1
|
Makino A, Kume K, Mori T, Tsujikawa T, Asai T, Okazawa H, Kiyono Y. High efficacy of particle beam therapies against tumors under hypoxia and prediction of the early stage treatment effect using 3'-deoxy-3'-[ 18F]fluorothymidine positron emission tomography. Ann Nucl Med 2024; 38:112-119. [PMID: 37856073 PMCID: PMC10822821 DOI: 10.1007/s12149-023-01877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Compared with radiation therapy using photon beams, particle therapies, especially those using carbons, show a high relative biological effectiveness and low oxygen enhancement ratio. Using cells cultured under normoxic conditions, our group reported a greater suppressive effect on cell growth by carbon beams than X-rays, and the subsequent therapeutic effect can be predicted by the cell uptake amount of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) the day after treatment. On the other hand, a hypoxic environment forms locally around solid tumors, influencing the therapeutic effect of radiotherapy. In this study, the influence of tumor hypoxia on particle therapies and the ability to predict the therapeutic effect using 18F-FLT were evaluated. METHODS Using a murine colon carcinoma cell line (colon 26) cultured under hypoxic conditions (1.0% O2 and 5.0% CO2), the suppressive effect on cell growth by X-ray, proton, and carbon irradiation was evaluated. In addition, the correlation between decreased 18F-FLT uptake after irradiation and subsequent suppression of cell proliferation was investigated. RESULTS Tumor cell growth was suppressed most efficiently by carbon-beam irradiation. 18F-FLT uptake temporarily increased the day after irradiation, especially in the low-dose irradiation groups, but then decreased from 50 h after irradiation, which is well correlated with the subsequent suppression on tumor cell growth. CONCLUSIONS Carbon beam treatment shows a strong therapeutic effect against cells under hypoxia. Unlike normoxic tumors, it is desirable to perform 18F-FLT positron emission tomography 2-3 days after irradiation for early prediction of the treatment effect.
Collapse
Affiliation(s)
- Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan.
| | - Kyo Kume
- The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-Shi, Fukui, 914-0192, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Tatsuya Asai
- Graduate School of Engineering, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
- Life Science Innovation Center, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 9-1 Bunkyo-3, Fukui-Shi, Fukui, 910-8507, Japan.
| |
Collapse
|
2
|
Kasprzak A. Prognostic Biomarkers of Cell Proliferation in Colorectal Cancer (CRC): From Immunohistochemistry to Molecular Biology Techniques. Cancers (Basel) 2023; 15:4570. [PMID: 37760539 PMCID: PMC10526446 DOI: 10.3390/cancers15184570] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and severe malignancies worldwide. Recent advances in diagnostic methods allow for more accurate identification and detection of several molecular biomarkers associated with this cancer. Nonetheless, non-invasive and effective prognostic and predictive testing in CRC patients remains challenging. Classical prognostic genetic markers comprise mutations in several genes (e.g., APC, KRAS/BRAF, TGF-β, and TP53). Furthermore, CIN and MSI serve as chromosomal markers, while epigenetic markers include CIMP and many other candidates such as SERP, p14, p16, LINE-1, and RASSF1A. The number of proliferation-related long non-coding RNAs (e.g., SNHG1, SNHG6, MALAT-1, CRNDE) and microRNAs (e.g., miR-20a, miR-21, miR-143, miR-145, miR-181a/b) that could serve as potential CRC markers has also steadily increased in recent years. Among the immunohistochemical (IHC) proliferative markers, the prognostic value regarding the patients' overall survival (OS) or disease-free survival (DFS) has been confirmed for thymidylate synthase (TS), cyclin B1, cyclin D1, proliferating cell nuclear antigen (PCNA), and Ki-67. In most cases, the overexpression of these markers in tissues was related to worse OS and DFS. However, slowly proliferating cells should also be considered in CRC therapy (especially radiotherapy) as they could represent a reservoir from which cells are recruited to replenish the rapidly proliferating population in response to cell-damaging factors. Considering the above, the aim of this article is to review the most common proliferative markers assessed using various methods including IHC and selected molecular biology techniques (e.g., qRT-PCR, in situ hybridization, RNA/DNA sequencing, next-generation sequencing) as prognostic and predictive markers in CRC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
3
|
Jiang H, Guo W, Huang K, Jiang H, Zhang R, Hu H, Lin X, Wang S. Screening of radiotracer for diagnosis of colorectal cancer liver metastasis based on MACC1-SPON2. Abdom Radiol (NY) 2021; 46:3227-3237. [PMID: 33712897 PMCID: PMC8215036 DOI: 10.1007/s00261-021-03015-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/09/2022]
Abstract
Background Metastasis-associated in colon cancer 1 (MACC1) and Spondin2 (SPON2) are newly discovered oncogenes, but little is known about their role in colorectal cancer(CRC) liver metastases. PET has become an important molecular imaging technology due to its high sensitivity and quantifiability. In particular, its targeted, specific molecular probes can detect biological behaviors. This study was designed to evaluate the different biological properties of 18F-FDG, 18F-FLT, and 18F-FMISO PET. The value of the CRC liver metastasis model explores the correlation and potential mechanisms of three tracers uptakes with tumor-related biological characteristics. Methods Human CRC cell lines(LoVo and HCT8), were cultured for in vitro radionuclide uptake experiments to compare the molecular imaging features of colorectal cancer cells with different metastatic potentials. Two kinds of cells were injected into the spleen of nude mice to establish a liver metastasis model. After the tumor formation, three kinds of tracer PET images were performed to evaluate the characteristics of live PET imaging of high and low liver metastasis colorectal cancer models. The expression levels of MACC1 and SPON2 in tissues were detected by immunohistochemistry and Western blot. Correlation between tracer uptake and expression of MACC1 and SPON2 in liver metastases was assessed by linear regression analysis. Results The uptake rate of in vitro three tracers uptake experiments was LoVo > HCT8. Micro-PET scan showed no significant difference between the 18F-FDG SUV values of the two cells (P > 0.05); there was significant difference between the 18F-FLT and 18F-FMISO SUV values (P < 0.05). All in vivo FLT and FMISO SUV values were significantly higher in LoVo tumors than in HCT8 tumors. The results of Western blot and immunohistochemistry showed that the expression levels of MACC1 and SPON2 in LoVo liver metastasis were higher than those in HCT8 (P < 0.05). The 18F-FLT SUVmax ratio was significantly correlated with the expression of MACC1 and SPON2 in hepatic metastases (r = 0.737, P = 0.0026; r = 0.842, P = 0.0002). The 18F-FMISO SUVmax ratio was only significantly correlated with the expression of MACC1 in hepatic metastasis (r = 0.770, P = 0.0013). Conclusions Early screening with 18F-FLT and 18F-FMISO tracers has important clinical value for the efficient diagnosis and treatment of colorectal cancer liver metastases.
Collapse
|
4
|
Ma G, Liu C, Lian W, Zhang Y, Yuan H, Zhang Y, Song S, Yang Z. 18F-FLT PET/CT imaging for early monitoring response to CDK4/6 inhibitor therapy in triple negative breast cancer. Ann Nucl Med 2021; 35:600-607. [PMID: 33689138 DOI: 10.1007/s12149-021-01603-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Our study was to investigate 18F-FLT PET/CT imaging monitor the early response of CDK4/6 inhibitor therapy in triple negative breast cancer (TNBC). METHODS MDA-MB-231 and MDA-MB-468 cell lines and corresponding subcutaneous tumor models in CB17-SCID mice were used. Cell viability assay, cell-cycle analysis, and western blotting were performed in vitro experiments. 18F-FLT PET/CT imaging was performed and the value of tumor/muscle (T/M) of mice was measured before and 1-3 days after treatment in vivo experiments. Then, the tumor volume was recorded every day for 15 days. RESULTS In the presence of Palbociclib (CDK4/6 inhibitor), the results of in vitro experiments showed that protein pRB and E2F levels were significantly down-regulated in MDA-MB-231 cells leading to G0/G1 arrest with consumption in S phase compared with MDA-MB-468 cells. In PET/CT imaging, the 18F-FLT T/M ratio of treatment group was a significant and sustained reduction from 1 to 3 days (all p < 0.05) compared with control group in MDA-MB-231 section. However, there was no significant difference between treatment and control groups in MDA-MB-468 section. Compared with the control group, the tumor volume of the treatment group was significantly reduced from the 11th day in MDA-MB-231 section, but not in MDA-MB-468 section until 15 days. CONCLUSION 18F-FLT PET/CT imaging can immediately and effectively monitor the early treatment response of CDK4/6 inhibitors in TNBC.
Collapse
Affiliation(s)
- Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Weiling Lian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yongping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Huiyu Yuan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, No.270, Dong'an Road, Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Biomedical Imaging, Fudan University, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, China.
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai, 201321, China.
| |
Collapse
|
5
|
Sergeeva O, Zhang Y, Kenyon J, Miller-Atkins G, Sergeev M, Verbus E, Iyer R, Sexton S, Kepe V, Avril N, Saunthararajah Y, Chan ER, Lee Z. Liver background uptake of [ 18F]FLT in PET imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2020; 10:212-225. [PMID: 33224617 PMCID: PMC7675117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
High liver uptake presents a problem for 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) as a radiotracer for imaging cellular proliferation in the liver with positron emission tomography (PET). This investigation re-visited some issues related to the high liver background uptake of [18F]FLT with an animal model of woodchucks. Several enzymes involved in the hepatic catabolism of FLT, thymidine phosphorylase (TP, TYMP), uridine 5'-diphospho-glucuronosyl-transferases (UDP-GTs, short for UGTs), and β-glucuronidase (GUSB), their homology as well as hepatic expression between the human and the woodchuck was examined. Inhibitors of these enzymes, TP inhibitor (TPI) tipiracil hydrochloride, UGT inhibitor probenecid, β-glucuronidase inhibitor L-aspartate, were administered to the animals at human equivalent doses either intravenously (i.v.) and orally before the injection of tracer-dose [18F]FLT for PET imaging to examine any changes in liver uptake. Liver tissue samples were harvested from the animals after PET imaging and used to perform polymerase chain reaction (PCR) for TP expression or assays for enzymatic activities of TP and β-glucuronidase. Non-radiolabeled (cold) FLT was also applied for enzyme saturation. Animals administered with TPI displayed lower radioactivity in the liver in comparison with the baseline scan. The application of probenecid did not change [18F]FLT liver uptake even though it reduced renal uptake. L-aspartate reduced the liver background uptake of [18F]FLT slightly. The application of cold FLT reduced overall uptake of [18F]FLT including the liver background. Therefore, the combined application of cold FLT and [18F]FLT merits further clinical investigation for reducing liver background uptake of [18F]FLT.
Collapse
Affiliation(s)
- Olga Sergeeva
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
| | - Yifan Zhang
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
| | - Jonathan Kenyon
- Department of Biology, Case Western Reserve UniversityCleveland, OH, USA
| | | | - Maxim Sergeev
- Nuclear Medicine, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| | - Emily Verbus
- Surgery, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| | - Renuka Iyer
- Medical Oncology, Rowell Park Cancer CenterBuffalo, NY, USA
| | - Sandra Sexton
- Medical Oncology, Rowell Park Cancer CenterBuffalo, NY, USA
| | - Vladimir Kepe
- Nuclear Medicine, Cleveland ClinicCleveland, OH, USA
| | - Norbert Avril
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
- Nuclear Medicine, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| | | | | | - Zhenghong Lee
- Department of Radiology, Case Western Reserve UniversityCleveland, OH, USA
- Nuclear Medicine, University Hospitals Cleveland Medical CenterCleveland, OH, USA
| |
Collapse
|
6
|
Lovinfosse P, Rousseau C, Pierga JY, Bouchet F, Cochet A, Alberini JL, Girault S, Vera P, Olivier P, Uwer L, Cachin F, Scarwell B, Lemonnier J, Fourme E, Mesleard C, Martin AL, Lacœuille F, Couturier OF. Dual time point [ 18F]FLT-PET for differentiating proliferating tissues vs non-proliferating tissues. EJNMMI Res 2019; 9:109. [PMID: 31832803 PMCID: PMC6908533 DOI: 10.1186/s13550-019-0579-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose For differentiating tumor from inflammation and normal tissues, fluorodeoxyglucose ([18F]FDG) dual time point PET could be helpful. Albeit [18F]FLT is more specific for tumors than [18F]FDG; we explored the role of dual time point [18F]FLT-PET for discriminating benign from malignant tissues. Methods Before any treatment, 85 womens with de novo unifocal breast cancer underwent three PET acquisitions at 33.94 ± 8.01 min (PET30), 61.45 ± 8.30 min (PET60), and 81.06 ± 12.12 min (PET80) after [18F]FLT injection. Semiquantitative analyses of [18F]FLT uptake (SUV) were carried out on tumors, liver, bone marrow (4th thoracic vertebra (T4) and humeral head), descending thoracic aorta, muscle (deltoid), and contralateral normal breast. Repeated measures ANOVA tests and Tukey’s posttests were used to compare SUVmax of each site at the three time points. Results There was a significant increase in SUVmax over time for breast lesions (5.58 ± 3.80; 5.97 ± 4.56; 6.19 ± 4.42; p < 0.0001) (m ± SD for PET30, PET60, and PET80, respectively), and bone marrow (for T4, 8.21 ± 3.17, 9.64 ± 3.66, 10.85 ± 3.63, p < 0.0001; for humeral head, 3.36 ± 1.79, 3.87 ± 1.89, 4.39 ± 2.00, p < 0.0001). A significant decrease in SUVmax over time was observed for liver (6.79 ± 2.03; 6.24 ± 1.99; 5.57 ± 1.74; p < 0.0001), muscle (0.95 ± 0.28; 0.93 ± 0.29; 0.86 ± 0.20; p < 0.027), and aorta (1.18 ± 0.34; 1.01 ± 0.32; 0.97 ± 0.30; p < 0.0001). No significant difference was observed for SUVmax in contralateral breast (0.8364 ± 0.40; 0.78 ± 0.38; 0.80 ± 0.35). Conclusion [18F]FLT-SUVmax increased between 30 and 80 min only in proliferating tissues. This could be helpful for discriminating between residual tumor and scar tissue.
Collapse
Affiliation(s)
- Pierre Lovinfosse
- Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
| | - Caroline Rousseau
- Nuclear Medicine Department, West Cancer Institut (ICO), René Gauducheau Centre, Saint Herblain, France
| | | | - Francis Bouchet
- Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
| | - Alexandre Cochet
- Nuclear Medicine Department, Georges-François Leclerc Centre, Dijon, France
| | | | - Sylvie Girault
- Nuclear Medicine Department, West Cancer Institut (ICO), Paul Papin Centre, Angers, France
| | - Pierre Vera
- Nuclear Medicine Department, Henri Becquerel Centre, Rouen, France
| | - Pierre Olivier
- Nuclear Medicine Department, University of Nancy, Nancy, France
| | - Lionel Uwer
- Nuclear Medicine Department, Institut de cancerologie de lorraine, Vandoeuvre-les-, Nancy, France
| | - Florent Cachin
- Nuclear Medicine Department, Jean Perrin Center, Clermont Ferrand, France
| | - Benoit Scarwell
- Nuclear Medicine Department, Centre Hospitalier de la Cote Basque, Bayonne, France
| | | | | | | | | | - Franck Lacœuille
- Nuclear Medicine Department and Inserm UMR_S 1066 MINT, University of Angers, Angers, France
| | | |
Collapse
|
7
|
4'-[methyl- 11C]-thiothymidine as a proliferation imaging tracer for detection of colorectal cancer: comparison with 18F-FDG. Ann Nucl Med 2019; 33:822-827. [PMID: 31401773 DOI: 10.1007/s12149-019-01393-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The novel radiotracer, 4'-[methyl-11C]-thiothymidine (11C-4DST), was developed based on the DNA incorporation method as a cell proliferation marker. This study investigated the feasibility of 11C-4DST positron emission tomography/computed tomography (PET/CT) for detection of colorectal cancer, as compared with 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG) PET/CT, and to correlate the two radiotracers with proliferative activity. METHODS A total of 18 patients with newly diagnosed colorectal cancer underwent both 11C-4DST and 18F-FDG PET/CT. Tumor lesions were identified as areas of focally increased uptake, exceeding that of adjacent normal tissue. For semiquantitative analysis, the maximal standardized uptake value (SUVmax) was calculated. Proliferative activity as quantified by the Ki-67 index was estimated in tumor specimens. RESULTS In all 18 patients, colorectal cancers were detected by both 11C-4DST and 18F-FDG PET/CT. The median (± SD) SUVmax for 11C-4DST (6.02 ± 2.55) was significantly lower than that for 18F-FDG (13.91 ± 7.62) (P < 0.001). 11C-4DST SUVmax and 18F-FDG SUVmax showed a significant correlation (r = 0.69, P = 0.002). 11C-4DST SUVmax and Ki-67 index were weakly correlated (r = 0.50, P = 0.04). 18F-FDG SUVmax and Ki-67 index were not significantly correlated (r = 0.44, P = 0.06). CONCLUSIONS Despite a significantly lower uptake of 11C-4DST than that of 18F-FDG, detection of colorectal cancer was also feasible with 11C-4DST PET/CT. 11C-4DST PET/CT might have a role in the noninvasive assessment of proliferation in colorectal cancer.
Collapse
|
8
|
Evaluation of [ 18F]FDG/[ 18F]FLT/[ 18F]FMISO-based micro-positron emission tomography in detection of liver metastasis in human colorectal cancer. Nucl Med Biol 2019; 72-73:36-44. [PMID: 31330410 DOI: 10.1016/j.nucmedbio.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/10/2019] [Accepted: 07/06/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) is extensively used in clinical oncology for tumor detection. This study aimed to explore the application of the radiotracers [18F]fluorodeoxyglucose ([18F]FDG), 3'-deoxy-3'- [18F]fluorothymidine ([18F]FLT), and [18F]fluoromisonidazole ([18F]FMISO) in the diagnosis and monitoring of hepatic metastasis in human colorectal cancer (CRC). METHODS A mouse model of human CRC with hepatic metastasis was established by intrasplenic implantation of human CRC cell lines LoVo or HCT8. Metastatic potential of these two cell lines was evaluated by wound healing assay in vitro and survival analysis. Uptake of radiotracers between LoVo and HCT8 cells and uptake of radiotracers in the resulting mouse tumor models were examined by in vivo and in vitro experiments. Uptake of each radiotracer in hepatic metastatic lesions was quantified and expressed as standard uptake value (SUV). Protein expression of multiple tumor biomarkers was determined in metastatic lesions. The correlation between tracer uptake and tumor marker expression was evaluated using linear regression. RESULTS LoVo cells exhibited a stronger metastatic potential and a higher radiotracer uptake ability than HCT8 cells, as evidenced by significantly greater wound closure percentage, shorter survival, higher incidence of liver metastases, and higher cellular radiotracer levels in LoVo cells or LoVo cell-xenografted mice. SUV values of [18F]FLT and [18F]FMISO, but not [18F]FDG, in LoVo cell-derived metastatic lesions were significantly greater than those in HCT8 lesions. Mechanistically, the expression of MACC1, HIF-1α, and GLUT-1(metastasis associated in colon cancer 1, MACC1; hypoxia-inducible factor 1-alpha, HIF-1α; and glucose transporter 1, GLUT-1, respectively) in LoVo cell-derived metastatic lesions was more effectively induced than in HCT8-derived ones. A linear regression analysis demonstrated significant positive correlations between [18F]FLT/[18F]FMISO uptake and tumor biomarker expression in metastatic tissues. CONCLUSIONS [18F]FLT and [18F]FMISO-based PET imaging may serve as a promising method for early detection and monitoring of hepatic metastasis in patients with CRC.
Collapse
|
9
|
Nakajo M, Kajiya Y, Jinguji M, Nakabeppu Y, Nakajo M, Nihara T, Yoshiura T. Current clinical status of 18F-FLT PET or PET/CT in digestive and abdominal organ oncology. Abdom Radiol (NY) 2017; 42:951-961. [PMID: 27770160 DOI: 10.1007/s00261-016-0947-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) or PET/computed tomography (CT) using 18F-3'-fluoro-3'-deoxythymidine (18F-FLT) offers noninvasive assessment of cell proliferation in human cancers in vivo. The present review discusses the current status on clinical applications of 18F-FLT-PET (or PET/CT) in digestive and abdominal oncology by comparing with 18F-fluorodeoxyglucose (18F-FDG)-PET (or PET/CT). The results of this review show that although 18F-FLT uptake is lower in most cases of digestive and abdominal malignancies compared with 18F-FDG uptake, 18F-FLT-PET can be used to detect primary tumors. 18F-FLT-PET has shown greater specificity for N staging than 18F-FDG-PET which can show false-positive uptake in areas of inflammation. However, because of the high background uptake in the liver and bone marrow, it has a limited role of assessing liver and bone metastases. Instead, 18F-FLT-PET will be a powerful tool for monitoring response to treatment and provide prognostic information in digestive and abdominal oncology.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
- Department of Radiology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan.
| | - Yoriko Kajiya
- Department of Radiology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshiaki Nakabeppu
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masayuki Nakajo
- Department of Radiology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan
| | - Tohru Nihara
- Department of Gastroentenology, Nanpuh Hospital, 14-3 Nagata, Kagoshima, 892-8512, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
10
|
Hoshikawa H, Mori T, Maeda Y, Takahashi S, Ouchi Y, Yamamoto Y, Nishiyama Y. Influence of volumetric 4'-[methyl- 11C]-thiothymidine PET/CT parameters for prediction of the clinical outcome of head and neck cancer patients. Ann Nucl Med 2016; 31:63-70. [PMID: 27679399 DOI: 10.1007/s12149-016-1131-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/23/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This prospective study compared the value of pretreatment 4'-[methyl-11C]-thiothymidine (11C-4DST) volumetric parameters and those of 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG) in predicting the clinical outcome in patients with head and neck squamous cell carcinoma (HNSCC). METHODS Fifty patients with HNSCC underwent 11C-4DST PET/CT and 18F-FDG PET/CT prior to anticancer therapy. 18F-FDG metabolic tumor volume (18F-FDG MTV) and total lesion glycolysis (TLG) were calculated from 18F-FDG PET, and 11C-4DST MTV and total lesion proliferation (TLP) were calculated from 11C-4DST PET. All parameters were measured for the primary lesion and metastatic lymph nodes. Associations between clinical factors and PET/CT parameters and prognostic value were analyzed. RESULTS Receiver-operating characteristic analysis revealed that MTV, TLG, and TLP acquired from the primary lesion and metastatic lymph nodes were good parameters for predicting disease relapse and death. The area under the curves (AUCs) ranged from 0.63 to 0.71 for 18F-FDG PET/CT parameters. The AUCs of 11C-4DST PET/CT parameters were larger than those of 18F-FDG (range 0.72-0.81). Univariate analysis revealed that individuals with tumors showing a high value for any PET/CT parameter were at a significantly increased risk of relapse. Upon multivariate analysis, 18F-FDG MTV, 11C-4DST MTV and 11C-4DST TLP were significant independent factors for relapse-free survival (P = 0.04, P = 0.0001 and P = 0.0005, respectively). CONCLUSION Pretreatment 11C-4DST PET/CT volume-based parameters can provide important prognostic information about patients with HNSCC.
Collapse
Affiliation(s)
- Hiroshi Hoshikawa
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan.
| | - Terushige Mori
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Yukito Maeda
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Satoshi Takahashi
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Yohei Ouchi
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
11
|
Nielsen CH, Jensen MM, Kristensen LK, Dahlman A, Fröhlich C, Jacobsen HJ, Poulsen TT, Lantto J, Horak ID, Kragh M, Kjaer A. In vivo imaging of therapy response to a novel pan-HER antibody mixture using FDG and FLT positron emission tomography. Oncotarget 2016; 6:37486-99. [PMID: 26460961 PMCID: PMC4741943 DOI: 10.18632/oncotarget.6060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Overexpression of the human epidermal growth factor receptor (HER) family and their ligands plays an important role in many cancers. Targeting multiple members of the HER family simultaneously may increase the therapeutic efficacy. Here, we report the ability to image the therapeutic response obtained by targeting HER family members individually or simultaneously using the novel monoclonal antibody (mAb) mixture Pan-HER. Experimental design and results Mice with subcutaneous BxPC-3 pancreatic adenocarcinomas were divided into five groups receiving vehicle or mAb mixtures directed against either EGFR (HER1), HER2, HER3 or all three receptors combined by Pan-HER. Small animal positron emission tomography/computed tomography (PET/CT) with 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) and 3′-deoxy-3′-[18F]fluorothymidine (FLT) was performed at baseline and at day 1 or 2 after initiation of therapy. Changes in tumor uptake of tracers were quantified and compared to reduction in tumor size. Imaging results were further validated by immunohistochemistry and qPCR. Mean FDG and FLT uptake in the Pan-HER treated group decreased by 19±4.3% and 24±3.1%, respectively. The early change in FDG and FLT uptake correlated with tumor growth at day 23 relative to day 0. Ex vivo molecular analyses of markers associated with the mechanisms of FDG and FLT uptake confirmed the in vivo imaging results. Conclusions Taken together, the study supports the use of FDG and FLT as imaging biomarkers of early response to Pan-HER therapy. FDG and FLT PET/CT imaging should be considered as imaging biomarkers in clinical evaluation of the Pan-HER mAb mixture.
Collapse
Affiliation(s)
- Carsten H Nielsen
- Minerva Imaging ApS, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Mette M Jensen
- Minerva Imaging ApS, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Lotte K Kristensen
- Minerva Imaging ApS, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | - Andreas Kjaer
- Minerva Imaging ApS, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Abstract
Two different strategies have been developed for imaging the proliferative status of solid tumors with the functional imaging technique, Positron Emission Tomography (PET). The first strategy uses carbon-11 labeled thymidine and/or, more recently, fluorine-18 labeled thymidine analogs. These agents are a substrate for the enzyme thymidine kinase-1 (TK-1) and provide a pulse label of the number of cells in S phase. The second method for imaging the proliferative status of a tumor uses radiolabeled ligands that bind to the sigma-2 receptor which has a 10-fold higher density in proliferating (P) tumor cells versus quiescent (Q) tumor cells. This article compares and contrasts the two different strategies for imaging the proliferative status of solid tumors, and describes the strengths and weaknesses of each approach.
Collapse
|
13
|
Lamarca A, Asselin MC, Manoharan P, McNamara MG, Trigonis I, Hubner R, Saleem A, Valle JW. 18F-FLT PET imaging of cellular proliferation in pancreatic cancer. Crit Rev Oncol Hematol 2016; 99:158-69. [PMID: 26778585 DOI: 10.1016/j.critrevonc.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/19/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is known for its poor prognosis. Since the development of computerized tomography, magnetic resonance and endoscopic ultrasound, novel imaging techniques have struggled to get established in the management of patients diagnosed with pancreatic adenocarcinoma for several reasons. Thus, imaging assessment of pancreatic cancer remains a field with scope for further improvement. In contrast to cross-sectional anatomical imaging methods, molecular imaging modalities such as positron emission tomography (PET) can provide information on tumour function. Particularly, tumour proliferation may be assessed by measurement of intracellular thymidine kinase 1 (TK1) activity level using thymidine analogues radiolabelled with a positron emitter for use with PET. This approach, has been widely explored with [(18)F]-fluoro-3'-deoxy-3'-L-fluorothymidine ((18)F-FLT) PET. This manuscript reviews the rationale and physiology behind (18)F-FLT PET imaging, with special focus on pancreatic cancer and other gastrointestinal malignancies. Potential benefit and challenges of this imaging technique for diagnosis, staging and assessment of treatment response in abdominal malignancies are discussed.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Marie-Claude Asselin
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Prakash Manoharan
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ioannis Trigonis
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Richard Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Azeem Saleem
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom; Imanova Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
14
|
Jensen MM, Kjaer A. Monitoring of anti-cancer treatment with (18)F-FDG and (18)F-FLT PET: a comprehensive review of pre-clinical studies. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2015; 5:431-456. [PMID: 26550536 PMCID: PMC4620172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) and 3'-deoxy-3'-[(18)F]fluorothymidine((18)F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With (18)F-FDG and (18)F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether (18)F-FDG and/or (18)F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in (18)F-FDG and (18)F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used (18)F-FDG and/or (18)F-FLT PET for response monitoring of cancer therapeutics.
Collapse
Affiliation(s)
- Mette Munk Jensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen Denmark
| |
Collapse
|
15
|
Goos JACM, Verbeek J, Geldof AA, Hiemstra AC, van de Wiel MA, Adamzek KA, Delis-Van Diemen PM, Stroud SG, Bradley DP, Meijer GA, Hoekstra OS, Fijneman RJA, Windhorst AD. Molecular imaging of aurora kinase A (AURKA) expression: Synthesis and preclinical evaluation of radiolabeled alisertib (MLN8237). Nucl Med Biol 2015; 43:63-72. [PMID: 26432753 DOI: 10.1016/j.nucmedbio.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 08/31/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Survival of patients after resection of colorectal cancer liver metastasis (CRCLM) is 36%-58%. Positron emission tomography (PET) tracers, imaging the expression of prognostic biomarkers, may contribute to assign appropriate management to individual patients. Aurora kinase A (AURKA) expression is associated with survival of patients after CRCLM resection. METHODS We synthesized [(3)H]alisertib and [(11)C]alisertib, starting from [(3)H]methyl nosylate and [(11)C]methyl iodide, respectively. We measured in vitro uptake of [(3)H]alisertib in cancer cells with high (Caco2), moderate (A431, HCT116, SW480) and low (MKN45) AURKA expression, before and after siRNA-mediated AURKA downmodulation, as well as after inhibition of P-glycoprotein (P-gp) activity. We measured in vivo uptake and biodistribution of [(11)C]alisertib in nude mice, xenografted with A431, HCT116 or MKN45 cells, or P-gp knockout mice. RESULTS [(3)H]Alisertib was synthesized with an overall yield of 42% and [(11)C]alisertib with an overall yield of 23%±9% (radiochemical purity ≥99%). Uptake of [(3)H]alisertib in Caco2 cells was higher than in A431 cells (P=.02) and higher than in SW480, HCT116 and MKN45 cells (P<.01). Uptake in A431 cells was higher than in SW480, HCT116 and MKN45 cells (P<.01). Downmodulation of AURKA expression reduced [(3)H]alisertib uptake in Caco2 cells (P<.01). P-gp inhibition increased [(3)H]alisertib uptake in Caco2 (P<.01) and MKN45 (P<.01) cells. In vivo stability of [(11)C]alisertib 90min post-injection was 94.7%±1.3% and tumor-to-background ratios were 2.3±0.8 (A431), 1.6±0.5 (HCT116) and 1.9±0.5 (MKN45). In brains of P-gp knockout mice [(11)C]alisertib uptake was increased compared to uptake in wild-type mice (P<.01) CONCLUSIONS: Radiolabeled alisertib can be synthesized and may have potential for the imaging of AURKA, particularly when AURKA expression is high. However, the exact mechanisms underlying alisertib accumulation need further investigation. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Radiolabeled alisertib may be used for non-invasively measuring AURKA protein expression and to stratify patients for treatment accordingly.
Collapse
Affiliation(s)
- Jeroen A C M Goos
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Joost Verbeek
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert A Geldof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke C Hiemstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Kevin A Adamzek
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | - Gerrit A Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Monitoring the early biologic response of esophageal carcinoma after irradiation with 18F-FLT: an in-vitro and in-vivo study. Nucl Med Commun 2015; 35:1212-9. [PMID: 25192190 DOI: 10.1097/mnm.0000000000000201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of our study was to explore the value of 3'-deoxy-3'-[F]fluorothymidine (F-FLT) and F-FLT PET in monitoring the early biologic response of esophageal carcinoma after irradiation in vitro and in vivo. METHODS After 2, 4, and 8 h of irradiation at different doses (0, 5, 10, and 15 Gy) of esophageal carcinoma cells in vitro, the uptake ratio of F-FLT, the relative cell survival rate, and ATP levels were measured. The tumor uptake ratio of F-FLT [tumor-to-nontumor (T/NT)] was measured through PET scans before and on the first, seventh, and 15th day after irradiation. The expression of proliferating cell nuclear antigen and Ki-67 was determined in both untreated and treated tumors. RESULTS Compared with the control group, the uptake ratio changes of F-FLT after 2 h of irradiation with 5 Gy showed no statistical significance (3.65±0.17 vs. 4.00±0.17%, P>0.05), whereas the uptake ratios of the other groups decreased notably (F=33.93, P<0.01). The differences in the relative survival rates were not statistically significant (F=4.02, P>0.05). Linear regression analysis indicated a significant correlation between F-FLT and ATP levels (r=0.89, P<0.01). On F-FLT PET scan images of the xenografts, the baseline uptake ratio (T/NT) was 2.24±0.06. It decreased to 1.99±0.09, 1.85±0.04, and 1.15±0.10 at 1, 7, and 15 days after irradiation with 10 Gy. Tumor uptake of F-FLT was closely correlated with proliferating cell nuclear antigen and Ki-67 expressions (r=0.83, P<0.001, and r=0.88, P<0.001). CONCLUSION The uptake changes of F-FLT in esophageal carcinoma cells and tumor xenografts may reflect the early biological response of esophageal carcinoma after irradiation. Thus, F-FLT PET may be potentially used to monitor the early response of esophageal carcinoma after radiotherapy.
Collapse
|
17
|
Deng SM, Zhang W, Zhang B, Chen YY, Li JH, Wu YW. Correlation between the Uptake of 18F-Fluorodeoxyglucose (18F-FDG) and the Expression of Proliferation-Associated Antigen Ki-67 in Cancer Patients: A Meta-Analysis. PLoS One 2015; 10:e0129028. [PMID: 26038827 PMCID: PMC4454667 DOI: 10.1371/journal.pone.0129028] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Objective To study the correlation between 18F-FDG uptake and cell proliferation in cancer patients by meta-analysis of published articles. Methods We searched PubMed (MEDLINE included), EMBASE, and Cochrane Database of Systematic Review, and selected research articles on the relationship between 18F-FDG uptake and Ki-67 expression (published between August 1, 1994-August 1, 2014), according to the literature inclusion and exclusion criteria. The publishing language was limited to English. The quality of included articles was evaluated according to the Quality Assessment of Diagnosis Accuracy Studies-2 (QUADAS-2). The correlation coefficient (r) was extracted from the included articles and processed by Fisher's r-to-z transformation. The combined correlation coefficient (r) and the 95% confidence interval (CI) were calculated with STATA 11.0 software under a random-effects model. Begg's test was used to analyze the existence of publication bias and draw funnel plot, and the sources of heterogeneity were explored by sensitivity and subgroup analyses. Results According to the inclusion and exclusion criteria, 79 articles were finally included, including 81 studies involving a total of 3242 patients. All the studies had a combined r of 0.44 (95% CI, 0.41-0.46), but with a significant heterogeneity (I2 = 80.9%, P<0.01). Subgroup analysis for different tumor types indicated that most subgroups showed a reduced heterogeneity. Malignant melanoma (n = 1) had the minimum correlation coefficient (-0.22) between 18F-FDG uptake and Ki-67 expression, while the thymic epithelial tumors (TETs; n = 2) showed the maximum correlation coefficient of 0.81. The analytical results confirmed that correlation between 18F-FDG uptake and Ki-67 expression was extremely significant in TETs, significant in gastrointestinal stromal tumors (GISTs), moderate in patients with lung, breast, bone and soft tissue, pancreatic, oral, thoracic, and uterine and ovarian cancers, average in brain, esophageal and colorectal cancers, and poor in head and neck, thyroid, gastric and malignant melanoma tumors. Subgroup analysis indicated that positron emission tomography (PET) or PET/CT imaging technology or Ki-67 and standardized uptake value (SUV) measurement technology did not significantly affect the results of r values, and Begg's test showed no significant publication bias. Conclusion In cancer patients, 18F-FDG uptake showed a moderate positive correlation with tumor cell proliferation. Different tumor types exhibited varied degree of correlation, and the correlation was significant in TETs and GSTs. However, our results need further validation by clinical trials with a large sample of different tumor types.
Collapse
Affiliation(s)
- Sheng-ming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
- * E-mail:
| | - Yin-yin Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ji-hui Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-wei Wu
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Prognostic Value Comparison Between 18F-FLT PET/CT and 18F-FDG PET/CT Volume-Based Metabolic Parameters in Patients with Head and Neck Cancer. Clin Nucl Med 2015; 40:464-8. [DOI: 10.1097/rlu.0000000000000652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
FDG-PET/CT and FLT-PET/CT for differentiating between lipid-poor benign and malignant adrenal tumours. Eur Radiol 2015; 25:3696-705. [PMID: 25925356 DOI: 10.1007/s00330-015-3787-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To compare F-18-fluorodeoxyglucose (FDG) and F-18-fluorothymidine (FLT) PET/CT examinations for differentiating between benign and malignant adrenal tumours. METHODS Thirty lipid-poor benign and 11 malignant tumours of 40 patients were included. FDG- and FLT-based indices including visual score, maximum standardized uptake value (SUVmax) and FDG adrenal lesion/liver SUVmax (A/L SUVmax) or FLT adrenal lesion/back muscle SUVmax (A/B SUVmax) ratio were compared between benign and malignant tumours using the Mann-Whitney's U or Wilcoxon signed-rank test, and their diagnostic performances were evaluated by means of the area under the curve (AUC) values derived from the receiver operating characteristic analysis. RESULTS All indices were significantly higher in malignant than benign tumours on both images (p < 0.05 each). On FDG-PET/CT, the sensitivity, specificity, and accuracy were 91 %, 63 % and 71 % for visual score, 91 %, 67 % and 73 % for SUVmax, and 100 %, 70 % and 78 % for A/L SUVmax ratio, respectively. On FLT-PET/CT, they were 100 %, 97 % and 98 % for visual score, SUVmax and A/B SUVmax ratio, respectively. All FLT indices were significantly higher than those of FDG in AUC (p < 0.05 each). CONCLUSION FLT-PET/CT may be superior to FDG-PET/CT in differentiating lipid-poor benign from malignant adrenal tumours because of higher specificity and accuracy. KEY POINTS • All FDG indices were significantly higher in malignant than in benign tumours. • All FLT indices were significantly higher in malignant than in benign tumours. • All FLT indices were significantly higher than those of FDG in AUC.
Collapse
|
20
|
Lin C, Kume K, Mori T, Martinez ME, Okazawa H, Kiyono Y. Predictive Value of Early-Stage Uptake of 3'-Deoxy-3'-18F-Fluorothymidine in Cancer Cells Treated with Charged Particle Irradiation. J Nucl Med 2015; 56:945-50. [PMID: 25766892 DOI: 10.2967/jnumed.114.152983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The aim of this study was to investigate whether 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) can monitor the early response of tumor cell proliferation to charged particle irradiation in vitro and in vivo. METHODS In vitro, after 0.1, 0.5, 1, 5, and 10 Gy of proton or carbon ion irradiation, (18)F-FLT cell uptake was examined at 24 h and cell proliferation ability was measured from days 1 to 4. In vivo, after 0.5, 1, and 5 Gy of proton or carbon ion irradiation, (18)F-FLT PET imaging was performed on tumor-bearing BALB/c nu/nu mice at 24 h and tumor growth was measured from days 1 to 7. Tumor-to-background ratios of standardized uptake values were calculated to assess the (18)F-FLT accumulation in tumors. Both cells and mice also received x-irradiation as a control. RESULTS In vitro, (18)F-FLT cell uptake was significantly lower after 1 Gy of proton irradiation (P < 0.05) and carbon ion irradiation (P < 0.05) and after 5 Gy of x-irradiation (P < 0.01), but cell proliferation ability at these doses did not show significant differences until day 3. In vivo, (18)F-FLT tumor uptake was significantly lower after 1 Gy of proton (P < 0.001) and carbon ion irradiation (P < 0.01) and after 5 Gy of x-irradiation (P < 0.001), but tumor growth did not significantly differ at these doses until day 4 after proton irradiation, day 3 after carbon ion irradiation, and day 5 after x-irradiation. CONCLUSION The reduction in (18)F-FLT uptake after charged particle irradiation was more rapid than the change in tumor growth in vivo or the change in cell proliferation ability in vitro. Therefore, (18)F-FLT is a promising tracer for monitoring the early response of cancer to charged particle irradiation.
Collapse
Affiliation(s)
- Chao Lin
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Kyo Kume
- Research and Development Division, Wakasa Wan Energy Research Center, Fukui, Japan; and
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Miguel E Martinez
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan Research and Education Program for Life Science, University of Fukui, Fukui, Japan
| |
Collapse
|
21
|
Towards multidimensional radiotherapy: key challenges for treatment individualisation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:934380. [PMID: 25834635 PMCID: PMC4365339 DOI: 10.1155/2015/934380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/03/2014] [Indexed: 12/03/2022]
Abstract
Functional and molecular imaging of tumours have offered the possibility of redefining the target in cancer therapy and individualising the treatment with a multidimensional approach that aims to target the adverse processes known to impact negatively upon treatment result. Following the first theoretical attempts to include imaging information into treatment planning, it became clear that the biological features of interest for targeting exhibit considerable heterogeneity with respect to magnitude, spatial, and temporal distribution, both within one patient and between patients, which require more advanced solutions for the way the treatment is planned and adapted. Combining multiparameter information from imaging with predictive information from biopsies and molecular analyses as well as in treatment monitoring of tumour responsiveness appears to be the key approach to maximise the individualisation of treatment. This review paper aims to discuss some of the key challenges for incorporating into treatment planning and optimisation the radiobiological features of the tumour derived from pretreatment PET imaging of tumour metabolism, proliferation, and hypoxia and combining them with intreatment monitoring of responsiveness and other predictive factors with the ultimate aim of individualising the treatment towards the maximisation of response.
Collapse
|
22
|
Hoshikawa H, Yamamoto Y, Mori T, Kishino T, Fukumura T, Samukawa Y, Mori N, Nishiyama Y. Predictive value of SUV-based parameters derived from pre-treatment 18F-FLT PET/CT for short-term outcome with head and neck cancers. Ann Nucl Med 2014; 28:1020-6. [DOI: 10.1007/s12149-014-0902-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
|
23
|
Nakajo M, Nakajo M, Kajiya Y, Goto Y, Jinguji M, Tanaka S, Fukukura Y, Tani A, Higashi M. Correlations of (18)F-fluorothymidine uptake with pathological tumour size, Ki-67 and thymidine kinase 1 expressions in primary and metastatic lymph node colorectal cancer foci. Eur Radiol 2014; 24:3199-209. [PMID: 25120206 DOI: 10.1007/s00330-014-3379-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/04/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine correlations of (18)F-fluorothymidine (FLT) uptake with pathological tumour size and immunohistochemical Ki-67, and thymidine kinase 1 (TK-1) expressions in primary and metastatic node colorectal cancer foci. METHODS Thirty primary cancers (PCs) and 37 metastatic nodes (MNs) were included. FLT uptake was assessed by visual scores (non-visible: 0-1 and visible: 2-4), standardized uptake value (SUV), and correlated with size, Ki-67, and TK-1. SUV was measured in visible lesions. FLT heterogeneity was assessed by visual scores (no heterogeneous uptake: 0 and heterogeneous uptake: 1-4). RESULTS Forty-two lesions were visible. The visible group showed significantly higher values than the non-visible group in size, Ki-67, and TK-1 (each p < 0.05). Size correlated significantly with visual score (PC; ρ = 0.74 and MN; ρ = 0.63), SUVmax (PC; ρ = 0.49, and MN; ρ = 0.76), and SUVmean (PC; ρ = 0.40 and MN; ρ = 0.76) (each p < 0.05). Visual score correlated significantly with size (ρ = 0.86), Ki-67max (ρ = 0.35), Ki-67mean (ρ = 0.38), TK-1max (ρ = 0.35) and TK-1mean (ρ = 0.25) (each p < 0.05). No significant correlations were found between FLT uptake and Ki-67 or TK-1 in 42 visible lesions (each p > 0.05). Heterogeneous FLT uptake was noted in 73 % (22/30) of PCs. CONCLUSION FLT uptake correlated with size. Heterogeneous FLT distribution in colorectal cancers may be one of the causes of weak or lack of FLT uptake/Ki-67 or TK-1 correlation. KEY POINTS FLT uptake correlated well with tumour size in colorectal cancer. Weak or lack of FLT uptake/Ki-67 and TK-1 correlations were observed. Immunohistochemical Ki-67 and TK-1 expressions are not always correlated with FLT uptake.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. BJR Case Rep 2014. [DOI: 10.1259/bjrcr.20140065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Abstract
Functional imaging techniques enable physiological information to be derived, which, combined with high-resolution anatomical imaging, has the potential to improve the management of patients with intestinal disease. Two of the common pathologies where imaging has a substantial role in depicting disease extent, in staging disease, and assessing therapeutic response and/or disease relapse are cancer and inflammatory bowel disease. In these scenarios, functional imaging may augment assessment of disease activity, therapeutic response/non-response, as well as disease relapse by indicating physiological changes as a result of tumor, inflammation, or fibrosis.
Collapse
|
26
|
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, Rodriguez-Justo M, Miles K, Ellis P, Groves A, Punwani S, Ng T. The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol 2014; 87:20140065. [PMID: 24597512 PMCID: PMC4075563 DOI: 10.1259/bjr.20140065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/03/2014] [Indexed: 01/10/2023] Open
Abstract
Tumour heterogeneity has, in recent times, come to play a vital role in how we understand and treat cancers; however, the clinical translation of this has lagged behind advances in research. Although significant advancements in oncological management have been made, personalized care remains an elusive goal. Inter- and intratumour heterogeneity, particularly in the clinical setting, has been difficult to quantify and therefore to treat. The histological quantification of heterogeneity of tumours can be a logistical and clinical challenge. The ability to examine not just the whole tumour but also all the molecular variations of metastatic disease in a patient is obviously difficult with current histological techniques. Advances in imaging techniques and novel applications, alongside our understanding of tumour heterogeneity, have opened up a plethora of non-invasive biomarker potential to examine tumours, their heterogeneity and the clinical translation. This review will focus on how various imaging methods that allow for quantification of metastatic tumour heterogeneity, along with the potential of developing imaging, integrated with other in vitro diagnostic approaches such as genomics and exosome analyses, have the potential role as a non-invasive biomarker for guiding the treatment algorithm.
Collapse
Affiliation(s)
- R Chowdhury
- Richard Dimbleby Department of Cancer Research, Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The value of 18F-FLT PET for detecting second primary cancers and distant metastases in head and neck cancer patients. Clin Nucl Med 2014; 38:e318-23. [PMID: 23455521 DOI: 10.1097/rlu.0b013e3182815fe1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Diagnostic efficacy of (18)F-FLT PET was compared with that of (18)F-FDG PET regarding second primary cancers and distant metastases of head and neck squamous cell cancers (HNSCCs). METHODS A total of 88 patients with HNSCCs were qualitatively examined with FLT PET and FDG PET for regions of focally increased metabolism. Final diagnoses of second primary cancer and distant metastasis were established on the basis of histological findings or clinical follow-up. RESULTS FDG PET had 1 false-negative finding with lung metastasis, and FLT PET had 4 false-negative findings with 1 liver metastasis, 1 bone metastasis, and 2 lung metastases. There were no false-positive findings with FLT PET in contrast to 9 with FDG PET (1 in lung, 4 in mediastinum, 1 in rectum, and 3 in stomach). Overall accuracy of FDG PET and FLT PET for pretreatment metastasis staging was 92% and 98%, respectively. Five distant metastases in 3 patients occurred after the initiation of chemoradiotherapy. FLT PET missed 2 metastatic lesions (1 in liver and 1 in lung), whereas FDG PET could not discriminate intracranial metastasis because of FDG uptake in the brain. CONCLUSIONS FLT PET does not appear to be recommendable to replace FDG PET for pretreatment metastasis staging in HNSCC cases because of its lower sensitivity and higher background activity in the liver and bone marrow. However, it might provide additional diagnostic specificity and biological information.
Collapse
|
28
|
Wong PK, Lee ST, Murone C, Eng J, Lawrentschuk N, Berlangieri SU, Pathmaraj K, O’Keefe GJ, Sachinidis J, Byrne AJ, Bolton DM, Davis ID, Scott AM. In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2014; 2:3-11. [PMID: 27408853 PMCID: PMC4937709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The ability to measure cellular proliferation non-invasively in renal cell carcinoma may allow prediction of tumour aggressiveness and response to therapy. The aim of this study was to evaluate the uptake of 18F-fluorothymidine (FLT) PET in renal cell carcinoma (RCC), and to compare this to 18F-fluorodeoxyglucose (FDG), and to an immunohistochemical measure of cellular proliferation (Ki-67). METHODS Twenty seven patients (16 male, 11 females; age 42-77) with newly diagnosed renal cell carcinoma suitable for resection were prospectively enrolled. All patients had preoperative FLT and FDG PET scans. Visual identification of tumour using FLT PET compared to normal kidney was facilitated by the use of a pre-operative contrast enhanced CT scan. After surgery tumour was taken for histologic analysis and immunohistochemical staining by Ki-67. RESULTS The SUVmax (maximum standardized uptake value) mean±SD for FLT in tumour was 2.59±1.27, compared to normal kidney (2.47±0.34). The mean SUVmax for FDG in tumour was similar to FLT (2.60±1.08). There was a significant correlation between FLT uptake and the immunohistochemical marker Ki-67 (r=0.72, P<0.0001) in RCC. Ki-67 proliferative index was mean ± SD of 13.3%±9.2 (range 2.2% - 36.3%). CONCLUSION There is detectable uptake of FLT in primary renal cell carcinoma, which correlates with cellular proliferation as assessed by Ki-67 labelling index. This finding has relevance to the use of FLT PET in molecular imaging studies of renal cell carcinoma biology.
Collapse
Affiliation(s)
- Peter K. Wong
- Department of Surgery and Urology, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia,Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria, Australia
| | - Sze Ting Lee
- Centre for PET, Austin Hospital, Heidelberg, Victoria, Australia,Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria, Australia,Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Carmel Murone
- Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria, Australia
| | - John Eng
- Centre for PET, Austin Hospital, Heidelberg, Victoria, Australia
| | - Nathan Lawrentschuk
- Department of Surgery and Urology, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia,Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria, Australia
| | | | - Kunthi Pathmaraj
- Centre for PET, Austin Hospital, Heidelberg, Victoria, Australia
| | | | - John Sachinidis
- Centre for PET, Austin Hospital, Heidelberg, Victoria, Australia
| | - Amanda J. Byrne
- Centre for PET, Austin Hospital, Heidelberg, Victoria, Australia
| | - Damien M. Bolton
- Department of Surgery and Urology, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Ian D. Davis
- Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria, Australia,Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Andrew M. Scott
- Centre for PET, Austin Hospital, Heidelberg, Victoria, Australia,Ludwig Institute for Cancer Research, Austin Hospital, Heidelberg, Victoria, Australia,Department of Medicine, University of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia,
*Corresponding author: Prof Andrew M Scott, Centre for PET, Austin Hospital Studley Rd, Heidelberg, Melbourne, Victoria, 3084, Australia. Tel: +613 9496 5876; Fax: +613 9496 5892;
| |
Collapse
|
29
|
Imaging of treatment response to the combination of carboplatin and paclitaxel in human ovarian cancer xenograft tumors in mice using FDG and FLT PET. PLoS One 2013; 8:e85126. [PMID: 24386456 PMCID: PMC3873431 DOI: 10.1371/journal.pone.0085126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel. Methods Invivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2. Results Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08). Conclusions Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.
Collapse
|
30
|
Bernardin L, O'Flynn EAM, Desouza NM. Functional imaging biomarkers for assessing response to treatment in liver and lung metastases. Cancer Imaging 2013; 13:482-94. [PMID: 24334562 PMCID: PMC3864224 DOI: 10.1102/1470-7330.2013.0047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 01/15/2023] Open
Abstract
Management of patients with metastatic cancer and development of new treatments rely on imaging to provide non-invasive biomarkers of tumour response and progression. The widely used size-based criteria have increasingly become inadequate where early measures of response are required to avoid toxicity of ineffective treatments, as biological, physiologic, and molecular modifications in tumours occur before changes in gross tumour size. A multiparametric approach with the current range of imaging techniques allows functional aspects of tumours to be simultaneously interrogated. Appropriate use of these imaging techniques and their timing in relation to the treatment schedule, particularly in the context of clinical trials, is fundamental. There is a lack of consensus regarding which imaging parameters are most informative for a particular disease site and the best time to image so that, despite an increasing body of literature, open questions on these aspects remain. In addition, standardization of these new parameters is required. This review summarizes the published literature over the last decade on functional and molecular imaging techniques in assessing treatment response in liver and lung metastases.
Collapse
Affiliation(s)
- Livia Bernardin
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, UK
| | - Elizabeth A M O'Flynn
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, UK
| | - Nandita M Desouza
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, UK
| |
Collapse
|
31
|
Zhao S, Kuge Y, Zhao Y, Takeuchi S, Hirata K, Takei T, Shiga T, Dosaka-Akita H, Tamaki N. Assessment of early changes in 3H-fluorothymidine uptake after treatment with gefitinib in human tumor xenograft in comparison with Ki-67 and phospho-EGFR expression. BMC Cancer 2013; 13:525. [PMID: 24191959 PMCID: PMC3827617 DOI: 10.1186/1471-2407-13-525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 10/30/2013] [Indexed: 11/15/2022] Open
Abstract
Background The purpose of this study was to evaluate whether early changes in 3′-deoxy-3′-3H-fluorothymidine (3H-FLT) uptake can reflect the antiproliferative effect of gefitinib in a human tumor xenograft, in comparison with the histopathological markers, Ki-67 and phosphorylated EGFR (phospho-EGFR). Methods An EGFR-dependent human tumor xenograft model (A431) was established in female BALB/c athymic mice, which were divided into three groups: one control group and two treatment groups. Mice in the treatment groups were orally administered a partial regression dose (100 mg/kg/day) or the maximum tolerated dose of gefitinib (200 mg/kg/day), once daily for 2 days. Mice in the control group were administered the vehicle (0.1% Tween 80). Tumor size was measured before and 3 days after the start of treatment. Biodistribution of 3H-FLT and 18F-FDG (%ID/g/kg) was examined 3 days after the start of the treatment. Tumor cell proliferative activity with Ki-67 was determined. Immunohistochemical staining of EGFR and measurement of phospho-EGFR were also performed. Results High expression levels of EGFR and Ki-67 were observed in the A431 tumor. After the treatment with 100 and 200 mg/kg gefitinib, the uptake levels of 3H-FLT in the tumor were significantly reduced to 67% and 61% of the control value, respectively (0.39 ± 0.09, 0.36 ± 0.06, 0.59 ± 0.11%ID/g/kg for 100 mg/kg, 200 mg/kg, and control groups, respectively; p < 0.01 vs. control), but those of 18F-FDG were not. After the treatment with 100 and 200 mg/kg gefitinib, the expression levels of Ki-67 in the tumor were markedly decreased (4.6 ± 2.4%, 6.2 ± 1.8%, and 10.4 ± 5.7% for 100 mg/kg, 200 mg/kg, and control groups, respectively, p < 0.01 vs. control). The expression levels of the phospho-EGFR protein also significantly decreased (29% and 21% of the control value for 100, and 200 mg/kg, respectively p < 0.01 vs. control). There was no statistically significant difference in tumor size between pre- and post-treatments in each group. Conclusion In our animal model, 3H-FLT uptake levels significantly decreased after the treatment with two different doses of gefitinib before a significant change in tumor size was observed. These results were confirmed by the immunohistochemical staining of Ki-67 and phospho-EGFR protein immunoassay. Thus, it was indicated that early changes in 3H-FLT uptake may reflect the antiproliferative effect of gefitinib in a mouse model of a human epidermoid cancer.
Collapse
Affiliation(s)
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Goggi JL, Bejot R, Moonshi SS, Bhakoo KK. Stratification of 18F-Labeled PET Imaging Agents for the Assessment of Antiangiogenic Therapy Responses in Tumors. J Nucl Med 2013; 54:1630-6. [DOI: 10.2967/jnumed.112.115824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
33
|
Nakajo M, Nakajo M, Jinguji M, Tani A, Kajiya Y, Tanabe H, Fukukura Y, Nakabeppu Y, Koriyama C. Diagnosis of Metastases from Postoperative Differentiated Thyroid Cancer: Comparison between FDG and FLT PET/CT Studies. Radiology 2013; 267:891-901. [DOI: 10.1148/radiol.13121546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
34
|
Culverwell AD, Chowdhury FU, Scarsbrook AF. Optimizing the role of FDG PET-CT for potentially operable metastatic colorectal cancer. ACTA ACUST UNITED AC 2013; 37:1021-31. [PMID: 22371087 DOI: 10.1007/s00261-012-9855-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent treatment advances now allow a realistic chance of cure in selected patients with metastatic colorectal carcinoma (CRC). Accurate pre-treatment staging is crucial to ensure appropriate management by identification of patients with more advanced disease who will not benefit from surgery. (18)Fluorine 2-fluoro-2-deoxy-D-glucose positron emission tomography-computed tomography (PET-CT) has a firmly established role in staging, restaging, and recurrence detection of a range of tumors. This article will review the role of PET-CT in patients with CRC with a particular emphasis on optimizing the technique in patients with potentially operable metastatic disease.
Collapse
Affiliation(s)
- A D Culverwell
- Department of Clinical Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | |
Collapse
|
35
|
Abstract
Several new tracers are being developed for use with PET to assess pathways that are altered in cancers, including energy use, cellular signaling, transport, and proliferation. Because increased proliferation is a hallmark of many cancers, several tracers have been tested to track the DNA synthesis pathway. Thymidine, which is incorporated into DNA but not RNA, has been used in laboratory studies to measure tumor growth. Because thymidine labeled with (11)C undergoes rapid biologic degradation and has a short physical half-life, tracers labeled with (18)F have been preferred in PET imaging. One such tracer is (18)F-labeled 3'-deoxy-3'-fluorothymidine ((18)F-FLT). (18)F-FLT is trapped after phosphorylation by thymidine kinase 1, whose expression is increased in replicating cells. Several studies on breast, lung, and brain tumors have demonstrated that retention of (18)F-FLT correlated with tumor proliferation. Although (18)F-FLT has been used to image and stage several tumor types, the standardized uptake value is generally lower than that obtained with (18)F-FDG. (18)F-FLT can be used to image many areas of the body, but background uptake is high in the liver, marrow, and renal system, limiting use in these organs. (18)F-FLT PET imaging has primarily been studied in the assessment of treatment response. Rapid declines in (18)F-FLT retention within days to weeks have been demonstrated in several tumor types treated with cytotoxic drugs, targeted agents, and radiotherapy. Further work is ongoing to validate this approach and determine its utility in the development of new drugs and in the clinical evaluation of standard treatment approaches.
Collapse
Affiliation(s)
- Omid S Tehrani
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
36
|
Diagnostic performance of 18F-fluorothymidine PET/CT for primary colorectal cancer and its lymph node metastasis: comparison with 18F-fluorodeoxyglucose PET/CT. Eur J Nucl Med Mol Imaging 2013; 40:1223-32. [DOI: 10.1007/s00259-013-2424-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/02/2013] [Indexed: 01/04/2023]
|
37
|
Czernin J, Allen-Auerbach M, Nathanson D, Herrmann K. PET/CT in Oncology: Current Status and Perspectives. CURRENT RADIOLOGY REPORTS 2013; 1:177-190. [PMID: 24883234 PMCID: PMC4034170 DOI: 10.1007/s40134-013-0016-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of the Warburg effect in the early twentieth century followed by the development of the fluorinated glucose analogue 18F-fluorodeoxyglucose (18F-FDG) and the invention of positron emission tomographs laid the foundation of clinical PET/CT. This review discusses the challenges and obstacles in clinical adoption of this technique. We then discuss advances in instrumentation, including the critically important introduction of PET/CT and current PET/CT protocols. Moreover, we provide evidence for the clinical utility of PET/CT for patient management and its potential impact on patient outcome, and address its cost and cost-effectiveness. Although this review largely focuses on 18F-FDG imaging, we also discuss a variety of additional molecular imaging approaches that can be used for cancer phenotyping with PET. Throughout this review we emphasize the critical contributions of CT to the strength of PET/CT.
Collapse
Affiliation(s)
- Johannes Czernin
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
| | - Martin Allen-Auerbach
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
| | - David Nathanson
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
| | - Ken Herrmann
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Room AR-23-222 CHS, Los Angeles, CA 90095-1782 USA
- Department of Nuclear Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
|
39
|
McKinley ET, Ayers GD, Smith RA, Saleh SA, Zhao P, Washington MK, Coffey RJ, Manning HC. Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS One 2013; 8:e58938. [PMID: 23554961 PMCID: PMC3598948 DOI: 10.1371/journal.pone.0058938] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 02/08/2013] [Indexed: 11/29/2022] Open
Abstract
Background Non-invasive imaging biomarkers of cellular proliferation hold great promise for quantifying response to personalized medicine in oncology. An emerging approach to assess tumor proliferation utilizes the positron emission tomography (PET) tracer 3’-deoxy-3’[18F]-fluorothymidine, [18F]-FLT. Though several studies have associated serial changes in [18F]-FLT-PET with elements of therapeutic response, the degree to which [18F]-FLT-PET quantitatively reflects proliferative index has been continuously debated for more that a decade. The goal of this study was to elucidate quantitative relationships between [18F]-FLT-PET and cellular metrics of proliferation in treatment naïve human cell line xenografts commonly employed in cancer research. Methods and Findings [18F]-FLT-PET was conducted in human cancer xenograft-bearing mice. Quantitative relationships between PET, thymidine kinase 1 (TK1) protein levels and immunostaining for proliferation markers (Ki67, TK1, PCNA) were evaluated using imaging-matched tumor specimens. Overall, we determined that [18F]-FLT-PET reflects TK1 protein levels, yet the cell cycle specificity of TK1 expression and the extent to which tumors utilize thymidine salvage for DNA synthesis decouple [18F]-FLT-PET data from standard estimates of proliferative index. Conclusions Our findings illustrate that [18F]-FLT-PET reflects tumor proliferation as a function of thymidine salvage pathway utilization. Unlike more general proliferation markers, such as Ki67, [18F]-FLT PET reflects proliferative indices to variable and potentially unreliable extents. [18F]-FLT-PET cannot discriminate moderately proliferative, thymidine salvage-driven tumors from those of high proliferative index that rely primarily upon de novo thymidine synthesis. Accordingly, the magnitude of [18F]-FLT uptake should not be considered a surrogate of proliferative index. These data rationalize the diversity of [18F]-FLT-PET correlative results previously reported and suggest future best-practices when [18F]-FLT-PET is employed in oncology.
Collapse
Affiliation(s)
- Eliot T. McKinley
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - R. Adam Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Samir A. Saleh
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ping Zhao
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mary Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - H. Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
40
|
Dehdashti F, Laforest R, Gao F, Shoghi KI, Aft RL, Nussenbaum B, Kreisel FH, Bartlett NL, Cashen A, Wagner-Johnston N, Wagner-Johnson N, Mach RH. Assessment of cellular proliferation in tumors by PET using 18F-ISO-1. J Nucl Med 2013; 54:350-7. [PMID: 23359657 DOI: 10.2967/jnumed.112.111948] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED This first study in humans was designed to evaluate the safety and dosimetry of a cellular proliferative marker, N-(4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)butyl)-2-(2-(18)F-fluoroethoxy)-5-methylbenzamide ((18)F-ISO-1), and evaluate the feasibility of imaging tumor proliferation by PET in patients with newly diagnosed malignant neoplasms. METHODS Patients with biopsy-proven lymphoma, breast cancer, or head and neck cancer underwent (18)F-ISO-1 PET. Tumor (18)F-ISO-1 uptake was assessed semiquantitatively by maximum standardized uptake value, ratios of tumor to normal tissue and tumor to muscle, and relative distribution volume ratio. The PET results were correlated with tumor Ki-67 and mitotic index, from in vitro assays of the tumor tissue. The biodistribution of (18)F-ISO-1 and human dosimetry were evaluated. RESULTS Thirty patients with primary breast cancer (n = 13), head and neck cancer (n = 10), and lymphoma (n = 7) were evaluated. In the entire group, tumor maximum standardized uptake value and tumor-to-muscle ratio correlated significantly with Ki-67 (τ = 0.27, P = 0.04, and τ = 0.38, P = 0.003, respectively), but no significant correlation was observed between Ki-67 and tumor-to-normal-tissue ratio (τ = 0.07, P = 0.56) or distribution volume ratio (τ = 0.26, P = 0.14). On the basis of whole-body PET data, the gallbladder is the dose-limiting organ, with an average radiation dose of 0.091 mGy/MBq. The whole-body and effective doses were 0.012 mGy/MBq and 0.016 mSv/MBq, respectively. No adverse effects of (18)F-ISO-1 were encountered. CONCLUSION The presence of a significant correlation between (18)F-ISO-1 and Ki-67 makes this agent promising for evaluation of the proliferative status of solid tumors. The relatively small absorbed doses to normal organs allow for the safe administration of up to 550 MBq, which is sufficient for PET imaging in clinical trials.
Collapse
Affiliation(s)
- Farrokh Dehdashti
- Division of Nuclear Medicine and Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jensen MM, Erichsen KD, Johnbeck CB, Björkling F, Madsen J, Bzorek M, Jensen PB, Højgaard L, Sehested M, Kjær A. [18F]FLT and [18F]FDG PET for non-invasive treatment monitoring of the nicotinamide phosphoribosyltransferase inhibitor APO866 in human xenografts. PLoS One 2013; 8:e53410. [PMID: 23308217 PMCID: PMC3537726 DOI: 10.1371/journal.pone.0053410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION APO866 is a new anti-tumor compound inhibiting nicotinamide phosphoribosyltransferase (NAMPT). APO866 has an anti-tumor effect in several pre-clinical tumor models and is currently in several clinical phase II studies. 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) is a tracer used to assess cell proliferation in vivo. The aim of this study was non-invasively to study effect of APO866 treatment on [18F]FLT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake. METHODS In vivo uptake of [18F]FLT and [18F]FDG in human ovary cancer xenografts in mice (A2780) was studied at various time points after APO866 treatment. Baseline [18F]FLT or [18F]FDG scans were made before treatment and repeated after 24 hours, 48 hours and 7 days. Tumor volume was followed with computed tomography (CT). Tracer uptake was quantified using small animal PET/CT. One hour after iv injection of tracer, static PET scans were performed. Imaging results were compared with Ki67 immunohistochemistry. RESULTS Tumors treated with APO866 had volumes that were 114% (24 h), 128% (48 h) and 130% (Day 7) relative to baseline volumes at Day 0. In the control group tumor volumes were 118% (24 h), 145% (48 h) and 339% (Day 7) relative to baseline volumes Day 0. Tumor volume between the treatment and control group was significantly different at Day 7 (P = 0.001). Compared to baseline, [18F]FLT SUVmax was significantly different at 24 h (P<0.001), 48 h (P<0.001) and Day 7 (P<0.001) in the APO866 group. Compared to baseline, [18F]FDG SUVmax was significantly different at Day 7 (P = 0.005) in the APO866 group. CONCLUSIONS APO866 treatment caused a significant decrease in [18F]FLT uptake 24 and 48 hours after treatment initiation. The early reductions in tumor cell proliferation preceded decrease in tumor volume. The results show the possibility to use [18F]FLT and [18F]FDG to image treatment effect early following treatment with APO866 in future clinical studies.
Collapse
Affiliation(s)
- Mette Munk Jensen
- Cluster for Molecular Imaging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kishino T, Hoshikawa H, Nishiyama Y, Yamamoto Y, Mori N. Usefulness of 3'-deoxy-3'-18F-fluorothymidine PET for predicting early response to chemoradiotherapy in head and neck cancer. J Nucl Med 2012; 53:1521-7. [PMID: 22872738 DOI: 10.2967/jnumed.111.099200] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED This study compared the utility of 3'-deoxy-3'-(18)F-fluorothymidine PET ((18)F-FLT PET) with that of (18)F-FDG PET for assessment of the early locoregional clinical outcomes of chemoradiotherapy for head and neck squamous cell carcinomas. METHODS From May 2006 to September 2010, 28 patients with head and neck squamous cell carcinomas underwent (18)F-FLT and (18)F-FDG PET before radiation therapy (RT), 4 wk after the initiation of RT, and 5 wk after completion of RT. PET images were evaluated qualitatively for regions of focally increased metabolism and were analyzed in relation to residual accumulation and local disease control. RESULTS During RT, (18)F-FLT uptake decreased more significantly than (18)F-FDG uptake. (18)F-FLT accumulations disappeared in 34 of 54 lesions (63%), and negative predictive value was 97%. (18)F-FDG PET during RT also had a high negative predictive value (100%), but only 9 lesions (16%) showed complete absence of accumulation. The specificity and overall accuracy of (18)F-FLT PET were significantly higher than those of (18)F-FDG PET both during and after RT. In particular, high significance was attributable to the results of the evaluations of primary lesions. There were significant differences in 3-y local control between the residual-accumulation and no-accumulation groups on both posttreatment (18)F-FLT PET (P < 0.0001) and posttreatment (18)F-FDG PET (P = 0.0081). CONCLUSION (18)F-FLT PET during RT and early follow-up facilitates the selection of optimal further therapy and the prediction of outcomes.
Collapse
Affiliation(s)
- Takehito Kishino
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | |
Collapse
|
43
|
Contractor K, Challapalli A, Tomasi G, Rosso L, Wasan H, Stebbing J, Kenny L, Mangar S, Riddle P, Palmieri C, Al-Nahhas A, Sharma R, Turkheimer F, Coombes RC, Aboagye E. Imaging of cellular proliferation in liver metastasis by [18F]fluorothymidine positron emission tomography: effect of therapy. Phys Med Biol 2012; 57:3419-33. [PMID: 22572708 DOI: 10.1088/0031-9155/57/11/3419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although [(18)F]fluorothymidine positron emission tomography (FLT-PET) permits estimation of tumor thymidine kinase-1 expression, and thus, cell proliferation, high physiological uptake of tracer in liver tissue can limit its utility. We evaluated FLT-PET combined with a temporal-intensity information-based voxel-clustering approach termed kinetic spatial filtering (FLT-PET(KSF)) for detecting drug response in liver metastases. FLT-PET and computed tomography data were collected from patients with confirmed breast or colorectal liver metastases before, and two weeks after the first cycle of chemotherapy. Changes in tumor FLT-PET and FLT-PET(KSF) variables were determined. Visual distinction between tumor and normal liver was seen in FLT-PET(KSF) images. Of the 33 metastases from 20 patients studied, 26 were visible after kinetic filtering. The net irreversible retention of the tracer (Ki; from unfiltered data) in the tumor, correlated strongly with tracer uptake when the imaging variable was an unfiltered average or maximal standardized uptake value, 60 min post-injection (SUV(60,av): r = 0.9, SUV(60,max): r = 0.7; p < 0.0001 for both) and occurrence of high intensity voxels derived from FLT-PET(KSF) (r = 0.7, p < 0.0001). Overall, a significant reduction in the imaging variables was seen in responders compared to non-responders; however, the two week time point selected for imaging was too early to allow prediction of long term clinical benefit from chemotherapy. FLT-PET and FLT-PET(KSF) detected changes in proliferation in liver metastases.
Collapse
|
44
|
Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: A systematic review and meta-analysis. Eur J Cancer 2012; 48:3499-513. [PMID: 22658807 DOI: 10.1016/j.ejca.2012.05.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Positron emission tomography (PET) imaging using the radiotracer 18F-Fluorothymidine (FLT) has been proposed as an imaging biomarker of tumour proliferation. If FLT-PET can be established as such it will provide a non-invasive, quantitative measurement of tumour proliferation across the entire tumour. Results from validation studies have so far been conflicting with some studies confirming a good correlation between FLT uptake and Ki-67 score and others presenting negative results. METHODS Firstly we performed a systematic review of published studies between 1998 and 2011 that explored the correlation between FLT uptake and Ki-67 score and examined possible variations in the methods used. Studies were eligible if they: (a) included patients with cancer, (b) investigated the correlation between Ki-67 measured by immunohistochemistry and FLT uptake measured with PET scanning, and (c) were published as a full paper in a peer-reviewed scientific journal. Secondly a meta-analysis of the correlation coefficient values reported from each study was performed. Correlation coefficient (r) values were extracted from each study and 95% confidence intervals (CIs) were calculated after applying Fisher's z transformation. For subgroup analysis, studies were classified by the index used to characterise Ki-67 expression (average or maximum expression), the nature of the sample (whole specimen or biopsy) and the cancer type. FINDINGS Twenty-seven studies were identified as eligible for the meta-analysis. In the studies we examined there were variations in aspects of the methods and reporting. The meta-analysis showed that given an appropriate study design the FLT/Ki-67 correlation is significant and independent of cancer type. Specifically subgroup analysis showed that FLT/Ki-67 correlation was high in studies measuring the Ki-67 average expression regardless of use of surgery or biopsy samples (r=0.70, 95% CI=0.43-0.86, p<0.001). Of the studies that measured Ki-67 maximum expression, only those that used the whole surgical specimen provided a significant r value (r=0.72, 95% CI=0.54-0.84, p<0.001). Studies that used biopsy samples for Ki-67 maximum measurements did not produce a significant r value (r=0.04, 95% CI=-0.18-0.26, p=0.71). In terms of the cancer type subgroup analysis there is sufficient data to support a strong FLT/Ki-67 correlation for brain, lung and breast cancer. No publication bias was detected. INTERPRETATION This systematic review and meta-analysis highlights the importance of the methods used in validation studies comparing FLT-PET imaging with the biomarker Ki-67. The correlation is significant and independent of cancer type provided a study design that uses Ki-67 average measurements, regardless of nature of sample, or whole surgical samples when measuring Ki-67 maximum expression. Sufficient data to support a strong correlation for brain, lung and breast cancer exist. However, larger, prospective studies with improved study design are warranted to validate these findings for the rest of the cancer types.
Collapse
|
45
|
Herrmann K, Erkan M, Dobritz M, Schuster T, Siveke JT, Beer AJ, Wester HJ, Schmid RM, Friess H, Schwaiger M, Kleeff J, Buck AK. Comparison of 3'-deoxy-3'-[¹⁸F]fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours. Eur J Nucl Med Mol Imaging 2012; 39:846-51. [PMID: 22278320 DOI: 10.1007/s00259-012-2061-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/02/2012] [Indexed: 12/14/2022]
Abstract
PURPOSE Despite recent advances in clinical imaging modalities, differentiation of pancreatic masses remains difficult. Here, we tested the diagnostic accuracy of molecular-based imaging including 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) positron emission tomography (PET) and [(18)F]fluorodeoxyglucose (FDG) PET/CT in patients with suspected pancreatic masses scheduled to undergo surgery. METHODS A total of 46 patients with pancreatic tumours suspicious for malignancy and scheduled for resective surgery were recruited prospectively. In 41 patients, FLT PET and FDG PET/CT scans were performed. A diagnostic CT performed on a routine basis was available in 31 patients. FLT PET and FDG PET/CT emission images were acquired according to standard protocols. Tracer uptake in the tumour [FDG and FLT standardized uptake value (SUV)] was quantified by the region of interest (ROI) technique. For FDG PET/CT analysis, correct ROI placement was ensured via side-by-side reading of corresponding CT images. RESULTS Of 41 patients, 33 had malignancy, whereas 8 patients had benign disease. Visual analysis of FDG and FLT PET resulted in sensitivity values of 91% (30/33) and 70% (23/33), respectively. Corresponding specificities were 50% (4/8) for FDG PET and 75% (6/8) for FLT PET. In the subgroup of patients with contrast-enhanced CT (n = 31), sensitivities were 96% (PET/CT), 88% (CT alone), 92% (FDG PET) and 72% (FLT PET), respectively. Mean FLT uptake in all malignant tumours was 3.0 (range SUV(max) 1.1-6.5; mean FDG SUV(max) 7.9, range 3.3-17.8; p < 0.001). CONCLUSION For differentiation of pancreatic tumours, FDG PET and FDG PET/CT showed a higher sensitivity but lower specificity than FLT PET. Interestingly, visual analysis of FLT PET led to two false-positive findings by misinterpreting physiological bowel uptake as pathological FLT uptake in the pancreas. Due to the limited number of patients, the clinical value of adding FLT PET to the diagnostic workup of pancreatic tumours remains to be determined.
Collapse
Affiliation(s)
- K Herrmann
- Department of Nuclear Medicine, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Early detection of tumor response by FLT/microPET Imaging in a C26 murine colon carcinoma solid tumor animal model. J Biomed Biotechnol 2011; 2011:535902. [PMID: 21869861 PMCID: PMC3157890 DOI: 10.1155/2011/535902] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/22/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022] Open
Abstract
Fluorine-18 fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) imaging demonstrated the change of glucose consumption of tumor cells, but problems with specificity and difficulties in early detection of tumor response to chemotherapy have led to the development of new PET tracers. Fluorine-18-fluorothymidine ((18)F-FLT) images cellular proliferation by entering the salvage pathway of DNA synthesis. In this study, we evaluate the early response of colon carcinoma to the chemotherapeutic drug, lipo-Dox, in C26 murine colorectal carcinoma-bearing mice by (18)F-FDG and (18)F-FLT. The male BALB/c mice were bilaterally inoculated with 1 × 10(5) and 1 × 10(6) C26 tumor cells per flank. Mice were intravenously treated with 10 mg/kg lipo-Dox at day 8 after (18)F-FDG and (18)F-FLT imaging. The biodistribution of (18)F-FDG and (18)F-FLT were followed by the microPET imaging at day 9. For the quantitative measurement of microPET imaging at day 9, (18)F-FLT was superior to (18)F-FDG for early detection of tumor response to Lipo-DOX at various tumor sizes (P < 0.05). The data of biodistribution showed similar results with those from the quantification of SUV (standard uptake value) by microPET imaging. The study indicates that (18)F-FLT/microPET is a useful imaging modality for early detection of chemotherapy in the colorectal mouse model.
Collapse
|
48
|
Application of positron emission tomography molecular probes in hepatocellular carcinoma biological imaging. ACTA ACUST UNITED AC 2011; 26:113-8. [PMID: 21703120 DOI: 10.1016/s1001-9294(11)60030-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biological behavior is a hot issue in hepatocellular carcinoma (HCC) study. Positron emission tomography (PET), a biological imaging technique, has been widely applied in many types of tumors. It is capable of noninvasive detection of biological behavior. Different radiotracers provide different information of HCC, including glucose/lipid metabolism, DNA synthesis, and apoptosis. In addition, radiotracer uptake relates to biological and clinical prognostic markers. In this article we review the application of several existing and novel radiotracers in PET in HCC study.
Collapse
|
49
|
Comparison of FLT-PET and FDG-PET for visualization of head and neck squamous cell cancers. Mol Imaging Biol 2011; 13:172-7. [PMID: 20464518 DOI: 10.1007/s11307-010-0331-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE We compared 3'[F-18]fluoro-3'-deoxythymidine (FLT) positron emission tomography (PET) and 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) for PET visualization of head and neck squamous cell cancers (HNSCCs) and evaluated which might better reflect proliferative activity as indicated by the Ki-67 index. PROCEDURES A total of 43 patients with HNSCCs were examined with FLT-PET and FDG-PET. The PET images were evaluated qualitatively for regions of focally increased metabolism and for semiquantitative analysis the maximum standardized uptake value (SUV) was calculated. RESULTS For depiction of primary tumours, the sensitivity of both approaches was 100%. The mean (± SD) SUV for FLT (5.65 ± 2.96) was significantly lower than that for FDG (10.9 ± 4.91; p < 0.0001). No significant differences were found for the T category. However, the mean (± SD) FLT SUV was significantly higher in poorly than in well-differentiated tumours (6.49 ± 3.13 vs. 4.2 ± 2.08; p < 0.04). Similarly, FDG SUVs in poorly and moderately differentiated tumours (12.72 ± 4.8 and 11.46 ± 4.64) were significantly higher than in well-differentiated tumours (7.45 ± 3.51; p < 0.004 and p < 0.02). No significant correlation was observed with the Ki-67 index for either. CONCLUSION FLT-PET showed as high a sensitivity as FDG-PET for the detection of primary HNSCC lesions, although uptake of FLT was significantly lower than that of FDG.
Collapse
|
50
|
Muijs CT, Beukema JC, Widder J, van den Bergh ACM, Havenga K, Pruim J, Langendijk JA. 18F-FLT-PET for detection of rectal cancer. Radiother Oncol 2011; 98:357-9. [PMID: 21295872 DOI: 10.1016/j.radonc.2010.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/10/2010] [Accepted: 12/30/2010] [Indexed: 01/01/2023]
Abstract
PURPOSE This pilot study was undertaken to examine the ability of (18)F-3'-fluoro-3'-deoxy-l-thymidine positron emission tomography ((18)F-FLT-PET)to detect rectal cancer, to identify pathologic lymph nodes and to determine the accuracy of tumour length estimation in comparison with computer tomography (CT). METHODS Nine patients with biopsy proven rectal cancer underwent CT and (18)F-FLT-PET scanning prior to short-term pre-operative radiotherapy (5×5Gy). Within 10 days after the start of radiotherapy a surgical resection was performed. Tumour lengths and regional lymph node visualisation on both imaging modalities were compared with pathology findings. RESULTS All tumours were visible on CT. (18)F-FLT-PET visualised 7 out of 9 tumours (78%). The pathology-based tumours lengths correlated better with CT as compared to FLT-PET(r=0.91, p<0.01). (18)F-FLT-PET was not able to visualise pathologic lymph nodes. However, CT identified all patients with pathologic lymph nodes. CONCLUSION Primary rectal cancer can be visualised by (18)F-FLT-PET in the majority of cases but not in all. However, (18)F-FLT-PET was not able to identify pathologic lymph nodes. Therefore, we conclude that (18)F-FLT-PET has limited value for the detection of pathologic lymph nodes and tumour delineation in rectal cancer.
Collapse
Affiliation(s)
- Christina T Muijs
- Department of Radiation Oncology, University Medical Center Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|