1
|
Hui L, Wu F, Xu Y, Yang G, Luo Q, Li Y, Ma L, Yao X, Li J. The T-cell receptor β chain CDR3 insights of bovine liver immune repertoire under heat stress. Anim Biosci 2024; 37:2178-2188. [PMID: 38938039 PMCID: PMC11541024 DOI: 10.5713/ab.24.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/26/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE The liver plays a dual role in regulating temperature and immune responses. Examining the influence of heat stress (HS) on liver T cells contributes significantly to understanding the intricate interplay between the immune system and hepatic tissues under thermal stress. This study focused on investigating the characteristics of the T-cell receptor (TCR) β chain CDR3 repertoire in bovine liver samples under both HS and pairfed (PF) environmental conditions. METHODS Sequencing data from six samples sourced from the GEO database underwent annotation. Utilizing immunarch and VDJtool software, the study conducted comprehensive analyses encompassing basic evaluation, clonality assessment, immune repertoire comparison, diversity estimation, gene usage profiling, VJ gene segment pairing scrutiny, clonal tracking, and Kmers analysis. RESULTS All four TCR chains, namely α, β, γ, and δ, were detected, with the α chains exhibiting the highest detection frequency, followed closely by the β chains. The prevalence of αβ TCRs in bovine liver samples underscored their crucial role in governing hepatic tissue's physiological functions. The TCR β CDR3 repertoire showcased substantial inter-individual variability, featuring diverse clonotypes exhibiting distinct amino acid lengths. Intriguingly, HS cattle displayed heightened diversity and clonality, suggesting potential peripheral T cell migration into the liver under environmental conditions. Notably, differential VJ gene pairings were observed in HS cattle compared to the PF, despite individual variations in V and J gene utilization. Additionally, while most high-frequency amino acid 5-mers remained consistent between the HS and PF, GELHF, and YDYHF were notably prevalent in the HS group. Across all samples, a prevalent trend of high-frequency 5mers skewed towards polar and hydrophobic amino acids was evident. CONCLUSION This study elucidates the characteristics of liver TCR β chain CDR3 repertoire under HS conditions, enhancing our understanding of HS implications.
Collapse
Affiliation(s)
- Linhu Hui
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Guangjun Yang
- Xiangyun County Livestock Workstation, Xiangyun 671000,
China
| | - Qiaorong Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201,
China
| | - Yangyang Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi 563000,
China
| |
Collapse
|
2
|
Hanna J, de la Roche M. Hedgehog signalling in CD4 + T helper cell polarisation. Int J Biochem Cell Biol 2024; 168:106518. [PMID: 38216086 DOI: 10.1016/j.biocel.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
CD4+ T cells are critical in orchestrating immune responses against various pathogens and cancer but can also be drivers of autoimmune disease, allergy and pro-tumour responses. Naïve CD4+ T cells polarise into specialised T helper cell subsets with unique effector functions. While the guiding transcription factors and effector molecules of the T helper cell lineages are well understood, the signalling pathways orchestrating the intricate T helper cell polarisation programmes remain poorly understood. Here we review an emerging role of Hedgehog signalling - a classical morphogen signalling pathway - in T helper cell polarisation. Importantly, the Hedgehog pathway is pharmacologically highly tractable and existing clinically-approved Hedgehog inhibitors may prove useful therapeutic modulators of T helper cell-driven immune responses.
Collapse
Affiliation(s)
- Joachim Hanna
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Maike de la Roche
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
3
|
Lutter L, Ter Linde JJM, Brand EC, Hoytema van Konijnenburg DP, Roosenboom B, Horjus Talabur-Horje C, Oldenburg B, van Wijk F. Compartment-driven imprinting of intestinal CD4 T cells in inflammatory bowel disease and homeostasis. Clin Exp Immunol 2023; 214:235-248. [PMID: 37565620 PMCID: PMC10719222 DOI: 10.1093/cei/uxad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/16/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
The mucosal immune system is implicated in the etiology and progression of inflammatory bowel diseases. The lamina propria and epithelium of the gut mucosa constitute two separate compartments, containing distinct T-cell populations. Human CD4 T-cell programming and regulation of lamina propria and epithelium CD4 T cells, especially during inflammation, remain incompletely understood. We performed flow cytometry, bulk, and single-cell RNA-sequencing to profile ileal lamina propria and intraepithelial CD4 T cells (CD4CD8αα, regulatory T cells (Tregs), CD69- and CD69high Trm T cells) in controls and Crohn's disease (CD) patients (paired non-inflamed and inflamed). Inflammation results in alterations of the CD4 T-cell population with a pronounced increase in Tregs and migrating/infiltrating cells. On a transcriptional level, inflammation within the epithelium induced T-cell activation, increased IFNγ responses, and an effector Treg profile. Conversely, few transcriptional changes within the lamina propria were observed. Key regulators including the chromatin remodelers ARID4B and SATB1 were found to drive compartment-specific transcriptional programming of CD4 T(reg) cells. In summary, inflammation in CD patients primarily induces changes within the epithelium and not the lamina propria. Additionally, there is compartment-specific CD4 T-cell imprinting, driven by shared regulators, between the lamina propria and the epithelium. The main consequence of intraepithelial adaptation, irrespective of inflammation, seems to be an overall dampening of broad (pro-inflammatory) responses and tight regulation of lifespan. These data suggest differential regulation of the lamina propria and epithelium, with a specific regulatory role in the inflamed epithelium.
Collapse
Affiliation(s)
- Lisanne Lutter
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - José J M Ter Linde
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eelco C Brand
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David P Hoytema van Konijnenburg
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Britt Roosenboom
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
5
|
Hanna J, Beke F, O'Brien LM, Kapeni C, Chen HC, Carbonaro V, Kim AB, Kishore K, Adolph TE, Skjoedt MO, Skjoedt K, de la Roche M, de la Roche M. Cell-autonomous Hedgehog signaling controls Th17 polarization and pathogenicity. Nat Commun 2022; 13:4075. [PMID: 35835905 PMCID: PMC9281293 DOI: 10.1038/s41467-022-31722-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Th17 cells are key drivers of autoimmune disease. However, the signaling pathways regulating Th17 polarization are poorly understood. Hedgehog signaling regulates cell fate decisions during embryogenesis and adult tissue patterning. Here we find that cell-autonomous Hedgehog signaling, independent of exogenous ligands, selectively drives the polarization of Th17 cells but not other T helper cell subsets. We show that endogenous Hedgehog ligand, Ihh, signals to activate both canonical and non-canonical Hedgehog pathways through Gli3 and AMPK. We demonstrate that Hedgehog pathway inhibition with either the clinically-approved small molecule inhibitor vismodegib or genetic ablation of Ihh in CD4+ T cells greatly diminishes disease severity in two mouse models of intestinal inflammation. We confirm that Hedgehog pathway expression is upregulated in tissue from human ulcerative colitis patients and correlates with Th17 marker expression. This work implicates Hedgehog signaling in Th17 polarization and intestinal immunopathology and indicates the potential therapeutic use of Hedgehog inhibitors in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Joachim Hanna
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Flavio Beke
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Louise M O'Brien
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Chrysa Kapeni
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Hung-Chang Chen
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Valentina Carbonaro
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Alexander B Kim
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology & Endocrinology, Medical University Innsbruck, Innsbruck, Austria
| | - Mikkel-Ole Skjoedt
- Rigshospitalet - University Hospital Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Karsten Skjoedt
- University of Southern Denmark, J.B.Winslows Vej, 5000, Odense C, Denmark
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Maike de la Roche
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
6
|
Han D, Sun P, Hu Y, Wang J, Hua G, Chen J, Shao C, Tian F, Darwish HYA, Tai Y, Yang X, Chang J, Ma Y. The Immune Barrier of Porcine Uterine Mucosa Differs Dramatically at Proliferative and Secretory Phases and Could Be Positively Modulated by Colonizing Microbiota. Front Immunol 2021; 12:750808. [PMID: 34917075 PMCID: PMC8670328 DOI: 10.3389/fimmu.2021.750808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Endometrial immune response is highly associated with the homeostatic balance of the uterus and embryo development; however, the underlying molecular regulatory mechanisms are not fully elucidated. Herein, the porcine endometrium showed significant variation in mucosal immunity in proliferative and secretory phases by single-cell RNA sequencing. The loose arrangement and high motility of the uterine epithelium in the proliferative phase gave opportunities for epithelial cells and dendritic cells to cross talk with colonizing microbial community, guiding lymphocyte migration into the mucosal and glandular epithelium. The migrating lymphocytes were primarily NK and CD8+ T cells, which were robustly modulated by the chemokine signaling. In the secretory phase, the significantly strengthened mechanical mucosal barrier and increased immunoglobulin A alleviated the migration of lymphocytes into the epithelium when the neuro-modulation, mineral uptake, and amino acid metabolism were strongly upregulated. The noticeably increased intraepithelial lymphocytes were positively modulated by the bacteria in the uterine cavity. Our findings illustrated that significant mucosal immunity variation in the endometrium in the proliferative and secretory phases was closely related to intraepithelial lymphocyte migration, which could be modulated by the colonizing bacteria after cross talk with epithelial cells with higher expressions of chemokine.
Collapse
Affiliation(s)
- Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Sun
- Research and Development Department for Breeding Poultry Feed, Shandong Hekangyuan Biological Breeding Co., Ltd, Jinan, China
| | - Yanxin Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guoying Hua
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuyun Shao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Fan Tian
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Hesham Y A Darwish
- Department of Applied Biotechnology, Molecular Biology Researches & Studies Institute, Assiut University, Assiut, Egypt
| | - Yurong Tai
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyu Chang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfei Ma
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Basu K, Creasey H, Bruggemann N, Stevens J, Bloxham D, Woodward JM. Diagnosis of coeliac disease by flow cytometry of intraepithelial lymphocytes: a new 'gold' standard? Frontline Gastroenterol 2021; 13:119-125. [PMID: 35300471 PMCID: PMC8862495 DOI: 10.1136/flgastro-2021-101838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE The analysis of intraepithelial lymphocytes (IELs) by flow cytometry of duodenal biopsies-the 'IEL' lymphogram-has been proposed as a diagnostic test for coeliac disease. However, its clinical applicability has been limited due to variability in methods and definitions. This study set out to define useful parameters for the application of the IEL lymphogram to the diagnosis of coeliac disease. DESIGN Flow cytometry was performed on 117 sets of duodenal biopsies in 107 adult patients with active coeliac disease, long-term coeliac disease on a gluten free diet and a control group. The initial 95 samples were used for hypothesis generation for the subsequent samples comprising 12 patients with coeliac disease and 10 controls. RESULTS Rather than using single linear cut-offs for CD3 and T-cell receptor γδ (TCRγδ)+ve IELs, a discriminant function was identified as %CD3+ve IELs+2x(%TCRγδ+IELs)>100. This differentiated coeliac disease from control biopsies in the hypothesis generating group. These results were replicated in the validation group and found to be independent of histology in patients on long-term gluten free diet up to 12 years (combined sensitivity, 98.5%; specificity, 97.7%). CONCLUSIONS Flow cytometric analysis of IELs is a highly sensitive and specific adjunct to serology and histological examination for the diagnosis of coeliac disease, even in individuals with coeliac disease following a gluten free diet who exhibit normal duodenal histology.
Collapse
Affiliation(s)
- Kaninika Basu
- Gastroenterology and Clinical Nutrition, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hannah Creasey
- Haematology Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nina Bruggemann
- Gastroenterology and Clinical Nutrition, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jennifer Stevens
- Haematology Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - David Bloxham
- Haematology Oncology Diagnostic Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jeremy Mark Woodward
- Gastroenterology and Clinical Nutrition, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
8
|
Zorro MM, Aguirre-Gamboa R, Mayassi T, Ciszewski C, Barisani D, Hu S, Weersma RK, Withoff S, Li Y, Wijmenga C, Jabri B, Jonkers IH. Tissue alarmins and adaptive cytokine induce dynamic and distinct transcriptional responses in tissue-resident intraepithelial cytotoxic T lymphocytes. J Autoimmun 2020; 108:102422. [PMID: 32033836 PMCID: PMC7049906 DOI: 10.1016/j.jaut.2020.102422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
The respective effects of tissue alarmins interleukin (IL)-15 and interferon beta (IFNβ), and IL-21 produced by T cells on the reprogramming of cytotoxic T lymphocytes (CTLs) that cause tissue destruction in celiac disease is poorly understood. Transcriptomic and epigenetic profiling of primary intestinal CTLs showed massive and distinct temporal transcriptional changes in response to tissue alarmins, while the impact of IL-21 was limited. Only anti-viral pathways were induced in response to all the three stimuli, albeit with differences in dynamics and strength. Moreover, changes in gene expression were primarily independent of changes in H3K27ac, suggesting that other regulatory mechanisms drive the robust transcriptional response. Finally, we found that IL-15/IFNβ/IL-21 transcriptional signatures could be linked to transcriptional alterations in risk loci for complex immune diseases. Together these results provide new insights into molecular mechanisms that fuel the activation of CTLs under conditions that emulate the inflammatory environment in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Maria Magdalena Zorro
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Raul Aguirre-Gamboa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Toufic Mayassi
- Department of Medicine, University of Chicago, Chicago, USA; Committee on Immunology, University of Chicago, Chicago, USA
| | | | | | - Shixian Hu
- Department of Gastroenterology and Hepatology, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University Medical Center, Groningen, University of Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School. Hannover, Germany
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, USA; Committee on Immunology, University of Chicago, Chicago, USA.
| | - Iris H Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Singh A, Pramanik A, Acharya P, Makharia GK. Non-Invasive Biomarkers for Celiac Disease. J Clin Med 2019; 8:jcm8060885. [PMID: 31234270 PMCID: PMC6616864 DOI: 10.3390/jcm8060885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022] Open
Abstract
Once thought to be uncommon, celiac disease has now become a common disease globally. While avoidance of the gluten-containing diet is the only effective treatment so far, many new targets are being explored for the development of new drugs for its treatment. The endpoints of therapy include not only reversal of symptoms, normalization of immunological abnormalities and healing of mucosa, but also maintenance of remission of the disease by strict adherence of the gluten-free diet (GFD). There is no single gold standard test for the diagnosis of celiac disease and the diagnosis is based on the presence of a combination of characteristics including the presence of a celiac-specific antibody (anti-tissue transglutaminase antibody, anti-endomysial antibody or anti-deamidated gliadin peptide antibody) and demonstration of villous abnormalities. While the demonstration of enteropathy is an important criterion for a definite diagnosis of celiac disease, it requires endoscopic examination which is perceived as an invasive procedure. The capability of prediction of enteropathy by the presence of the high titer of anti-tissue transglutaminase antibody led to an option of making a diagnosis even without obtaining mucosal biopsies. While present day diagnostic tests are great, they, however, have certain limitations. Therefore, there is a need for biomarkers for screening of patients, prediction of enteropathy, and monitoring of patients for adherence of the gluten-free diet. Efforts are now being made to explore various biomarkers which reflect different changes that occur in the intestinal mucosa using modern day tools including transcriptomics, proteomics, and metabolomics. In the present review, we have discussed comprehensively the pros and cons of available biomarkers and also summarized the current status of emerging biomarkers for the screening, diagnosis, and monitoring of celiac disease.
Collapse
Affiliation(s)
- Alka Singh
- Department of Gastroenterology and Human Nutrition; All India Institute of Medical Sciences, New Delhi-110029, India.
| | - Atreyi Pramanik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India.
| | - Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi-110029, India.
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition; All India Institute of Medical Sciences, New Delhi-110029, India.
| |
Collapse
|
10
|
Meddens CA, van der List ACJ, Nieuwenhuis EES, Mokry M. Non-coding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut 2019; 68:928-941. [PMID: 30692146 DOI: 10.1136/gutjnl-2018-317516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have identified over 200 loci associated with IBD. We and others have recently shown that, in addition to variants in protein-coding genes, the majority of the associated loci are related to DNA regulatory elements (DREs). These findings add a dimension to the already complex genetic background of IBD. In this review we summarise the existing evidence on the role of DREs in IBD. We discuss how epigenetic research can be used in candidate gene approaches that take non-coding variants into account and can help to pinpoint the essential pathways and cell types in the pathogenesis of IBD. Despite the increased level of genetic complexity, these findings can contribute to novel therapeutic options that target transcription factor binding and enhancer activity. Finally, we summarise the future directions and challenges of this emerging field.
Collapse
Affiliation(s)
- Claartje Aleid Meddens
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Uniken Venema WT, Voskuil MD, Vila AV, van der Vries G, Jansen BH, Jabri B, Faber KN, Dijkstra G, Xavier RJ, Wijmenga C, Graham DB, Weersma RK, Festen EA. Single-Cell RNA Sequencing of Blood and Ileal T Cells From Patients With Crohn's Disease Reveals Tissue-Specific Characteristics and Drug Targets. Gastroenterology 2019; 156:812-815.e22. [PMID: 30391472 PMCID: PMC6759855 DOI: 10.1053/j.gastro.2018.10.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/02/2022]
Affiliation(s)
- Werna T Uniken Venema
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel D Voskuil
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerben van der Vries
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernadien H Jansen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bana Jabri
- Department of Medicine and Committee on Immunology, University of Chicago, Chicago, Illinois
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ramnik J Xavier
- Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daniel B Graham
- Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora A Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
12
|
Liu TC, Kern JT, VanDussen KL, Xiong S, Kaiko GE, Wilen CB, Rajala MW, Caruso R, Holtzman MJ, Gao F, McGovern DP, Nunez G, Head RD, Stappenbeck TS. Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. J Clin Invest 2018; 128:5110-5122. [PMID: 30137026 DOI: 10.1172/jci120453] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
It is suggested that subtyping of complex inflammatory diseases can be based on genetic susceptibility and relevant environmental exposure (G+E). We propose that using matched cellular phenotypes in human subjects and corresponding preclinical models with the same G+E combinations is useful to this end. As an example, defective Paneth cells can subtype Crohn's disease (CD) subjects; Paneth cell defects have been linked to multiple CD susceptibility genes and are associated with poor outcome. We hypothesized that CD susceptibility genes interact with cigarette smoking, a major CD environmental risk factor, to trigger Paneth cell defects. We found that both CD subjects and mice with ATG16L1T300A (T300A; a prevalent CD susceptibility allele) developed Paneth cell defects triggered by tobacco smoke. Transcriptional analysis of full-thickness ileum and Paneth cell-enriched crypt base cells showed the T300A-smoking combination altered distinct pathways, including proapoptosis, metabolic dysregulation, and selective downregulation of the PPARγ pathway. Pharmacologic intervention by either apoptosis inhibitor or PPARγ agonist rosiglitazone prevented smoking-induced crypt apoptosis and Paneth cell defects in T300A mice and mice with conditional Paneth cell-specific knockout of Atg16l1. This study demonstrates how explicit G+E can drive disease-relevant phenotype and provides rational strategies for identifying actionable targets.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Justin T Kern
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gerard E Kaiko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Michael W Rajala
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Roberta Caruso
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Dermot Pb McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gabriel Nunez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Richard D Head
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
13
|
Lutter L, Hoytema van Konijnenburg DP, Brand EC, Oldenburg B, van Wijk F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:637-649. [PMID: 29973676 DOI: 10.1038/s41575-018-0039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lisanne Lutter
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - David P Hoytema van Konijnenburg
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Eelco C Brand
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
14
|
Chen F, Yang W, Huang X, Cao AT, Bilotta AJ, Xiao Y, Sun M, Chen L, Ma C, Liu X, Liu CG, Yao S, Dann SM, Liu Z, Cong Y. Neutrophils Promote Amphiregulin Production in Intestinal Epithelial Cells through TGF-β and Contribute to Intestinal Homeostasis. THE JOURNAL OF IMMUNOLOGY 2018; 201:2492-2501. [PMID: 30171165 DOI: 10.4049/jimmunol.1800003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
Neutrophils are the first responders to sites of inflammation when the intestinal epithelial barrier is breached and the gut microbiota invade. Despite current efforts in understanding the role of neutrophils in intestinal homeostasis, the complex interactions between neutrophils and intestinal epithelial cells (IECs) is still not well characterized. In this study, we demonstrated that neutrophils enhanced production of amphiregulin (AREG), a member of the EGFR ligand family, by IECs, which promoted IEC barrier function and tissue repair. Depletion of neutrophils resulted in more severe colitis in mice because of decreased AREG production by IECs upon dextran sodium sulfate (DSS) insult. Administration of AREG restored epithelial barrier function and ameliorated colitis. Furthermore, neutrophil-derived TGF-β promoted AREG production by IECs. Mechanistically, TGF-β activated MEK1/2 signaling, and inhibition of MEK1/2 abrogated TGF-β-induced AREG production by IECs. Collectively, these findings reveal that neutrophils play an important role in the maintenance of IEC barrier function and homeostasis.
Collapse
Affiliation(s)
- Feidi Chen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiangsheng Huang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Anthony T Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Yi Xiao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Mingming Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Liang Chen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chunyan Ma
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Xiuping Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX 77230
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX 77230
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Sara M Dann
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yingzi Cong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
15
|
Abstract
Hoytema van Konijnenburg and Mucida discuss development and function of intraepithelial lymphocytes, which are found within the epithelial layer of mucosal and barrier tissues.
Collapse
Affiliation(s)
- David P Hoytema van Konijnenburg
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; Laboratory of Translational Immunology, University Medical Center Utrecht, The Netherlands
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
16
|
Liefferinckx C, Franchimont D. Viewpoint: Toward the Genetic Architecture of Disease Severity in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2018; 24:1428-1439. [PMID: 29788122 DOI: 10.1093/ibd/izy109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by uneven disease courses with various clinical outcomes. A few prognostic markers of disease severity may help stratify patients and identify those who will benefit the most from early aggressive treatment. The concept of disease severity remains too broad and vague, mainly because the definition must embrace several disease mechanisms, mainly inflammation and fibrosis, with various rates of disease progression. The magnitude of inflammation is an obvious key driver of disease severity in IBD that ultimately influence disease behavior. Advances in the genetics underlying disease severity are currently emerging, but attempts to overlap the genetics of disease susceptibility and severity have until now been unsatisfactory, suggesting that the genetic architecture of disease severity may be distinct from the genetics of disease susceptibility. In this review, we report on the current knowledge on disease severity and on the main research venues to decipher the genetic architecture of disease severity.
Collapse
Affiliation(s)
| | - Denis Franchimont
- Department of Gastroenterology, Erasme Hospital, ULB, Brussels, Belgium
| |
Collapse
|
17
|
Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, Giovannucci EL, Nishihara R, Giannakis M, Garrett WS, Song M. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut 2018; 67:1168-1180. [PMID: 29437869 PMCID: PMC5943183 DOI: 10.1136/gutjnl-2017-315537] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Immunotherapy strategies targeting immune checkpoints such as the CTLA4 and CD274 (programmed cell death 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, PD-1) T-cell coreceptor pathways are revolutionising oncology. The approval of pembrolizumab use for solid tumours with high-level microsatellite instability or mismatch repair deficiency by the US Food and Drug Administration highlights promise of precision immuno-oncology. However, despite evidence indicating influences of exogenous and endogenous factors such as diet, nutrients, alcohol, smoking, obesity, lifestyle, environmental exposures and microbiome on tumour-immune interactions, integrative analyses of those factors and immunity lag behind. Immune cell analyses in the tumour microenvironment have not adequately been integrated into large-scale studies. Addressing this gap, the transdisciplinary field of molecular pathological epidemiology (MPE) offers research frameworks to integrate tumour immunology into population health sciences, and link the exposures and germline genetics (eg, HLA genotypes) to tumour and immune characteristics. Multilevel research using bioinformatics, in vivo pathology and omics (genomics, epigenomics, transcriptomics, proteomics and metabolomics) technologies is possible with use of tissue, peripheral blood circulating cells, cell-free plasma, stool, sputum, urine and other body fluids. This immunology-MPE model can synergise with experimental immunology, microbiology and systems biology. GI neoplasms represent exemplary diseases for the immunology-MPE model, given rich microbiota and immune tissues of intestines, and the well-established carcinogenic role of intestinal inflammation. Proof-of-principle studies on colorectal cancer provided insights into immunomodulating effects of aspirin, vitamin D, inflammatory diets and omega-3 polyunsaturated fatty acids. The integrated immunology-MPE model can contribute to better understanding of environment-tumour-immune interactions, and effective immunoprevention and immunotherapy strategies for precision medicine.
Collapse
Affiliation(s)
- Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marios Giannakis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers H, Remmerswaal EBM, Amsen D, Jonkers RE, Moerland PD, Nolte MA, van Lier RAW, Hombrink P. Trigger-happy resident memory CD4 + T cells inhabit the human lungs. Mucosal Immunol 2018; 11:654-667. [PMID: 29139478 DOI: 10.1038/mi.2017.94] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8+ TRM have been extensively characterized, the properties of CD4+ TRM remain unclear. Here we determined the transcriptional signature of CD4+ TRM, identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4+ TRM, whereas expression of tissue egress and lymph node homing molecules were low. CD103+ TRM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103+ TRM showed a Notch signature. CD4+CD103+ TRM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4+ TRM in the human lung. Understanding the specific properties of CD4+ TRM is required to rationally improve vaccine design.
Collapse
Affiliation(s)
- A E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - B Piet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Respiratory Medicine, OLVG, Amsterdam, The Netherlands
| | - C Helbig
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - D van der Zwan
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - H Blaauwgeers
- Department of Pathology, OLVG, Amsterdam, The Netherlands
| | - E B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam The Netherlands
| | - D Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R E Jonkers
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics and Department of Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - P Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Brummelman J, Pilipow K, Lugli E. The Single-Cell Phenotypic Identity of Human CD8+ and CD4+ T Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:63-124. [DOI: 10.1016/bs.ircmb.2018.05.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Danese S, Fiocchi C, Panés J. Drug development in IBD: from novel target identification to early clinical trials. Gut 2016; 65:1233-9. [PMID: 27196598 DOI: 10.1136/gutjnl-2016-311717] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Silvio Danese
- IBD Center, Department of Gastroenterology, Humanitas Research Hospital, Humanitas University, Milan, Italy
| | - Claudio Fiocchi
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland, Ohio, USA Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Julián Panés
- Gastroenterology Department, Hospital Clínic Barcelona, IDIBAPS, CIBERehd, Barcelona, Spain
| |
Collapse
|
21
|
Clancy T, Hovig E. Profiling networks of distinct immune-cells in tumors. BMC Bioinformatics 2016; 17:263. [PMID: 27377892 PMCID: PMC4932723 DOI: 10.1186/s12859-016-1141-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Background It is now clearly evident that cancer outcome and response to therapy is guided by diverse immune-cell activity in tumors. Presently, a key challenge is to comprehensively identify networks of distinct immune-cell signatures present in complex tissue, at higher-resolution and at various stages of differentiation, activation or function. This is particularly so for closely related immune-cells with diminutive, yet critical, differences. Results To predict networks of infiltrated distinct immune-cell phenotypes at higher resolution, we explored an integrated knowledge-based approach to select immune-cell signature genes integrating not only expression enrichment across immune-cells, but also an automatic capture of relevant immune-cell signature genes from the literature. This knowledge-based approach was integrated with resources of immune-cell specific protein networks, to define signature genes of distinct immune-cell phenotypes. We demonstrate the utility of this approach by profiling signatures of distinct immune-cells, and networks of immune-cells, from metastatic melanoma patients who had undergone chemotherapy. The resultant bioinformatics strategy complements immunohistochemistry from these tumors, and predicts both tumor-killing and immunosuppressive networks of distinct immune-cells in responders and non-responders, respectively. The approach is also shown to capture differences in the immune-cell networks of BRAF versus NRAS mutated metastatic melanomas, and the dynamic changes in resistance to targeted kinase inhibitors in MAPK signalling. Conclusions This integrative bioinformatics approach demonstrates that capturing the protein network signatures and ratios of distinct immune-cell in the tumor microenvironment maybe an important factor in predicting response to therapy. This may serve as a computational strategy to define network signatures of distinct immune-cells to guide immuno-pathological discovery. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1141-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trevor Clancy
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway. .,Department of Cancer Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Biomedical Research Group, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Institute of Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Liu CH, Ho BC, Chen CL, Chang YH, Hsu YC, Li YC, Yuan SS, Huang YH, Chang CS, Li KC, Chen HY. ePIANNO: ePIgenomics ANNOtation tool. PLoS One 2016; 11:e0148321. [PMID: 26859295 PMCID: PMC4747527 DOI: 10.1371/journal.pone.0148321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/15/2016] [Indexed: 12/04/2022] Open
Abstract
Recently, with the development of next generation sequencing (NGS), the combination of chromatin immunoprecipitation (ChIP) and NGS, namely ChIP-seq, has become a powerful technique to capture potential genomic binding sites of regulatory factors, histone modifications and chromatin accessible regions. For most researchers, additional information including genomic variations on the TF binding site, allele frequency of variation between different populations, variation associated disease, and other neighbour TF binding sites are essential to generate a proper hypothesis or a meaningful conclusion. Many ChIP-seq datasets had been deposited on the public domain to help researchers make new discoveries. However, researches are often intimidated by the complexity of data structure and largeness of data volume. Such information would be more useful if they could be combined or downloaded with ChIP-seq data. To meet such demands, we built a webtool: ePIgenomic ANNOtation tool (ePIANNO, http://epianno.stat.sinica.edu.tw/index.html). ePIANNO is a web server that combines SNP information of populations (1000 Genomes Project) and gene-disease association information of GWAS (NHGRI) with ChIP-seq (hmChIP, ENCODE, and ROADMAP epigenomics) data. ePIANNO has a user-friendly website interface allowing researchers to explore, navigate, and extract data quickly. We use two examples to demonstrate how users could use functions of ePIANNO webserver to explore useful information about TF related genomic variants. Users could use our query functions to search target regions, transcription factors, or annotations. ePIANNO may help users to generate hypothesis or explore potential biological functions for their studies.
Collapse
Affiliation(s)
- Chia-Hsin Liu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei, Taiwan
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Ling Chen
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Chiung Hsu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Yi-Huan Huang
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Chi-Sheng Chang
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
McGovern D, Kugathasan S, Cho JH. Genetics of Inflammatory Bowel Diseases. Gastroenterology 2015; 149:1163-1176.e2. [PMID: 26255561 PMCID: PMC4915781 DOI: 10.1053/j.gastro.2015.08.001] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 12/11/2022]
Abstract
In this review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and noncoding genetic variation. In the small minority of loci where major association signals correspond to nonsynonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve noncoding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that the expression of most human genes is regulated by noncoding genetic variations. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (ie, odds ratios markedly deviating from 1) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in more severe very early onset cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility through emerging precision medical initiatives. In this article, we discuss the rapidly evolving area of direct-to-consumer genetic testing and the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect to partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research centers and across subspecialties and disciplines will be required to fully realize the promise of genetic discovery in IBD.
Collapse
Affiliation(s)
- Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Medical Genetics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Subra Kugathasan
- Department of Pediatrics and Human Genetics, Emory University School of Medicine, Atlanta, GA; and Children's Healthcare of Atlanta, Atlanta, GA
| | - Judy H. Cho
- Departments of Genetics and Medicine, Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
24
|
Singh T, Levine AP, Smith PJ, Smith AM, Segal AW, Barrett JC. Characterization of expression quantitative trait loci in the human colon. Inflamm Bowel Dis 2015. [PMID: 25569741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Many genetic risk loci have been identified for inflammatory bowel disease and colorectal cancer; however, identifying the causal genes for each association signal remains a challenge. Expression quantitative trait loci (eQTL) studies have identified common variants that induce differential gene expression and eQTLs can be cross-referenced with disease association signals for gene prioritization. However, the genetics of gene expression are highly tissue-specific, and further eQTL datasets from primary tissues are needed. METHODS We have conducted an eQTL discovery study using tissue extracted endoscopically from the terminal ileum and 4 colonic locations of non-inflamed bowel from 65 controls and patients with quiescent inflammatory bowel disease. A genome-wide cis-eQTL analysis was performed on >3,600,000 variants and 13,558 expressed probes. RESULTS We identified 1312 independent eQTLs associated with the differential expression of 1222 genes in rectal mucosa. One hundred seventy-one, 211, 168, and 102 independent eQTLs were identified in the sigmoid, descending colon, ascending colon, and terminal ileum, respectively. Twenty-six percent of genes with rectal eQTLs were novel and unique compared with 7 published eQTL datasets. Rectal eQTLs were significantly enriched for genes expressed in the colon. Examining 163 inflammatory bowel disease risk loci identified 11 tag single-nucleotide polymorphisms that were rectal eQTLs. A colorectal cancer locus at 11q23 contained a rectal eQTL for COLCA2, a protein implicated in colon cancer pathogenesis. CONCLUSIONS This study defines a catalog of ileal and colonic eQTLs. Our data reaffirm the tissue specificity of eQTLs and support the notion that identification of functional variants in relevant tissue can be effective in fine-mapping genetic risk loci.
Collapse
Affiliation(s)
- Tarjinder Singh
- *Medical Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom; †Division of Medicine, University College London, London, United Kingdom; ‡Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, London, United Kingdom; and §Eastman Dental Institute, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
BACKGROUND Many genetic risk loci have been identified for inflammatory bowel disease and colorectal cancer; however, identifying the causal genes for each association signal remains a challenge. Expression quantitative trait loci (eQTL) studies have identified common variants that induce differential gene expression and eQTLs can be cross-referenced with disease association signals for gene prioritization. However, the genetics of gene expression are highly tissue-specific, and further eQTL datasets from primary tissues are needed. METHODS We have conducted an eQTL discovery study using tissue extracted endoscopically from the terminal ileum and 4 colonic locations of non-inflamed bowel from 65 controls and patients with quiescent inflammatory bowel disease. A genome-wide cis-eQTL analysis was performed on >3,600,000 variants and 13,558 expressed probes. RESULTS We identified 1312 independent eQTLs associated with the differential expression of 1222 genes in rectal mucosa. One hundred seventy-one, 211, 168, and 102 independent eQTLs were identified in the sigmoid, descending colon, ascending colon, and terminal ileum, respectively. Twenty-six percent of genes with rectal eQTLs were novel and unique compared with 7 published eQTL datasets. Rectal eQTLs were significantly enriched for genes expressed in the colon. Examining 163 inflammatory bowel disease risk loci identified 11 tag single-nucleotide polymorphisms that were rectal eQTLs. A colorectal cancer locus at 11q23 contained a rectal eQTL for COLCA2, a protein implicated in colon cancer pathogenesis. CONCLUSIONS This study defines a catalog of ileal and colonic eQTLs. Our data reaffirm the tissue specificity of eQTLs and support the notion that identification of functional variants in relevant tissue can be effective in fine-mapping genetic risk loci.
Collapse
|