deviations (SD) (95% CI: -0.77, -0.32)), and higher concentrations of phenylalanine, tryptophan, tyrosine and (iso-)leucine (highest effect estimate for (iso-)leucine: 0.44 SD (95% CI: 0.20, 0.67)). Regarding the meal responses, T2D was associated with lower responses of seven amino acids (ranging from -0.55 SD ((95% CI): -0.78, -0.33) for serine to -0.25 SD ((95% CI: -0.45, -0.02) for ornithine). We conclude that T2D is associated with postprandial concentrations of amino acids and a reduced amino acid meal response, indicating that these measures may also be potential markers of T2D.
Collapse
Affiliation(s)
- Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Epidemiology Section, BESC Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany; Lehrstul für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin den Heijer
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College - Qatar, Doha, Qatar; Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Transport and biological activities of bile acids. Int J Biochem Cell Biol 2013; 45:1389-98. [PMID: 23603607 DOI: 10.1016/j.biocel.2013.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/30/2013] [Accepted: 04/09/2013] [Indexed: 12/29/2022]
Abstract
Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.
Collapse
|
10
|
Khurana S, Raina H, Pappas V, Raufman JP, Pallone TL. Effects of deoxycholylglycine, a conjugated secondary bile acid, on myogenic tone and agonist-induced contraction in rat resistance arteries. PLoS One 2012; 7:e32006. [PMID: 22359652 PMCID: PMC3281111 DOI: 10.1371/journal.pone.0032006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/17/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bile acids (BAs) regulate cardiovascular function via diverse mechanisms. Although in both health and disease serum glycine-conjugated BAs are more abundant than taurine-conjugated BAs, their effects on myogenic tone (MT), a key determinant of systemic vascular resistance (SVR), have not been examined. METHODOLOGY/PRINCIPAL FINDINGS Fourth-order mesenteric arteries (170-250 µm) isolated from Sprague-Dawley rats were pressurized at 70 mmHg and allowed to develop spontaneous constriction, i.e., MT. Deoxycholylglycine (DCG; 0.1-100 µM), a glycine-conjugated major secondary BA, induced reversible, concentration-dependent reduction of MT that was similar in endothelium-intact and -denuded arteries. DCG reduced the myogenic response to stepwise increase in pressure (20 to 100 mmHg). Neither atropine nor the combination of L-NAME (a NOS inhibitor) plus indomethacin altered DCG-mediated reduction of MT. K(+) channel blockade with glibenclamide (K(ATP)), 4-aminopyradine (K(V)), BaCl(2) (K(IR)) or tetraethylammonium (TEA, K(Ca)) were also ineffective. In Fluo-2-loaded arteries, DCG markedly reduced vascular smooth muscle cell (VSM) Ca(2+) fluorescence (∼50%). In arteries incubated with DCG, physiological salt solution (PSS) with high Ca(2+) (4 mM) restored myogenic response. DCG reduced vascular tone and VSM cytoplasmic Ca(2+) responses (∼50%) of phenylephrine (PE)- and Ang II-treated arteries, but did not affect KCl-induced vasoconstriction. CONCLUSION In rat mesenteric resistance arteries DCG reduces pressure- and agonist-induced vasoconstriction and VSM cytoplasmic Ca(2+) responses, independent of muscarinic receptor, NO or K(+) channel activation. We conclude that BAs alter vasomotor responses, an effect favoring reduced SVR. These findings are likely pertinent to vascular dysfunction in cirrhosis and other conditions associated with elevated serum BAs.
Collapse
Affiliation(s)
- Sandeep Khurana
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
11
|
Krag E, Thaysen EH. Bile acids in health and disease. SCANDINAVIAN JOURNAL OF GASTROENTEROLOGY. SUPPLEMENT 1996; 216:73-81. [PMID: 8726281 DOI: 10.3109/00365529609094563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over the last quarter of a century Danish research on bile acids has comprised studies of their physical and chemical properties, their physiology, pathophysiology, metabolism, and kinetics, and their clinical applicability. In the beginning of the period a major contribution was made to the understanding of the factors involved in the solubility of cholesterol in bile. The growing international understanding of the potential importance of the bile acids in health and disease gave raise to a substantial Danish contribution in the 1970s and 1980s in parallel with international achievements. Emphasis was on the possible clinical implications of bile acids. Studies on physiology and pathophysiology were in focus. Patients who have had an intestinal bypass operation for obesity served as a model for obtaining new knowledge on various aspects of the properties of the bile acids. Also the analytical methods were improved. Important physiological research on the mechanisms of hepatic bile flow was conducted. An intestinal perfusion model served as a tool providing information on absorption kinetics and on transmucosal water and electrolyte movements. The gallstone disease, liver diseases, inflammatory bowel disease, fat malabsorption, and other intestinal disorders were studied. The 'idiopathic ileopathy' as a cause for bile acid malabsorption causing diarrhoea was established as a new disorder. Thus, in the time period concerned, substantial Danish contributions emerged on major and minor topics of the bile acid field.
Collapse
Affiliation(s)
- E Krag
- Dept. of Gastroenterology, Hvidovre Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
12
|
Everson GT. Steady-state kinetics of serum bile acids in healthy human subjects: single and dual isotope techniques using stable isotopes and mass spectrometry. J Lipid Res 1987. [DOI: 10.1016/s0022-2275(20)38702-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Molino G, Hofmann AF, Cravetto C, Belforte G, Bona B. Simulation of the metabolism and enterohepatic circulation of endogenous chenodeoxycholic acid in man using a physiological pharmacokinetic model. Eur J Clin Invest 1986; 16:397-414. [PMID: 3100308 DOI: 10.1111/j.1365-2362.1986.tb01015.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The metabolism and enterohepatic circulation of chenodeoxycholic acid (CDC), a major primary bile acid in man, has been stimulated using a multicompartmental physiological pharmacokinetic model which was previously reported and used to simulate the metabolism of cholic acid. The model features compartments and linear transfer coefficients. Compartments, which are defined as the pools of single chemical species in well defined anatomical volumes, are aggregated into nine 'spaces' based on anatomical and physiological considerations (liver, gall-bladder, bile ducts, duodeno-jejunum, ileum, colon, portal blood, sinusoidal blood, and general circulation). Each space contains several compartments which correspond to the compounds present in that space, for example, the compound in question and its biotransformation products. For CDC (as for cholic acid in the previous simulation) each space contains three compartments corresponding to the unconjugated bile acid, its glycine amidate, and its taurine amidate. Transfer coefficients, which denote the fractional amount of the compartment's contents exiting per unit time, are categorized according to function: flow, for example gall-bladder contraction (which involves transfer of all substances contained in the space at the same fractional rate); biotransformation (which transfers the substrate from one compartment to another within the same space); or transport (which denotes movements between contiguous compartments, belonging to different spaces across a diffusion membrane or a cellular barrier). The model is made time-dependent by incorporating meals which trigger gall-bladder emptying and modify intestinal flow. The transfer coefficients in the cholic acid model were modified for the CDC model since there is indirect evidence that CDC amidates (probably chenodeoxycholylglycine) are absorbed from the duodeno-jejunum and the first pass hepatic clearance of CDC species differs from that of cholyl species. The model was then used with all existing experimental data to simulate CDC metabolism in healthy humans over a 24-h period during which three meals were ingested. Satisfactory agreement was obtained between simulated and experimental data indicating that this model continues to be useful for describing the metabolism of bile acids and may also be of value for describing the metabolism of drugs whose metabolism is similar to that of bile acids.
Collapse
|
14
|
Tangerman A, van Schaik A, van der Hoek EW. Analysis of conjugated and unconjugated bile acids in serum and jejunal fluid of normal subjects. Clin Chim Acta 1986; 159:123-32. [PMID: 3769204 DOI: 10.1016/0009-8981(86)90044-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A reliable method is described for the determination of conjugated and unconjugated bile acids in serum and jejunal fluid. Bile acids are extracted using reverse-phase octadecylsilane bonded silica cartridges and are separated into their unconjugated and conjugated fractions using the lipophilic anion exchanger diethylaminohydroxypropyl Sephadex LH-20 (DEAP-LH-20). The conjugated fraction can be separated into a glycine and a taurine fraction, using the same anion exchanger. The bile acids are measured using a hydroxysteroid dehydrogenase-fluorimetric assay for serum and a hydroxysteroid dehydrogenase-photometric assay for jejunal fluid. The normal fasting serum value of total 3 alpha-hydroxy bile acids amounts to 3.5 +/- 2.8 mumol/l (mean +/- SD, range 1.4-10.8, n = 22). The corresponding unconjugated bile acid fraction amounts to 39.9 +/- 11.2% (range 20.7-64.6%) of total bile acids. The concentration of conjugated bile acids became significantly elevated 30, and 60 min after a standard meal, whereas that of unconjugated bile acids remained unchanged. In jejunal fluid only conjugated bile acids are found, as well in fasting subjects as postprandial, 30 or 60 min after a standard meal.
Collapse
|
15
|
Hedenborg G, Norman A. Fasting and postprandial serum bile acid concentration with special reference to variations in the conjugate profile. Scand J Clin Lab Invest 1985; 45:151-6. [PMID: 4001824 DOI: 10.3109/00365518509160988] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Serum bile acids were group-separated by ion exchange chromatography on diethylaminohydroxypropyl Sephadex LH-20 into unconjugated bile acids and bile acids conjugated with either glycine, taurine, glucuronic acid or sulphuric acid. The conjugate moiety was hydrolysed by treatment with a combination of Helix pomatia and cholylglycine hydrolase and the released bile acids analysed by gas liquid chromatography/mass spectrometry. Analysis of fasting and postprandial serum from six healthy subjects showed that, in addition to the primary bile acids, cholic (C) and chenodeoxycholic acid (CDC), secondary bile acids were present to varying extents. Unconjugated serum bile acids were found in four of the six subjects. Glycine and taurine conjugates of C and CDC and their glucuronides and sulphates were found in all subjects. The postprandial increase of serum bile acids was mainly due to increase of the glycine conjugates of C and CDC. After the meal, the ratio C:CDC in glycine and taurine conjugates shifted to lower values.
Collapse
|
16
|
van der Werf SD, van Berge Henegouwen GP, van den Broek W. Estimation of bile acid pool sizes from their spillover into systemic blood. J Lipid Res 1985. [DOI: 10.1016/s0022-2275(20)34386-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|