1
|
Han Z, Xu L, Wang A, Wang B, Liu Q, Liu H, Liu Q, Gang Z, Yu S, Mu L, Weng C, Lin Z, Hu L. UBE2S facilitates glioblastoma progression through activation of the NF-κB pathway via attenuating K11-linked ubiquitination of AKIP1. Int J Biol Macromol 2024; 278:134426. [PMID: 39098687 DOI: 10.1016/j.ijbiomac.2024.134426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Rapid proliferation is a hallmark of glioblastoma multiforme (GBM) and a major contributor to its recurrence. Aberrant ubiquitination has been implicated in various diseases, including cancer. In our preliminary studies, we identified Ubiquitin-conjugating enzyme E2S (UBE2S) as a potential glioma biomarker, exhibiting close associations with glioma grade and protein phosphatase 1, regulatory subunit 105 (Ki67) expression levels. However, the underlying molecular mechanisms remained elusive. NF-κB is an important signaling pathway that promotes GBM proliferation. Direct intervention targeting NF-κB has not yielded the expected results, prompting the exploration of new molecules for regulating NF-κB as a new direction. METHODS This study employed methods including yeast two-hybrid and immunoprecipitation to uncover the interaction between UBE2S and A kinase interacting protein 1 (AKIP1). Laser confocal microscopy was used to observe the localization of UBE2S and AKIP1. Dual luciferase reporter genes were utilized to observe the activation of NF-κB. RESULTS Our findings demonstrate that UBE2S deficiency significantly impedes GBM progression, both in vitro and in vivo. Mechanistically, UBE2S plays a crucial role in recruiting Ubiquitin Specific Peptidase 15 (USP15), facilitating the removal of K11-linked ubiquitination on AKIP1. This action enhances AKIP1 stability within the GBM context. The resulting increase in AKIP1 levels further augments nuclear factor kappa-B (NF-κB) transcriptional activity, leading to the upregulation of downstream genes regulated by the NF-κB pathway, thereby promoting GBM progression. CONCLUSIONS In summary, our findings reveal the role of the UBE2S/AKIP1-NF-κB axis in regulating GBM progression and provide novel evidence supporting UBE2S as a potential drug target for GBM.
Collapse
Affiliation(s)
- Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Aowen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoju Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qinfang Liu
- Department of Neuroscience, Yale University School of Medicine, New Haven, America
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhenbo Gang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengkun Yu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Ahmad A, Tiwari RK, Siddiqui S, Chadha M, Shukla R, Srivastava V. Emerging trends in gastrointestinal cancers: Targeting developmental pathways in carcinogenesis and tumor progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:41-99. [PMID: 38663962 DOI: 10.1016/bs.ircmb.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saleha Siddiqui
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Muskan Chadha
- Department of Nutrition and Dietetics, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vivek Srivastava
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Abstract
Most colorectal cancers (CRC) are associated with activated Wnt signaling, making it the fourth most prevalent type of cancer globally. To function properly, the Wnt signaling pathway requires secreted glycoproteins known as Wnt ligands (Wnts). Humans have 19 Wnts, which suggest a complicated signaling and biological process, and we still know little about their functions in developing CRC. This review aims to describe the canonical Wnt signaling in CRC, particularly the Wnt3a expression pattern, and their association with the angiogenesis and progression of CRC. This review also sheds light on the inhibition of Wnt3a signaling in CRC. Despite some obstacles, a thorough understanding of Wnts is essential for effectively managing CRC.
Collapse
|
4
|
Gao L, Gou N, Yao M, Amakye WK, Ren J. Food-derived natural compounds in the management of chronic diseases via Wnt signaling pathway. Crit Rev Food Sci Nutr 2021; 62:4769-4799. [PMID: 33554630 DOI: 10.1080/10408398.2021.1879001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway that control embryonic development, adult tissue homeostasis, and pathological processes of organisms throughout life. However, dysregulation of the Wnt signaling is associated with the occurrence of chronic diseases. In comparison with the application of chemical drugs as traditional treatment for chronic diseases, dietary agents have unique advantages, such as less side effects, multiple targets, convenience in accessibility and higher acceptability in long-term intervention. In this review, we summarized current progress in manipulating the Wnt signaling using food components and its benefits in managing chronic diseases. The underlying mechanisms of bioactive food components in the management of the disease progression via the Wnt signaling was illustrated. Then, the review focused on the function of dietary pattern (which might act via combination of foods with multiple nutrients or food ingredients) on targeting Wnt signaling at multiple level. The potential caveats and challenges in developing new strategy via modulating Wnt-associated diseases with food-based agents and appropriate dietary pattern are also discussed in detail. This review shed light on the understanding of the regulatory effect of food bioactive components on chronic diseases management through the Wnt signaling, which can be expanded to other specific signaling pathway associated with disease.
Collapse
Affiliation(s)
- Li Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Na Gou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - William Kwame Amakye
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jiaoyan Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Research Institute for Food Nutrition and Human Health, Guangzhou, China
| |
Collapse
|
5
|
Nie X, Liu H, Liu L, Wang YD, Chen WD. Emerging Roles of Wnt Ligands in Human Colorectal Cancer. Front Oncol 2020; 10:1341. [PMID: 32923386 PMCID: PMC7456893 DOI: 10.3389/fonc.2020.01341] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer death worldwide, and constitutive activation of the Wnt signaling pathway is universal in most CRC cases. Wnt ligands (Wnts) are secreted glycoproteins and fundamentally essential for the transduction of Wnt signaling pathway. However, the 19 members of Wnts in humans imply a daunting complexity of Wnt signaling and biological effects, and our understanding of their roles in CRC tumorigenesis is still quite rudimentary. This review will give an overview of the structural characteristics and maturation process of Wnts. The expression pattern of all human Wnts in CRC tissues, including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, and Wnt16, and their relationship with the tumorigenesis and the progression of CRC will be specifically summarized separately. Despite certain challenges, Wnt-based therapeutics for CRC emerge continuously and some are now in clinical trials. In conclusion, a deep understanding of Wnts is very helpful for a better management of this disease.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Huiyang Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Lei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yan-Dong Wang
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
- Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
- Wei-Dong Chen
| |
Collapse
|
6
|
Sakunrangsit N, Ketchart W. Plumbagin inhibits cancer stem-like cells, angiogenesis and suppresses cell proliferation and invasion by targeting Wnt/β-catenin pathway in endocrine resistant breast cancer. Pharmacol Res 2019; 150:104517. [PMID: 31693936 DOI: 10.1016/j.phrs.2019.104517] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/02/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Fifty percent of advanced stage ER-positive breast cancer patients develop endocrine resistance. Aberrant activation of Wnt/β-catenin is associated with stem-like phenotypes and epithelial-mesenchymal transition (EMT) process which confers resistance to endocrine therapy. Cancer stem-like cells (CSLCs) can be a vital source of proangiogenic factors including fibroblast growth factor 2 (FGF2) which drives angiogenesis and leads to tumor growth and metastasis. Therefore, targeting Wnt and FGF2 may provide effective treatment for endocrine resistant breast cancer. Our previous in vitro study reported that plumbagin (PLB) was a potent anticancer agent and was able to inhibit EMT in endocrine-resistant cells. This study aimed to further investigate the inhibitory effects of PLB on cancer stem-like phenotypes, tumorigenicity and angiogenesis. The results demonstrated Wnt/β-catenin signaling was activated and was able to form mammospheres with increased cancer stem cell markers (ALDH1, NANOG, and OCT4) in endocrine-resistant cells. PLB significantly inhibited colony-forming, mammosphere formation and decreased cancer stem cell markers. The inhibitory effects of PLB on cell proliferation and invasion were mediated by Wnt signaling pathway. PLB also significantly reduced Wnt responsive genes and β-catenin. Moreover, PLB treatment at doses of 2 and 4 mg/kg/day inhibited tumor growth, angiogenesis and metastasis without any adverse effects on body weight and blood coagulation in orthotopic xenograft nude mice. In conclusion, PLB exerted anti-cancer activity and eliminated stem-like properties by attenuating Wnt/β-catenin signaling and FGF2 expression. These findings suggest that PLB could be a promising agent to treat endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wannarasmi Ketchart
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Feng S, Zhai J, Lu D, Lin J, Dong X, Liu X, Wu H, Roden AC, Brandi G, Tavolari S, Bille A, Cai K. TUSC3 accelerates cancer growth and induces epithelial-mesenchymal transition by upregulating claudin-1 in non-small-cell lung cancer cells. Exp Cell Res 2018; 373:44-56. [PMID: 30098333 DOI: 10.1016/j.yexcr.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
Lung cancer is the most frequent cause of cancer-related deaths worldwide, but its molecular pathogenesis is poorly understood. The tumor suppressor candidate 3 (TUSC3) gene is located on chromosome 8p22 and is universally acknowledged as a cancer suppressor. However, our research has demonstrated that TUSC3 expression is significantly upregulated in non-small-cell lung cancer compared to benign controls. In this study, we analyzed the consequences of TUSC3 knockdown or overexpression on the biological functions of non-small-cell lung cancer cell lines. To identify the molecules and signaling pathways with which TUSC3 might interact, we completed immunoblotting, quantitative polymerase chain reaction, microarray, co-immunoprecipitation, and immunofluorescence assays. We demonstrated that TUSC3 knockdown leads to decreased proliferation, migration, and invasion, and reduced xenograft tumor growth of non-small-cell lung cancer cell lines, whereas opposite results were observed with overexpression of TUSC3. In addition, TUSC3 knockdown suppressed epithelial-mesenchymal transition by downregulating the expression of claudin-1, which plays an indispensable role in EMT progress. On the contrary, overexpression of TUSC3 significantly enhanced EMT progress by upregulating claudin-1 expression. Overall, our observations suggest that TUSC3 accelerates cancer growth and induces the epithelial-mesenchymal transition in non-small-cell lung cancer cells; we also identified claudin-1 as a target of TUSC3.
Collapse
Affiliation(s)
- Siyang Feng
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jianxue Zhai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Di Lu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Xiaoying Dong
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Xiguang Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Hua Wu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine, University Hospital S. Orsola, Malpighi Bologna, via Massarenti 9, 40138, Italy
| | - Simona Tavolari
- Department of Experimental, Diagnostic and Specialty Medicine, University Hospital S. Orsola, Malpighi Bologna, via Massarenti 9, 40138, Italy
| | - Andrea Bille
- Department of Thoracic Surgery, Guy's Hospital, London, UK
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
Humphries HN, Wickremesekera SK, Marsh RW, Brasch HD, Mehrotra S, Tan ST, Itinteang T. Characterization of Cancer Stem Cells in Colon Adenocarcinoma Metastasis to the Liver. Front Surg 2018; 4:76. [PMID: 29404335 PMCID: PMC5786574 DOI: 10.3389/fsurg.2017.00076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
Background Fifty percent of colorectal cancer (CRC) patients develop liver metastasis. This study identified and characterized cancer stem cells (CSCs) within colon adenocarcinoma metastasis to the liver (CAML). Methods 3,3-Diaminobenzidine immunohistochemical (IHC) staining was performed on nine CAML samples for embryonic stem cell (ESC) markers OCT4, SOX2, NANOG, c-Myc, and KLF4. Immunofluorescence (IF) IHC staining was performed to investigate coexpression of two markers. NanoString mRNA expression analysis and colorimetric in situ hybridization (CISH) were performed on four snap-frozen CAML tissue samples for transcript expression of these ESC markers. Cells stained positively and negatively for each marker by IHC and CISH staining were counted and analyzed. Results 3,3-Diaminobenzidine IHC staining, and NanoString and CISH mRNA analyses demonstrated the expression of OCT4, SOX2, NANOG, c-Myc, and KLF4 within in all nine CAML samples, except for SOX2 which was below detectable levels on NanoString mRNA analysis. IF IHC staining showed the presence of a SOX2+/NANOG+/KLF4+/c-Myc+/OCT− CSC subpopulation within the tumor nests, and a SOX2+/NANOG+/KLF4+/c-Myc+/OCT4− CSC subpopulation and a SOX2+/NANOG+/KLF4+/c-Myc+/OCT4+ CSC subpopulation within the peritumoral stroma. Conclusion The novel finding of three CSC subpopulations within CAML provides insights into the biology of CRC.
Collapse
Affiliation(s)
| | - Susrutha K Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Upper Gastrointestinal, Hepatobiliary and Pancreatic Section, Department of General Surgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Reginald W Marsh
- Gillies McIndoe Research Institute, Wellington, New Zealand.,University of Auckland, Auckland, New Zealand
| | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|