1
|
Kazantseva EP, Frolov AM, Frolov MA, Novikova EA, Mugulov KS, Kozlova KS, Volchanskiy KI, Maximova SA, Pilipenko MO. The role of Helicobacter pylori in the development of inflammatory eyelid diseases. ACTA BIOMEDICA SCIENTIFICA 2024; 9:108-116. [DOI: 10.29413/abs.2024-9.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background. Blepharitis is one of the most common eye diseases: it accounts for 23.3 % of the total number of patients with inflammatory eye diseases worldwide. 40.2 % of these patients seek outpatient care. The incidence of blepharitis is 1.5–2 times higher in women than in men. The leading factors in the development of blepharitis are both general (gastrointestinal tract diseases, diabetes mellitus, hypertension, systemic use of corticosteroids, etc.) and local (atopic and seborrheic dermatitis or rosacea). The main causative agents of this disease are Staphylococcus spp. (S. aureus, S. epidermidis). As a rule, the disease manifests itself in patients aged 30–50 years, while in women aged 40 to 45 years, 80 % of blepharitis are of staphylococcal origin. Currently, there are reports in the literature about apotential link between Helicobacter pylori infection and the development of chronic blepharitis, but the data are very contradictory.The aim of the study. To analyze the features of the relationship between Helicobacter pylori and inflammatory eyelid diseases.Materials and methods. We conducted a search and analysis of literary sources in the Web of Science, PubMed and Google Scholar databases, as well as in the Russian Science Citation Index database for the period from 2000 to 2022.Conclusion. The review analyzes and summarizes the pathogenic mechanisms of the relationship between chronic blepharitis and Helicobacter pylori. We carried out an analysis of numerous studies, which give grounds to assume a possible role of Helicobacter pylori infection in the development and course of inflammatory eyelid diseases (blepharitis). The main pathogenic aspects in these studies are: chronic inflammation of the eyelids and gastrointestinal tract (antigenic mimicry); excretion of toxic substances from the oral cavity (ammonia, hydrogen nitrite, hydrogen cyanide and other substances causing indirect inflammation of the conjunctiva and eyelid cartilage); the presence of Helicobacter pylori in tears.
Collapse
Affiliation(s)
- E. P. Kazantseva
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - A. M. Frolov
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - M. A. Frolov
- Peoples’ Friendship University of Russia named after Patrice Lumumba
| | - E. A. Novikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. S. Mugulov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. S. Kozlova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. I. Volchanskiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - S. A. Maximova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. O. Pilipenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
2
|
Wang F. Diagnostic value of combined detection of three gastric functions and Helicobacter pylori typing in chronic gastritis and gastric cancer. SLAS Technol 2024; 29:100141. [PMID: 38710304 DOI: 10.1016/j.slast.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
This research attempted to clarify the clinical diagnostic value of combined detection of gastric function and Helicobacter pylori (Hp) serotyping in chronic gastritis and gastric cancer (GC). The 80 chronic non atrophic gastritis (CNAG) patients treated in our hospital from October 2021 to October 2022 received selection as the CNAG group. The 96 chronic atrophic gastritis (CAG) patients diagnosed by gastroscopy and pathology in the same period received selection as CAG group. During the same period, 50 patients diagnosed with GC received inclusion in GC group. Pepsin I (PG I), PG II (PG II), gastrin-17 (G-17) and Hp serotyping received detection and comparison in three groups. The diagnostic efficacy of PG Ⅰ, PG Ⅱ, G-17, the ratio of serum PG I to PG II (PGR), and Hp serotyping in chronic gastritis and GC received evaluation by receiver operating characteristic (ROC). Relative to in the CNAG group, PG I and PGR levels in the other two groups exhibited depletion (P < 0.05); no statistical significance was observed in the PG II level among the three groups (P > 0.05); relative to the CNAG group, the G-17 level in the other two groups exhibited elevation (P < 0.05). Total Hp positive rate was 61.06 %, among which GC group exhibited the highest positive rate (72.00 %), and type I Hp positive rate also exhibited the highest in GC group (60.00 %). The type II Hp positive rate exhibited the highest in CNAG group (15.00 %). The PG I and PGR levels in type I Hp positive patients exhibited depletion relative to those in type II Hp positive patients, whereas PG II and G-17 levels exhibited elevation. When testing each indicator alone, the area under the curve (AUC) of PG I exhibited the highest in CNAG group, which was 0.874. When testing each indicator alone, AUC of Hp typing exhibited the highest in CAG group, which was 0.515. When testing each indicator alone, AUC of G-17 exhibited the highest in GC group, which was 0.787. The performance of combined detection was better than that of individual detection, with AUCs greater than 0.9 in three groups. In conclusion, changes in PG I, PG II, PGR and G-17 levels and Hp serotyping can receive application as screening indicators for chronic gastritis and GC, which can reflect relevant status of gastric mucosa to varying degrees. Combined detection of indicators has higher diagnostic performance and can receive application as an auxiliary diagnostic indicator in addition to gastroscopy biopsy, providing a reference basis for the formulation of clinical diagnosis and treatment plans.
Collapse
Affiliation(s)
- Fei Wang
- Department of Hepatobiliary Gastrointestinal Surgery, Changshu Hospital of Traditional Chinese Medicine (New Area Hospital), Changshu, Jiangsu 215500, PR China.
| |
Collapse
|
3
|
Cao L, Lin G, Fan D, Weng K, Chen Y, Wang J, Li P, Zheng C, Huang C, Xie J. NUAK1 activates STAT5/GLI1/SOX2 signaling to enhance cancer cell expansion and drives chemoresistance in gastric cancer. Cell Rep 2024; 43:114446. [PMID: 38996065 DOI: 10.1016/j.celrep.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The gene encoding the NUAK family kinase 1 (NUAK1) is frequently amplified and its expression is upregulated, activating oncogenic signaling in various cancers. However, little is known about its role in gastric cancer (GC). We investigate the mechanistic links among NUAK1, Hedgehog signaling, and tumorigenesis in GC. NUAK1 overexpression is validated in local and public GC cohorts. Patient-derived xenograft and transgenic mouse models demonstrate that NUAK1 depletion or inhibition dramatically ameliorates gastric tumorigenesis. NUAK1 upregulates GLI1 expression by activating STAT5-mediated transcription and stabilizing GLI1 protein. NUAK1 depletion or inhibition impairs cancer cell expansion, tumor formation, and chemotherapy resistance in in vitro and in vivo models. Clinicopathological analysis confirms that upregulated NUAK1 expression correlates with poor prognosis and chemotherapy resistance in human GC. Our findings demonstrate that the signaling axis NUAK1/STAT5/GLI1 promotes cancer cell expansion and tumorigenesis and indicate that NUAK1 is an attractive therapeutic target and prognostic factor in GC.
Collapse
Affiliation(s)
- Longlong Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Guangtan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Denghui Fan
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Yujing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Jiabin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Chaohui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China
| | - Changming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| | - Jianwei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China; Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Yang M. Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front Oncol 2024; 14:1402483. [PMID: 38835386 PMCID: PMC11148328 DOI: 10.3389/fonc.2024.1402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Gastric Cancer (GC) is a prevalent malignancy globally and is the third leading cause of cancer-related deaths. Recent researches focused on the correlation between intestinal flora and GC. Studies indicate that bacteria can influence the development of gastrointestinal tumors by releasing bacterial extracellular vesicles (BEVs). The Tumor microenvironment (TME) plays an important role in tumor survival, with the interaction between intestinal flora, BEVs, and TME directly impacting tumor progression. Moreover, recent studies have demonstrated that intestinal microflora and BEVs can modify TME to enhance the effectiveness of antitumor drugs. This review article provides an overview and comparison of the biological targets through which the intestinal microbiome regulates TME, laying the groundwork for potential applications in tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Mingjin Yang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Fu XP, Ji CY, Tang WQ, Yu TT, Luo L. Long non-coding RNA LOXL1-AS1: a potential biomarker and therapeutic target in human malignant tumors. Clin Exp Med 2024; 24:93. [PMID: 38693424 PMCID: PMC11062969 DOI: 10.1007/s10238-024-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.
Collapse
Affiliation(s)
- Xiao-Ping Fu
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Chun-Yan Ji
- Department of Gastroenterology, Hubei Provincial Hospital of Traditional Chinese and Western Medicine, Wuhan, 430015, People's Republic of China
| | - Wen-Qian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China
| | - Ting-Ting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, 443000, People's Republic of China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Hongshan District, 856 Luoyu Road, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
6
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
7
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
8
|
Cai HQ, Zhang LY, Fu LM, Xu B, Jiao Y. Mutational landscape of TP53 and CDH1 in gastric cancer. World J Gastrointest Surg 2024; 16:276-283. [PMID: 38463349 PMCID: PMC10921187 DOI: 10.4240/wjgs.v16.i2.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
In this editorial we comment on an article published in a recent issue of the World J Gastrointest Surg. A common gene mutation in gastric cancer (GC) is the TP53 mutation. As a tumor suppressor gene, TP53 is implicated in more than half of all tumor occurrences. TP53 gene mutations in GC tissue may be related with clinical pathological aspects. The TP53 mutation arose late in the progression of GC and aided in the final switch to malignancy. CDH1 encodes E-cadherin, which is involved in cell-to-cell adhesion, epithelial structure maintenance, cell polarity, differentiation, and intracellular signaling pathway modulation. CDH1 mutations and functional loss can result in diffuse GC, and CDH1 mutations can serve as independent prognostic indicators for poor prognosis. GC patients can benefit from genetic counseling and testing for CDH1 mutations. Demethylation therapy may assist to postpone the onset and progression of GC. The investigation of TP53 and CDH1 gene mutations in GC allows for the investigation of the relationship between these two gene mutations, as well as providing some basis for evaluating the prognosis of GC patients.
Collapse
Affiliation(s)
- Hong-Qiao Cai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Yue Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Ming Fu
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Bin Xu
- Department of Traditional Chinese Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
9
|
Gu Z, Wu Q, Shang B, Zhang K, Zhang W. Organoid co-culture models of the tumor microenvironment promote precision medicine. CANCER INNOVATION 2024; 3:e101. [PMID: 38948532 PMCID: PMC11212345 DOI: 10.1002/cai2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 07/02/2024]
Abstract
In recent years, the three-dimensional (3D) culture system has emerged as a promising preclinical model for tumor research owing to its ability to replicate the tissue structure and molecular characteristics of solid tumors in vivo. This system offers several advantages, including high throughput, efficiency, and retention of tumor heterogeneity. Traditional Matrigel-submerged organoid cultures primarily support the long-term proliferation of epithelial cells. One solution for the exploration of the tumor microenvironment is a reconstitution approach involving the introduction of exogenous cell types, either in dual, triple or even multiple combinations. Another solution is a holistic approach including patient-derived tumor fragments, air-liquid interface, suspension 3D culture, and microfluidic tumor-on-chip models. Organoid co-culture models have also gained popularity for studying the tumor microenvironment, evaluating tumor immunotherapy, identifying predictive biomarkers, screening for effective drugs, and modeling infections. By leveraging these 3D culture systems, it is hoped to advance the clinical application of therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Zhaoru Gu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Quanyou Wu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bingqing Shang
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wen Zhang
- Department of Immunology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Xu Y, Wang X, Yuan W, Zhang L, Chen W, Hu K. Identification of BANF1 as a novel prognostic biomarker in gastric cancer and validation via in-vitro and in-vivo experiments. Aging (Albany NY) 2024; 16:1808-1828. [PMID: 38261746 PMCID: PMC10866416 DOI: 10.18632/aging.205461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Gastric cancer (GC) is a widespread malignancy characterized by a notably high incidence rate and an unfavorable prognosis. We conducted a meticulous analysis of GC high-throughput sequencing data downloaded from the Gene Expression Omnibus (GEO) repository to pinpoint distinctive genes associated with GC. Our investigation successfully identified three signature genes implicated in GC, with a specific focus on the barrier to autointegration factor 1 (BANF1), which exhibits elevated expression across various cancer types, including GC. Bioinformatic analysis has highlighted BANF1 as a prognostic indicator for patients with GC, with direct implications for immune cell infiltration. To gain a more comprehensive understanding of the significance of BANF1 in GC, we performed a series of in vitro experiments to confirm its high expression in GC tissues and cellular components. Intriguingly, the induction of BANF1 knockdown resulted in a marked attenuation of proliferation, migratory capacity, and invasive potential in GC cells. Moreover, our in vivo experiments using nude mouse models revealed a notable impediment in tumor growth following BANF1 knockdown. These insights underscore the feasibility of BANF1 as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xu Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Weiwei Yuan
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei 230022, China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wei Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang 236000, China
| |
Collapse
|
11
|
Cheng W, Liao Y, Xie Y, Wang Q, Li L, Chen Y, Zhao Y, Zhou J. Helicobacter pylori-induced fibroblast-derived Serpin E1 promotes gastric cancer growth and peritoneal dissemination through p38 MAPK/VEGFA-mediated angiogenesis. Cancer Cell Int 2023; 23:326. [PMID: 38104099 PMCID: PMC10725580 DOI: 10.1186/s12935-023-03177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Fibroblasts, especially cancer-associated fibroblasts (CAFs), represent the predominant stromal cell population in the tumor microenvironment and have an important function in tumorigenesis by interacting with tumor cells. However, their interaction remains elusive in an inflammatory tumor microenvironment induced by Helicobacter pylori (H. pylori). METHODS The expression of Serpin family E member 1 (Serpin E1) was measured in fibroblasts with or without H. pylori infection, and primary gastric cancer (GC) cells. Serpin E1 knockdown and overexpression fibroblasts were generated using Serpin E1 siRNA or lentivirus carrying Serpin E1. Co-culture models of fibroblasts and GC cells or human umbilical vein endothelial cells (HUVECs) were established with direct contact or the Transwell system. In vitro functional experiments and in vivo tumorigenesis assay were employed to study the malignant behaviors of GC cells interacting with fibroblasts. ELISA was used for quantifying the levels of Serpin E1 and VEGFA in the culture supernatant. The tube formation capacity of HUVECs was assessed using a tube formation assay. Recombinant human Serpin E1 (recSerpin E1), anti-Serpin E1 antibody, and a MAPK pathway inhibitor were utilized to treat HUVECs for elucidating the underlying molecular mechanisms. RESULTS Serpin E1 was predominantly expressed in gastric CAFs. H. pylori infection significantly enhanced the expression and secretion of Serpin E1 by CAFs. Both fibroblast-derived Serpin E1 and recSerpin E1 enhanced the growth, invasion, and migration of GC cells, along with increased VEGFA expression and tube formation in HUVECs. Furthermore, the co-inoculation of GC cells and fibroblasts overexpressing Serpin E1 triggered the expression of Serpin E1 in cancer cells, which facilitated together xenograft tumor growth and peritoneal dissemination of GC cells in nude mice, with an increased expression of Ki67, Serpin E1, CD31 and/or VEGFA. These processes may be mediated by Serpin E1-induced migration and p38 MAPK/VEGFA-mediated angiogenesis of HUVECs. CONCLUSION H. pylori infection induces Serpin E1 expression in fibroblasts, subsequently triggering its expression in GC cells through their interaction. Serpin E1 derived from these cells promotes the migration and p38 MAPK/VEGFA-mediated angiogenesis of HUVECs, thereby facilitating GC growth and peritoneal metastasis. Targeting Serpin E1 signaling is a potential therapy strategy for H. pylori-induced GC.
Collapse
Affiliation(s)
- Wei Cheng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yonghui Liao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
- Prenatal Diagnosis Center of Qianxinan People's Hospital, Xingyi, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Leilei Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yuanjia Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
12
|
Zeng YL, Gao F, Zhang C, Ren PP, Ma L, Wang X, Wang R, Kang Y, Li K. USF1 modulates transcription and cellular functions by regulating multiple transcription factors in Huh7 cells. Oncol Lett 2023; 26:532. [PMID: 38020298 PMCID: PMC10655063 DOI: 10.3892/ol.2023.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma (HCC), is a malignant tumor that has high rates of metastasis and mortality worldwide. Upstream transcription factor 1 (USF1) is a canonical transcription factor (TF) and is associated with the pathogenesis of several cancers, but its biological functions and molecular targets in HCC remain unclear. Huh7 cells that overexpress USF1 were used with whole transcriptome profiling through RNA sequencing and chromatin immunoprecipitation (ChIP) sequencing methods to investigate the downstream targets of USF1. Reverse transcription-quantitative PCR was then used to validate the downstream targets. The results showed that USF1 significantly regulates 350 differentially expressed genes (DEGs). The upregulated DEGs were primarily protein-coding genes enriched in immune and inflammation response pathways, while the downregulated DEGs were mainly coding long non-coding (lnc)RNAs, indicating the regulatory function of USF1. It was also demonstrated that USF1 directly binds to the promoter region of 2,492 genes, which may be involved in the viral progression and cell proliferation pathways. By integrating these two datasets, 16 overlapped genes were detected, including downregulated lncRNA-NEAT1 and upregulated TF-ETV5. The downregulated lncRNA-NEAT1 showed reverse expression pattern and prognosis result compared with that of USF1 in patients with liver cancer, while upregulated TF-ETV5 showed consistent results with USF1. Promoter region motif analysis indicated that ETV5 has more binding motifs and genes than USF1 itself for USF1-regulated DEGs, indicating that USF1 may indirectly modulate gene expression by regulating ETV5 expression in Huh7 cells. The study also validated the direct interaction between USF1 and the promoter of ETV5 using ChIP-qPCR. In summary, the results demonstrated that USF1 binds to the promoter region of thousands of genes and affects a large part of DEGs indirectly. Downstream genes, including lncRNA-NEAT1 and TF-ETV5, may also have potential functions in the regulated network by USF1 and have potential functions in the progression of HCC. The present findings suggested that USF1 and its downstream targets could be potential targets for HCC therapy in the future.
Collapse
Affiliation(s)
- Yan-Li Zeng
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P.R. China
- Department of Infectious Diseases, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Fei Gao
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Can Zhang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Pei-Pei Ren
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Li Ma
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xin Wang
- Department of Infectious Diseases, Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Ruzhen Wang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yi Kang
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ke Li
- Department of Infectious Diseases, Henan Key Laboratory for Infectious Diseases, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
13
|
Nie K, Zheng Z, Li X, Chang Y, Liu F, Wang X. Explore the active ingredients and potential mechanisms of JianPi QingRe HuaYu Methods in the treatment of gastric inflammation-cancer transformation by network pharmacology and experimental validation. BMC Complement Med Ther 2023; 23:411. [PMID: 37964307 PMCID: PMC10644588 DOI: 10.1186/s12906-023-04232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND JianPi QingRe HuaYu Methods (JQH) have been long used to treat chronic atrophic gastritis (CAG) and precancerous lesions of gastric cancer (PLGC). However, whether JQH can inhibit the transformation of gastritis to gastric cancer (GC) remains unclear. METHODS Herein, we first retrieved the active ingredients and targets of JQH from the TCMSP database and the targets related to the gastric inflammation-cancer transformation from public databases. Differentially expressed genes (DEGs) related to gastric inflammation-cancer transformation were identified from the Gene Expression Omnibus (GEO) database. Then, we obtained the potential therapeutic targets of JQH in treating gastric inflammation-cancer transformation by intersecting drugs and disease targets. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analyses of the potential therapeutic targets were conducted using R software. Next, we conducted molecular docking and in vitro experiments to validate our results. RESULTS We obtained 214 potential therapeutic targets of JQH by intersecting drugs and disease targets. We found that the potential mechanisms of JQH in treating gastric inflammation-cancer transformation might be related to JAK-STAT, Wnt, p53 and VEGF signaling pathways. The molecular docking indicated that quercetin, as the main active ingredient of JQH, might inhibit gastric inflammation-cancer transformation by binding with specific receptors. Our experimental results showed that quercetin inhibited cells proliferation (P < 0.001), promoted cell apoptosis (P < 0.001), reduced the secretion of pro-inflammatory cytokines (P < 0.001) and promoted the secretion of anti-inflammatory cytokines (P < 0.001) in MNNG-induced GES-1 cells. Furthermore, quercetin inhibited cells proliferation (P < 0.001) and reduced mRNA and protein level of markers of PLGC (P < 0.001) in CDCA-induced GES-1 cells. CONCLUSION These results provide the material basis and regulatory mechanisms of JQH in treating gastric inflammation-cancer transformation.
Collapse
Affiliation(s)
- Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhihua Zheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China
| | - Xiushen Li
- Shenzhen University General Hospital, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - FengBin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaoyu Wang
- School of Health Science, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
Fu D, Si Q, Yu C, Han Z, Zang L. USF1-mediated ALKBH5 stabilizes FLII mRNA in an m6A-YTHDF2-dependent manner to repress glycolytic activity in prostate adenocarcinoma. Mol Carcinog 2023; 62:1700-1716. [PMID: 37493109 DOI: 10.1002/mc.23609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
Upstream-stimulating factor 1 (USF1) is a ubiquitously expressed transcription factor implicated in multiple cellular processes, including metabolism and proliferation. This study focused on the function of USF1 in glycolysis and the malignant development of prostate adenocarcinoma (PRAD). Bioinformatics predictions suggested that USF1 is poorly expressed in PRAD. The clinical PRAD samples revealed a low level of USF1, which was correlated with an unfavorable prognosis. Artificial upregulation of USF1 significantly repressed glycolytic activity in PRAD cells and reduced cell growth and metastasis in vitro and in vivo. Potential downstream genes of USF1 were probed by integrated bioinformatics analyses. The chromatin immunoprecipitation and luciferase assays indicated that USF1 bound to the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) promoter for transcription activation. Flightless I (FLII) was identified as the gene showing the highest degree of correlation with ALKBH5. As an m6A demethylase, ALKBH5 enhanced FLII mRNA stability by inducing m6A demethylation in an m6A-YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2)-dependent manner. Either silencing of ALKBH5 or FLII blocked the role of USF1 in PARD cells and restored glycolysis, cell proliferation, and invasion. This study demonstrates that USF1 activates ALKBH5 to stabilize FLII mRNA in an m6A-YTHDF2-dependent manner, thereby repressing glycolysis processes and the progression of PRAD.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Qingyue Si
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Chenxi Yu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Zhifu Han
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
16
|
Sha R, Zhang J, Meng F, Zhaori G. Gastric cancer metastasis-related NT5DC2 indicates unfavorable prognosis of patients. Medicine (Baltimore) 2023; 102:e35030. [PMID: 37800836 PMCID: PMC10553061 DOI: 10.1097/md.0000000000035030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Approximately 80 to 90% of patients with gastric cancer (GC) eventually develop into metastatic GC nowadays,because GC is difficult to be diagnosed at an early stage. GC patients with metastases typically have a poor prognosis. It is necessary to explore a potential prognostic marker in metastatic GC. METHODS All GC data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The metastasis-related candidate gene and its role in GC were analyzed by comprehensive analysis. RESULTS Totally 1049 metastasis-related genes were identified in GC. Univariate Cox regression analysis screened the top 10 genes (PDHX, SLC43A1, CSAG2, NT5DC2, CSAG1, FMN1, MED1, HIVEP2, FNDC3A, and PPP1R2) that were closely correlated with prognosis of GC patients. Among which, NT5DC2 was screened as the target gene for subsequent study. The NT5DC2 expression were increased in primary GC and metastatic GC samples. Moreover, GC patients with high NT5DC2 expression exhibited shorter overall survival and post progression survival, and the NT5DC2 was metastatic GC patients' independent prognostic factor. Totally 29 pathways were activated in metastatic GC samples with high NT5DC2 expression. Four immune cells' infiltration were significantly different between NT5DC2 high and low expressed metastatic GC patients. NT5DC2 showed significantly negative correlations with 6 types of immune cells' critical marker genes and 5 types of immune cell infiltration. The 10 immune checkpoint expressions were decreased in high NTDC2 expression metastatic GC patients. CONCLUSIONS NT5DC2 plays a prognostic role in metastatic GC. GC patients with high NT5DC2 expression indicates unfavorable prognosis.
Collapse
Affiliation(s)
- Rula Sha
- Department of Internal Medicine-Oncology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia, P.R. China
| | - Jiaming Zhang
- Department of Internal Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Fanjie Meng
- Department of Internal Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| | - Getu Zhaori
- Department of Abdominal Surgery, The Affiliated People’s Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China
| |
Collapse
|
17
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
18
|
Cheng W, He L, Ren W, Yue T, Xie X, Sun J, Chen X, Wu Z, Li F, Piao JG. Bacteria-nanodrug cancer treatment system: The combination of dual swords and the confrontation of needle tips. NANO TRANSMED 2023; 2:100008. [DOI: 10.1016/j.ntm.2023.100008 received in revised form 24 august 2023; acce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
|
19
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
20
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Zhang M, Yang K, Wang QH, Xie L, Liu Q, Wei R, Tao Y, Zheng HL, Lin N, Xu H, Yang L, Wang H, Zhang T, Xue Z, Cao JL, Pan Z. The Cytidine N-Acetyltransferase NAT10 Participates in Peripheral Nerve Injury-Induced Neuropathic Pain by Stabilizing SYT9 Expression in Primary Sensory Neurons. J Neurosci 2023; 43:3009-3027. [PMID: 36898834 PMCID: PMC10146489 DOI: 10.1523/jneurosci.2321-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
RNA N4-acetylcytidine (ac4C) modification is increasingly recognized as an important layer of gene regulation; however, the involvement of ac4C in pain regulation has not been studied. Here, we report that N-acetyltransferase 10 protein (NAT10; the only known ac4C "writer") contributes to the induction and development of neuropathic pain in an ac4C-dependent manner. Peripheral nerve injury increases the levels of NAT10 expression and overall ac4C in injured dorsal root ganglia (DRGs). This upregulation is triggered by the activation of upstream transcription factor 1 (USF1), a transcription factor that binds to the Nat10 promoter. Knock-down or genetic deletion of NAT10 in the DRG abolishes the gain of ac4C sites in Syt9 mRNA and the augmentation of SYT9 protein, resulting in a marked antinociceptive effect in nerve-injured male mice. Conversely, mimicking NAT10 upregulation in the absence of injury evokes the elevation of Syt9 ac4C and SYT9 protein and induces the genesis of neuropathic-pain-like behaviors. These findings demonstrate that USF1-governed NAT10 regulates neuropathic pain by targeting Syt9 ac4C in peripheral nociceptive sensory neurons. Our findings establish NAT10 as a critical endogenous initiator of nociceptive behavior and a promising new target for treating neuropathic pain.SIGNIFICANCE STATEMENT The cytidine N4-acetylcytidine (ac4C), a new epigenetic RNA modification, is crucial for the translation and stability of mRNA, but its role for chronic pain remains unclear. Here, we demonstrate that N-acetyltransferase 10 (NAT10) acts as ac4C N-acetyltransferase and plays an important role in the development and maintenance of neuropathic pain. NAT10 was upregulated via the activation of the transcription factor upstream transcription factor 1 (USF1) in the injured dorsal root ganglion (DRG) after peripheral nerve injury. Since pharmacological or genetic deleting NAT10 in the DRG attenuated the nerve injury-induced nociceptive hypersensitivities partially through suppressing Syt9 mRNA ac4C and stabilizing SYT9 protein level, NAT10 may serve as an effective and novel therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Kehui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling Xie
- Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Qiaoqiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Runa Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Li Zheng
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ninghua Lin
- Department of Anesthesiology, Yantai affiliated Hospital of Binzhou Medical University, Yantai 264000, China
| | - Hengjun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongjun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Tingruo Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhouya Xue
- Department of Anesthesiology, Yancheng affiliated Hospital of Xuzhou Medical University, Yancheng 224008, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
22
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
23
|
Increased IL-17A Serum Levels and Gastric Th17 Cells in Helicobacter pylori-Infected Patients with Gastric Premalignant Lesions. Cancers (Basel) 2023; 15:cancers15061662. [PMID: 36980548 PMCID: PMC10046233 DOI: 10.3390/cancers15061662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Helicobacter pylori infection is characterized by an inflammatory infiltrate that might be an important antecedent of gastric cancer. The purpose of this study was to evaluate whether interleukin (IL)-17 inflammation is elicited by gastric T cells in Helicobacter pylori patients with gastric intestinal metaplasia and dysplasia (IM/DYS). We also investigated the serum IL-17A levels in Helicobacter pylori patients with gastric intestinal metaplasia and dysplasia, and patients with Helicobacter pylori non-atrophic gastritis (NAG). Methods: the IL-17 cytokine profile of gastric T cells was investigated in six patients with IM/DYS and Helicobacter pylori infection. Serum IL-17A levels were measured in 45 Helicobacter pylori-infected IM/DYS patients, 45 Helicobacter pylori-infected patients without IM/DYS and in 45 healthy controls (HC). Results: gastric T cells from all IM/DYS patients with Helicobacter pylori were able to proliferate in response to Helicobacter pylori and to produce IL-17A. The Luminex analysis revealed that IL-17A levels were significantly increased in Helicobacter pylori IM/DYS patients compared to healthy controls and to Helicobacter pylori gastritis patients without IM/DYS (452.34 ± 369.13 pg/mL, 246.82 ± 156.06 pg/mL, 169.26 ± 73.82 pg/mL, respectively; p < 0.01, p < 0.05). Conclusions: the results obtained indicate that Helicobacter pylori is able to drive gastric IL-17 inflammation in IM/DYS Helicobacter pylori-infected patients, and that IL-17A serum levels are significantly increased in Helicobacter pylori-infected patients with IM/DYS.
Collapse
|
24
|
Deng M, Zhang L, Zheng W, Chen J, Du N, Li M, Chen W, Huang Y, Zeng N, Song Y, Chen Y. Helicobacter pylori-induced NAT10 stabilizes MDM2 mRNA via RNA acetylation to facilitate gastric cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:9. [PMID: 36609449 PMCID: PMC9817303 DOI: 10.1186/s13046-022-02586-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND N4-acetylcytidine (ac4C), a widespread modification in human mRNAs that is catalyzed by the N-acetyltransferase 10 (NAT10) enzyme, plays an important role in promoting mRNA stability and translation. However, the biological functions and regulatory mechanisms of NAT10-mediated ac4C were poorly defined. METHODS ac4C mRNA modification status and NAT10 expression levels were analyzed in gastric cancer (GC) samples and compared with the corresponding normal tissues. The biological role of NAT10-mediated ac4C and its upstream and downstream regulatory mechanisms were determined in vitro and in vivo. The therapeutic potential of targeting NAT10 in GC was further explored. RESULTS Here, we demonstrated that both ac4C mRNA modification and its acetyltransferase NAT10 were increased in GC, and increased NAT10 expression was associated with disease progression and poor patient prognosis. Functionally, we found that NAT10 promoted cellular G2/M phase progression, proliferation and tumorigenicity of GC in an ac4C-depedent manner. Mechanistic analyses demonstrated that NAT10 mediated ac4C acetylation of MDM2 transcript and subsequently stabilized MDM2 mRNA, leading to its upregulation and p53 downregulation and thereby facilitating gastric carcinogenesis. In addition, Helicobacter pylori (Hp) infection contributed to NAT10 induction, causing MDM2 overexpression and subsequent p53 degradation. Further investigations revealed that targeting NAT10 with Remodelin showed anti-cancer activity in GC and augmented the anti-tumor activity of MDM2 inhibitors in p53 wild-type GC. CONCLUSIONS These results suggest the critical role of NAT10-mediated ac4C modification in GC oncogenesis and reveal a previously unrecognized signaling cascade involving the Hp-NAT10-MDM2-p53 axis during GC development.
Collapse
Affiliation(s)
- Min Deng
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Long Zhang
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Wenying Zheng
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Jiale Chen
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Nan Du
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Meiqi Li
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Weiqing Chen
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Yonghong Huang
- grid.410737.60000 0000 8653 1072Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of “Translational Medicine On Malignant Tumor Treatment”, Guangzhou, 510095 China
| | - Ning Zeng
- grid.417404.20000 0004 1771 3058First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, 510280 China
| | - Yuanbin Song
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Yongming Chen
- grid.488530.20000 0004 1803 6191Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| |
Collapse
|
25
|
Backert S, Linz B, Tegtmeyer N. Helicobacter pylori-Induced Host Cell DNA Damage and Genetics of Gastric Cancer Development. Curr Top Microbiol Immunol 2023; 444:185-206. [PMID: 38231219 DOI: 10.1007/978-3-031-47331-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Gastric cancer is a very serious and deadly disease worldwide with about one million new cases every year. Most gastric cancer subtypes are associated with genetic and epigenetic aberrations caused by chromosome instability, microsatellite instability or Epstein-Barr virus infection. Another risk factor is an infection with Helicobacter pylori, which also triggers severe alterations in the host genome. This pathogen expresses an extraordinary repertoire of virulence determinants that take over control of important host cell signaling functions. In fact, H. pylori is a paradigm of persistent infection, chronic inflammation and cellular destruction. In particular, H. pylori profoundly induces chromosomal DNA damage by introducing double-strand breaks (DSBs) followed by genomic instability. DSBs appear in response to oxidative stress and pro-inflammatory transcription during the S-phase of the epithelial cell cycle, which mainly depends on the presence of the bacterial cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). This scenario is closely connected with the T4SS-mediated injection of ADP-glycero-β-D-manno-heptose (ADP-heptose) and oncoprotein CagA. While ADP-heptose links transcription factor NF-κB-induced innate immune signaling with RNA-loop-mediated DNA replication stress and introduction of DSBs, intracellular CagA targets the tumor suppressor BRCA1. The latter scenario promotes BRCAness, a disease characterized by the deficiency of effective DSB repair. In addition, genetic studies of patients demonstrated the presence of gastric cancer-associated single nucleotide polymorphisms (SNPs) in immune-regulatory and other genes as well as specific pathogenic germline variants in several crucial genes involved in homologous recombination and DNA repair, all of which are connected to H. pylori infection. Here we review the molecular mechanisms leading to chromosomal DNA damage and specific genetic aberrations in the presence or absence of H. pylori infection, and discuss their importance in gastric carcinogenesis.
Collapse
Affiliation(s)
- Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| | - Bodo Linz
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
26
|
Lee SD, Jeong H, Hwang BR, Yu BM, Cho Y, Nam KT, Kim H, Lee YC. Helicobacter pylori promotes epithelial-to-mesenchymal transition by downregulating CK2β in gastric cancer cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166588. [PMID: 36404440 DOI: 10.1016/j.bbadis.2022.166588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Strains of Helicobacter pylori that are positive for the oncoprotein CagA (cytotoxin-associated gene A) are associated with gastric cancer and might be related to the epithelial-to-mesenchymal transition (EMT). Casein kinase 2 (CK2) is a serine/threonine protein kinase that plays a major role in tumorigenesis through signaling pathways related to the EMT. However, the role played by the interaction between CagA and CK2 in gastric carcinogenesis is poorly understood. Although CK2α protein expression remained unchanged during H. pylori infection, we found that CK2α kinase activity was increased in gastric epithelial cells. We also found that the CK2β protein level decreased in H. pylori-infected gastric cancer cells in CagA-dependent manner and demonstrated that CagA induced CK2β degradation via HDM2 (human double minute 2; its murine equivalent is MDM2). We observed that CagA induced HDM2 protein phosphorylation and that p53 levels were decreased in H. pylori-infected gastric cancer cells. In addition, downregulation of CK2β induced AKT Ser473 phosphorylation and decreased the AKT Ser129 phosphorylation level in gastric cancer cells. We also found that the downregulation of CK2β triggered the upregulation of Snail levels in gastric cancer cells. Furthermore, our in vivo experiments and functional assays of migration and colony formation suggest that CK2β downregulation is a major factor responsible for the EMT in gastric cancer. Therefore, CK2 could be a key mediator of the EMT in H. pylori-infected gastric cancer and could serve as a molecular target for gastric cancer treatment.
Collapse
Affiliation(s)
- So Dam Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Ram Hwang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byeong Min Yu
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Teak Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Chan Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Bao J, He Y, Yang C, Lu N, Li A, Gao S, Hosyanto FF, Tang J, Si J, Tang X, Fu H, Xu L. Inhibition of mycobacteria proliferation in macrophages by low cisplatin concentration through phosphorylated p53-related apoptosis pathway. PLoS One 2023; 18:e0281170. [PMID: 36719870 PMCID: PMC9888694 DOI: 10.1371/journal.pone.0281170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Drug resistance is a prominent problem in the treatment of tuberculosis, so it is urgent to develop new anti- tuberculosis drugs. Here, we investigated the effects and mechanisms of cisplatin (DDP) on intracellular Mycobacterium smegmatis to tap the therapeutic potential of DDP in mycobacterial infection. RESULTS Macrophages infected with Mycobacterium smegmatis were treated with DDP alone or combined with isoniazid or rifampicin. The results showed that the bacterial count in macrophages decreased significantly after DDP (≤ 6 μg/mL) treatment. When isoniazid or rifampicin was combined with DDP, the number of intracellular mycobacteria was also significantly lower than that of isoniazid or rifampicin alone. Apoptosis of infected cells increased after 24 h of DDP treatment, as shown by flow cytometry and transmission electron microscopy detection. Transcriptome sequencing showed that there were 1161 upregulated and 645 downregulated differentially expressed genes (DEGs) between the control group and DDP treatment group. A Trp53-centered protein interaction network was found based on the top 100 significant DEGs through STRING and Cytoscape software. The expression of phosphorylated p53, Bax, JAK, p38 MAPK and PI3K increased after DDP treatment, as shown by Western blot analysis. Inhibitors of JAK, PI3K or p38 MAPK inhibited the increase in cell apoptosis and the reduction in the intracellular bacterial count induced by DDP. The p53 promoter Kevetrin hydrochloride scavenges intracellular mycobacteria. If combined with DDP, Kevetrin hydrochloride could increase the effect of DDP on the elimination of intracellular mycobacteria. In conclusion, DDP at low concentrations could activate the JAK, p38 MAPK and PI3K pathways in infected macrophages, promote the phosphorylation of p53 protein, and increase the ratio of Bax to Bcl-2, leading to cell apoptosis, thus eliminating intracellular bacteria and reducing the spread of mycobacteria. CONCLUSION DDP may be a new host-directed therapy for tuberculosis treatment, as well as the p53 promoter Kevetrin hydrochloride.
Collapse
Affiliation(s)
- Jiajia Bao
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Hospital-Acquired Infection Control Department, First People’s Hospital of Jintang County, Chengdu, China
| | - Yonglin He
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chun Yang
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Nan Lu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Anlong Li
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Sijia Gao
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | | | - Jialing Tang
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Junzhuo Si
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xia Tang
- Clinical laboratory, People’s Hospital of Rongchang District, Chongqing, China
| | - Huichao Fu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lei Xu
- Department of Pathogenic Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
28
|
Zhou Y, Zhao Y, Ma W, Zhang L, Jiang Y, Dong W. USF1-CHCHD4 axis promotes lung adenocarcinoma progression partially via activating the MYC pathway. Discov Oncol 2022; 13:136. [PMID: 36482116 PMCID: PMC9732179 DOI: 10.1007/s12672-022-00600-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to identify genes related to lung adenocarcinoma (LUAD) and investigate the effects and molecular mechanisms of coiled-coil-helix-coiled-coil-helix domain containing 4 (CHCHD4) in the progression of LUAD. METHODS The GEPIA database was used to evaluate the differential expression of CHCHD4 and the survival data of LUAD patients compared to controls. TCGA-LUAD database, JASPAR website, and GSEA were used to analyse the relationship between CHCHD4 and the upstream stimulating factor 1 (USF1) or MYC pathways. The proliferation, apoptosis, migration, and invasion of LUAD cells were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, colony formation, flow cytometry, wound healing, and transwell assays. qRT-PCR, western blotting, and immunohistochemistry were used to detect the mRNA and protein expression, respectively. Furthermore, xenograft tumours from nude mice were used to verify the effect of CHCHD4 on LUAD in vivo. RESULTS CHCHD4 overexpression was found in LUAD tumor tissues and cells, and high CHCHD4 was associated with a poor prognosis. Interestingly, CHCHD4 knockdown suppressed the malignant phenotype of the LUAD cells. Moreover, we found that USF1 upregulated CHCHD4 and promoted LUAD progression. CHCHD4 knockdown also inhibited the progression of LUAD. In addition, CHCHD4 knockdown suppressed xenograft tumour growth. CONCLUSION USF1-CHCHD4 axis can promote LUAD progress, which may be through activating MYC pathway.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yunxia Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Wei Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Yuanzhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, 250021, People's Republic of China.
| |
Collapse
|
29
|
Fu Y, Fang F, Guo H, Xiao X, Hu Y, Zeng Y, Chen T, Wu S, Lin N, Huang J, Jiang L, Ou Q, Liu C. Compartmentalisation of Hepatitis B virus X gene evolution in hepatocellular carcinoma microenvironment and the genotype-phenotype correlation of tumorigenicity in HBV-related patients with hepatocellular carcinoma. Emerg Microbes Infect 2022; 11:2486-2501. [PMID: 36102940 PMCID: PMC9621239 DOI: 10.1080/22221751.2022.2125344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) exists as quasispecies (QS). However, the evolutionary characteristics of haplotypes of HBV X gene in the hepatocellular carcinoma (HCC) microenvironment remain unclear. Mutations across X gene are essential for the tumorigenicity of HBV X protein (HBx). However, the functional phenotypes of many mutant HBx remain unknown. This study aims to compare the characteristics of X gene evolution between tumour and non-tumour tissues in HCC patients and investigate the tumorigenic phenotype of HBx harbouring mutation T81P/S101P/L123S. This study included 24 HCC patients. Molecular cloning of X gene was performed to analyse characteristics of haplotypes in liver tissues. HCC cell lines stably expressing wild-type or mutant HBx and subcutaneous tumour xenograft mouse model were used to assess HBx-T81P/S101P/L123S tumorigenicity. The mean heterogeneity of HBV QS across X gene in tumour tissues was lower than that in non-tumour tissues. A location bias was observed in X gene clones with genotype C or D in tumour tissues compared to those with genotype B. Mutations in genotype-C or - D clones were mainly clustered in the dimerization region and aa110-aa140 within the transactivation region. A novel mutation combination at residues 81, 101 and 123 was identified in tumour tissues. Further, HBx-T81P/S101P/L123S promotes cell proliferation and increases genomic instability, which was mediated by MYC. This study elucidates the compartmentalized evolution patterns of HBV X gene between intra tumour and non-tumour tissues in HCC patients and provides a new mechanism underlying HBV-driven hepatocarcinogenesis, suggesting a potential viral marker for monitoring HCC.
Collapse
Affiliation(s)
- Ya Fu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Fengling Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Hongyan Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xialin Xiao
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuhai Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yongbin Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Tianbin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Songhang Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Ni Lin
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jinlan Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Ling Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
- Qishui Ou Department of Laboratory Medicine, The First Affiliated Hospital, Clinical Laboratory Diagnostics, The First Clinical College, Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Can Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, People’s Republic of China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
- Can Liu Department of Laboratory Medicine, The First Affiliated Hospital, Clinical Laboratory Diagnostics, The First Clinical College, Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
30
|
Wang J, Du L, Chen X. Oncolytic virus: A catalyst for the treatment of gastric cancer. Front Oncol 2022; 12:1017692. [PMID: 36505792 PMCID: PMC9731121 DOI: 10.3389/fonc.2022.1017692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.
Collapse
Affiliation(s)
- Junqing Wang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| | - Xiangjian Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Xiangjian Chen, ; Linyong Du,
| |
Collapse
|
31
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
32
|
Zong C, Yang M, Guo X, Ji W. Chronic restraint stress promotes gastric epithelial malignant transformation by activating the Akt/p53 signaling pathway via ADRB2. Oncol Lett 2022; 24:300. [PMID: 35949623 PMCID: PMC9353258 DOI: 10.3892/ol.2022.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
The etiology of gastric cancer is associated with infectious, environmental and dietary factors, as well as genetic background. Additionally, emerging evidence has supported the vital role of chronic emotional stress on gastric carcinogenesis; however, the underlying mechanism remains unclear. The present study aimed to investigate the effects of chronic stress and a detrimental diet on gastric malignant epithelial transformation in rats. Therefore, 26 Wistar rats were randomly divided into the following four groups: i) Control; ii) detrimental diet (DD); iii) detrimental diet with chronic restraint (DR) and iv) detrimental diet with chronic restraint and propranolol treatment (DRP). ELISA was performed to detect the serum levels of epinephrine and norepinephrine. Epithelial cell apoptosis was analyzed using the TUNEL assay. The mRNA and protein expression levels of Akt and p53 were detected using reverse transcription quantitative PCR and western blotting, respectively. Pathological changes were analyzed using hematoxylin and eosin staining (H&E). The H&E staining results showed that dysplasia in the gastric mucosa occurred in two of eight rats in the DD group and in four of five rats in the DR group, whereas no dysplasia was detected in the DRP group. The apoptotic ratios of gastric epithelial cells were significantly decreased in all treatment groups compared with the control group. Adrenoceptor β2 (ADRB2) protein expression levels were increased significantly only in the DR group and this effect was significantly reduced in the DRP group. The mRNA expression levels of Akt and p53 were significantly upregulated in the DD group, and Akt mRNA expression was further elevated in the DR group. With regard to protein expression, the levels of Akt and p-Akt were significantly increased in the DR group, whereas these effects were reversed in the DRP group. Furthermore, the ratio of p-p53/p53 protein was significantly reduced in the DD or DR groups, but was reversed in the DRP group. Collectively, the findings of the present study suggested that chronic restraint stress potentially aggravates the gastric epithelial malignant transformation induced by a detrimental diet, at least partially via the Akt/p53 signaling pathway mediated via ADRB2.
Collapse
Affiliation(s)
- Chuanju Zong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Maoquan Yang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiaojing Guo
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
33
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
34
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
35
|
Liu Y, Baba Y, Ishimoto T, Gu X, Zhang J, Nomoto D, Okadome K, Baba H, Qiu P. Gut microbiome in gastrointestinal cancer: a friend or foe? Int J Biol Sci 2022; 18:4101-4117. [PMID: 35844804 PMCID: PMC9274484 DOI: 10.7150/ijbs.69331] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/04/2022] [Indexed: 12/07/2022] Open
Abstract
The impact of the gut microbiome on host health is becoming increasingly recognized. To date, there is growing evidence that the complex characteristics of the microbial community play key roles as potential biomarkers and predictors of responses in cancer therapy. Many studies have shown that altered commensal bacteria lead to cancer susceptibility and progression in diverse pathways. In this review, we critically assess the data for gut microbiota related to gastrointestinal cancer, including esophageal, gastric, pancreatic, colorectal cancer, hepatocellular carcinoma and cholangiocarcinoma. Importantly, the underlying mechanisms of gut microbiota involved in cancer occurrence, prevention and treatment are elucidated. The purpose of this review is to provide novel insights for applying this understanding to the development of new therapeutic strategies in gastrointestinal cancer by targeting the microbial community.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning province, China
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Next-Generation Surgical Therapy Development, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning province, China
| | - Jun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Daichi Nomoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuo Okadome
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| |
Collapse
|
36
|
Ju Z, Shen L, Zhou M, Luo J, Yu Z, Qu C, Lei R, Lei M, Huang R. Helicobacter pylori and Alzheimer's Disease-Related Metabolic Dysfunction: Activation of TLR4/Myd88 Inflammation Pathway from p53 Perspective and a Case Study of Low-Dose Radiation Intervention. ACS Chem Neurosci 2022; 13:1065-1081. [PMID: 35312296 DOI: 10.1021/acschemneuro.2c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis is observed in Alzheimer's disease (AD) and is frequently associated with AD-induced metabolic dysfunction. However, the extent and specific underlying molecular mechanisms triggered by alterations of gut microbiota composition and function mediating AD-induced metabolic dysfunction in AD remain incompletely uncovered. Here, we indicate that Helicobacter pylori (H. pylori) is abundant in AD patients with relative metabolic dysfunction. Fecal microbiota transplantation from the AD patients promoted metabolic dysfunction in mice and increased gut permeability. H. pylori increased gut permeability through activation of the TLR4/Myd88 inflammation pathway in a p53-dependent manner, leading to metabolic dysfunction. Moreover, p53 deficiency reduced bile acid concentration, leading to an increased abundance of H. pylori colonization. Overall, these data identify H. pylori as a key promoter of AD-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Zijian Yu
- The First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan 421001, People’s Republic of China
| | - Can Qu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Mingjun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
37
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
38
|
Enterobacteria impair host p53 tumor suppressor activity through mRNA destabilization. Oncogene 2022; 41:2173-2186. [PMID: 35197571 PMCID: PMC8993692 DOI: 10.1038/s41388-022-02238-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Increasing evidence highlights the role of bacteria in the physiopathology of cancer. However, the underlying molecular mechanisms remains poorly understood. Several cancer-associated bacteria have been shown to produce toxins which interfere with the host defense against tumorigenesis. Here, we show that lipopolysaccharides from Klebsiella pneumoniae and other Enterobacteria strongly inhibit the host tumor suppressor p53 pathway through a novel mechanism of p53 regulation. We found that lipopolysaccharides destabilize TP53 mRNA through a TLR4-NF-κB-mediated inhibition of the RNA-binding factor Wig-1. Importantly, we show that K. pneumoniae disables two major tumor barriers, oncogene-induced DNA damage signaling and senescence, by impairing p53 transcriptional activity upon DNA damage and oncogenic stress. Furthermore, we found an inverse correlation between the levels of TLR4 and p53 mutation in colorectal tumors. Hence, our data suggest that the repression of p53 by Enterobacteria via TLR4 alleviates the selection pressure for p53 oncogenic mutations and shapes the genomic evolution of cancer.
Collapse
|
39
|
Wang Y, Zhao YX, Zhang XW, Jiang YZ, Ma W, Zhang L, Dong W. USF1 Transcriptionally Regulates UGT1A3 and Promotes Lung Adenocarcinoma Progression by Regulating Neurotrophin Signaling Pathway. Front Mol Biosci 2022; 9:758968. [PMID: 35155573 PMCID: PMC8829114 DOI: 10.3389/fmolb.2022.758968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lung cancer remains the leading cause of oncological death. There is an urgent need to discover new molecular targets and to develop new treatments. Our previous study showed that one of the UDP-glucuronosyltransferases (UGTs) family, UGT1A3, is an important prognostic factor for lung adenocarcinoma (LUAD), inhibiting UGT1A3 could significantly improve the efficacy of anti-tumor drugs. In this study, we aimed to explore the upstream transcriptional factor (USF1) of UGT1A3 and its way of playing a role in LUAD. Methods: The UGT1A3 promoter region was analyzed and dual-luciferase assay was involved to explore whether USF1 could bind to this region, and the possible regulation effects of USF1 to UGT1A3 was indicated by siRNA and recovery experiment. Then, the Cancer Genome Atlas database was used to analyze USF1 clinical features. The expression level of USF1 was detected by immunohistochemical assay and Western blotting. Cellular viability, proliferation, migration and invasion potential were also investigated. Meanwhile, the effect of USF1 in LUAD progression was detected in a mouse model. The downstream signaling pathway was analyzed by bioinformatic analysis and the expression of all related proteins was detected. Results: UGT1A3 was transcriptionally regulated by USF1, which was highly expressed in all investigated samples including patients’ tissues, studied cells lines, and mouse models. The knockdown of USF1 inhibited cells viability, proliferation, migration and invasion, and reduced the tumor volume. Moreover, USF1 promoted the progress of LUAD by regulating the neurotrophin signaling pathway. Conclusion: As an important transcriptional regulator of UGT1A3, USF1 was highly expressed in LUAD and promoted LUAD progression by regulating the neurotrophin signaling pathway. These findings provide a new theoretical data that could serve as a good foundation for the treatment of LUAD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun-Xia Zhao
- Department of Neurology, Shandong Provinacial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiang-Wei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan-Zhu Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Dong
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Wei Dong,
| |
Collapse
|
40
|
Lin YS, Kuo TT, Lo CC, Cheng WC, Chang WC, Tseng GC, Bai ST, Huang YK, Hsieh CY, Hsu HS, Jiang YF, Lin CY, Lai LC, Li XG, Sher YP. ADAM9 functions as a transcriptional regulator to drive angiogenesis in esophageal squamous cell carcinoma. Int J Biol Sci 2021; 17:3898-3910. [PMID: 34671207 PMCID: PMC8495400 DOI: 10.7150/ijbs.65488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022] Open
Abstract
Hypoxia and angiogenesis play key roles in the pathogenesis of esophageal squamous cell carcinoma (ESCC), but regulators linking these two pathways to drive tumor progression remain elusive. Here we provide evidence of ADAM9's novel function in ESCC progression. Increasing expression of ADAM9 was correlated with poor clinical outcomes in ESCC patients. Suppression of ADAM9 function diminished ESCC cell migration and in vivo metastasis in ESCC xenograft mouse models. Using cellular fractionation and imaging, we found a fraction of ADAM9 was present in the nucleus and was uniquely associated with gene loci known to be linked to the angiogenesis pathway demonstrated by genome-wide ChIP-seq. Mechanistically, nuclear ADAM9, triggered by hypoxia-induced translocation, functions as a transcriptional repressor by binding to promoters of genes involved in the negative regulation of angiogenesis, and thereby promotes tumor angiogenesis in plasminogen/plasmin pathway. Moreover, ADAM9 suppresses plasminogen activator inhibitor-1 gene transcription by interacting with its transcription factors at the promoter. Our findings uncover a novel regulatory mechanism of ADAM9 as a transcriptional regulator in angiogenesis and highlight ADAM9 as a promising therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Guan-Chin Tseng
- Department of Anatomic Pathology, Nantou Hospital of the Ministry of Health and Welfare, Nantou 540, Taiwan
| | - Shih-Ting Bai
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chih-Ying Hsieh
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Institute of Emergency and Care Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Chen-Yuan Lin
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
41
|
Xu J, Wang Y, Wang Y, Wang Z, He X. A-24, a steroidal saponin from Allium chinense, induced apoptosis, autophagy and migration inhibition in p53 wild-type and p53-deficient gastric cancer cells. Chem Biol Interact 2021; 348:109648. [PMID: 34506766 DOI: 10.1016/j.cbi.2021.109648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Allium chinense is a vegetable with nutrition and unique flavor, and it is used as traditional Chinese medicine. We previously reported that the active compound A-24 induces apoptosis and autophagy in p53 wild-type gastric cancer cells through the PI3K/Akt/mTOR pathway. Our present work indicates that A-24 also has a significant proliferation inhibition effect on p53-deficient KATO-III cells, and the p53 status did not affect A-24 induced migration inhibition, but negatively controlled the occurrence of autophagy. We also found that the accumulation of reactive oxygen species (ROS) mediated A-24 induced apoptosis is p53-independent. Besides, p-Akt was not downregulated by A-24 in p53-deficient gastric cancer cells. Taken together, our results indicate that A-24 induced apoptosis and autophagy via the ROS-PI3K/Akt/mTOR pathway in p53 wild-type gastric cancer cells and through the ROS-mTOR pathway in p53-deficient gastric cancer cells. Our study recommended A-24 as a promising future phytotherapeutic candidate for gastric cancer treatment.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhe Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou, 510006, China.
| |
Collapse
|
42
|
Varon C, Azzi-Martin L, Khalid S, Seeneevassen L, Ménard A, Spuul P. Helicobacters and cancer, not only gastric cancer? Semin Cancer Biol 2021; 86:1138-1154. [PMID: 34425210 DOI: 10.1016/j.semcancer.2021.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The Helicobacter genus actually comprises 46 validly published species divided into two main clades: gastric and enterohepatic Helicobacters. These bacteria colonize alternative sites of the digestive system in animals and humans, and contribute to inflammation and cancers. In humans, Helicobacter infection is mainly related to H. pylori, a gastric pathogen infecting more than half of the world's population, leading to chronic inflammation of the gastric mucosa that can evolve into two types of gastric cancers: gastric adenocarcinomas and gastric MALT lymphoma. In addition, H. pylori but also non-H. pylori Helicobacter infection has been associated with many extra-gastric malignancies. This review focuses on H. pylori and its role in gastric cancers and extra-gastric diseases, as well as malignancies induced by non-H. pylori Helicobacters. Their different virulence factors and their involvement in carcinogenesis is discussed. This review highlights the importance of both gastric and enterohepatic Helicobacters in gastrointestinal and liver cancers.
Collapse
Affiliation(s)
- Christine Varon
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Lamia Azzi-Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France; Univ. Bordeaux, UFR des Sciences Médicales, Bordeaux, France
| | - Sadia Khalid
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia
| | - Lornella Seeneevassen
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Armelle Ménard
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Pirjo Spuul
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia RD 15, 12618, Tallinn, Estonia.
| |
Collapse
|
43
|
Lv Y, Xu M, Sun Y, Liu Y, Zhao L, Liu X, Li Z, Shi G, Jia J, Bi L, Ma N, Zhang X, Qi C. Prognostic significance of excision repair cross complementation group 1 rs2298881 in patients with gastric cancer receiving platinum-based chemotherapy: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2021; 100:e26850. [PMID: 34414935 PMCID: PMC8376342 DOI: 10.1097/md.0000000000026850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a strong cause of global cancer mortality. Nucleotide excision repair (NER) can modulate platinum-based chemotherapeutic efficacy by removing drug-produced DNA damage. Some studies have found a link between excision repair cross complementation group 1 (ERCC1) rs2298881, one gene in NER pathway, and response to chemotherapy. However, the results have been disputed. METHODS We conducted a meta-analysis to reevaluate the association between polymorphisms of NER gene (ERCC1 rs2298881) and the clinical outcomes in gastric cancer patients receiving platinum-based chemotherapy. Searching PubMed, Web of Science, EMBASE, Google Scholar, and China National Knowledge Infrastructure, 2 independent searchers found all pertinent literatures up to May 1, 2021. We enrolled studies according to consistent selection criteria, extracted and vitrified data. Crude odds ratios (ORs) and hazard ratios (HRs) with 95% confidence interval (CI) were applied to evaluate the effect of ERCC1 rs2298881 on patients treated by platinum-based chemotherapy. RESULTS By the data gathered from 6 independent studies, 1940 cases diagnosed with gastric cancer and treated with chemotherapy were included, containing 1208 Good-Responders and 732 Poor-Responders. With a comprehensive meta-analysis, we found that the patients with ERCC1 rs2298881A allele had a worse response to chemotherapy than those who with rs2298881C allele under allelic model (A vs C), with the pooled OR of 0.780 (95% CI: 0.611-0.996, P = .046). And our analysis indicated that AA genotype was associated with unfavorable overall survival (HR = 1.540, 95% CI = 1.106-2.144, P = .011) compared with CC genotype. CONCLUSIONS ERCC1 rs2298881 is suggested as a marker of clinical outcome in gastric cancer patients treated by platinum-based chemotherapy.
Collapse
Affiliation(s)
- Yalei Lv
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mengyuan Xu
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yidan Sun
- Graduate school, Hebei Medical University, Shijiazhuang, China
| | - Yezhou Liu
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Lijuan Zhao
- Graduate school, Hebei Medical University, Shijiazhuang, China
| | - Xuehui Liu
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Zixuan Li
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Gaiping Shi
- Department of gynaecology and obstetrics, Quzhou county hospital of Hebei, Handan, China
| | - Jinhai Jia
- Graduate school, Hebei Medical University, Shijiazhuang, China
| | - Lanfei Bi
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Ning Ma
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xiaolin Zhang
- Department of Epidemiology and statistics, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Cheng Qi
- Department of Oncological Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
44
|
Shafiee S, Cegolon L, Khafaei M, Gholami N, Zhao S, Khalesi N, Moosavian H, Fathi S, Izadi M, Ghadian A, Javanbakht M, Javanbakht A, Akhavan-Sigari R. Gastrointestinal cancers, ACE-2/TMPRSS2 expression and susceptibility to COVID-19. Cancer Cell Int 2021; 21:431. [PMID: 34399734 PMCID: PMC8365127 DOI: 10.1186/s12935-021-02129-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recent studies on the pathophysiology of COVID-19 are indicating that the Angiotensin convertase enzyme 2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) can act as a major component in the fusion of SARS-Cov-2 with target cells. It has also been observed that the expression of ACE-2 and TMPRSS2 can be altered in malignancies. Shedding light on this matter could be crucial since the COVID-19 pandemic interfered with many gastrointestinal cancer screening programs. Herein we discuss the possibility of severe forms of COVID-19 in patients with gastrointestinal cancers due to the gastrointestinal entry route of SARS-CoV-2 into the human body. The disruption of cancer screening programs caused by the current COVID-19 pandemic could therefore have massive negative health impact on patients affected by gastrointestinal malignancies.
Collapse
Affiliation(s)
- Sepehr Shafiee
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Public Health Department, Local Health Unit N.2 "Marca Trevigiana", 31100, Treviso, Italy
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nasrin Gholami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Nasrin Khalesi
- Department of Pediatrics, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Moosavian
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeid Fathi
- Department of Parasite Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Ghadian
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
45
|
Dong Y, Tian J, Yan B, Lv K, Li J, Fu D. Liver-Metastasis-Related Genes are Potential Biomarkers for Predicting the Clinical Outcomes of Patients with Pancreatic Adenocarcinoma. Pathol Oncol Res 2021; 27:1609822. [PMID: 34290570 PMCID: PMC8286999 DOI: 10.3389/pore.2021.1609822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
It is widely acknowledged that metastasis determines the prognosis of pancreatic adenocarcinoma (PAAD), and the liver is the most primary distant metastatic location of PAAD. It is worth exploring the value of liver-metastasis-related genetic prognostic signature (LM-PS) in predicting the clinical outcomes of PAAD patients post R0 resection. We collected 65 tumors and 165 normal pancreatic data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression project (GTEx), respectively. Differentially expressed genes (DEGs) between primary tumor and normal pancreatic samples were intersected with DEGs between primary tumor samples with liver metastasis and those without new tumor events. The intersected 45 genes were input into univariate Cox regression analysis to identify the prognostic genes. Thirty-three prognostic liver-metastasis-related genes were identified and included in least absolute shrinkage and selection operator (LASSO) analysis to develop a seven-gene LM-PS, which included six risk genes (ANO1, FAM83A, GPR87, ITGB6, KLK10, and SERPINE1) and one protective gene (SMIM32). The PAAD patients were grouped into low- and high-risk groups based on the median value of risk scores. The LM-PS harbored an independent predictive ability to distinguish patients with a high-risk of death and liver metastasis after R0 resection. Moreover, a robust prognostic nomogram based on LM-PS, the number of positive lymph nodes, and histologic grade were established to predict the overall survival of PAAD patients. Besides, a transcription factor‐microRNA coregulatory network was constructed for the seven LM-PS genes, and the immune infiltration and genomic alterations were systematically explored in the TGCA-PAAD cohort.
Collapse
Affiliation(s)
- Yinlei Dong
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Junjie Tian
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingqian Yan
- Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ji Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Deliang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Zhang W, Lin L, Xia L, Cai W, Dai W, Zou C, Yin L, Tang D, Xu Y, Dai Y. Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients. J Transl Med 2021; 19:273. [PMID: 34174878 PMCID: PMC8236205 DOI: 10.1186/s12967-021-02939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and searching for appropriate treatment. However, no prognostic biomarker has been applied for colorectal cancer (CRC) in the clinic. METHODS Integrated with transcriptomic data from public databases, multi-omics examinations were conducted to search prognostic biomarkers for CRC. Moreover, the potential biological functions and regulatory mechanism of these predictive genes were also explored. RESULTS In this study, we revealed that three mitochondrial genes were associated with the poor prognosis of CRC. Integrated analyses of transcriptome and proteome of CRC patients disclosed numerous down-regulated mitochondrial genes at both mRNA and protein levels, suggesting a vital role of mitochondria in carcinogenesis. Combined with the bioinformatics studies of transcriptomic datasets of 538 CRC patients, three mitochondrial prognostic genes were eventually selected out, including HIGD1A, SUCLG2, and SLC25A24. The expression of HIGD1A exhibited a significant reduction in two subtypes of adenoma and six subtypes of CRC, while the down-regulation of SUCLG2 and SLC25A24 showed more advantages in rectal mucinous adenocarcinoma. Moreover, we unveiled that these three genes had common expressions and might collaboratively participate in the synthesis of ribosomes. Our original multi-omics datasets, including DNA methylation, structural variants, chromatin accessibility, and phosphoproteome, further depicted the altered modifications on their potential transcriptional factors. CONCLUSIONS In summary, HIGD1A, SUCLG2, and SLC25A24 might serve as predictive biomarkers for CRC. The biological activities they involved in and their upstream regulators we uncovered would provide a functional context for the further-in-depth mechanism study.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liewen Lin
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Ligang Xia
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, 78721, USA
| | - Chang Zou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| | - Yong Xu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518028, China.
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
47
|
Knorr J, Sharafutdinov I, Fiedler F, Soltan Esmaeili D, Rohde M, Rottner K, Backert S, Tegtmeyer N. Cortactin Is Required for Efficient FAK, Src and Abl Tyrosine Kinase Activation and Phosphorylation of Helicobacter pylori CagA. Int J Mol Sci 2021; 22:ijms22116045. [PMID: 34205064 PMCID: PMC8199859 DOI: 10.3390/ijms22116045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Cortactin is a well-known regulatory protein of the host actin cytoskeleton and represents an attractive target of microbial pathogens like Helicobacter pylori. H. pylori manipulates cortactin's phosphorylation status by type-IV secretion-dependent injection of its virulence protein CagA. Multiple host tyrosine kinases, like FAK, Src, and Abl, are activated during infection, but the pathway(s) involved is (are) not yet fully established. Among them, Src and Abl target CagA and stimulate tyrosine phosphorylation of the latter at its EPIYA-motifs. To investigate the role of cortactin in more detail, we generated a CRISPR/Cas9 knockout of cortactin in AGS gastric epithelial cells. Surprisingly, we found that FAK, Src, and Abl kinase activities were dramatically downregulated associated with widely diminished CagA phosphorylation in cortactin knockout cells compared to the parental control. Together, we report here a yet unrecognized cortactin-dependent signaling pathway involving FAK, Src, and Abl activation, and controlling efficient phosphorylation of injected CagA during infection. Thus, the cortactin status could serve as a potential new biomarker of gastric cancer development.
Collapse
Affiliation(s)
- Jakob Knorr
- Department of Biology, Division of Microbiology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (J.K.); (I.S.); (F.F.); (D.S.E.); (S.B.)
| | - Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (J.K.); (I.S.); (F.F.); (D.S.E.); (S.B.)
| | - Florian Fiedler
- Department of Biology, Division of Microbiology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (J.K.); (I.S.); (F.F.); (D.S.E.); (S.B.)
| | - Delara Soltan Esmaeili
- Department of Biology, Division of Microbiology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (J.K.); (I.S.); (F.F.); (D.S.E.); (S.B.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (J.K.); (I.S.); (F.F.); (D.S.E.); (S.B.)
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany; (J.K.); (I.S.); (F.F.); (D.S.E.); (S.B.)
- Correspondence:
| |
Collapse
|
48
|
Abstract
Helicobacter pylori infection remains one of the most prevalent infections worldwide, causing significant morbidity and mortality from gastric malignancies and peptic ulcers. This article provides a summary of the microbiology and pathogenesis of this bacterium, emphasizing the complex and protean effects of H pylori on gastric epithelial cells, including stem and progenitor populations, and evasion of host immune defenses. Increasing antibiotic resistance has made management more challenging. This article discusses the appropriate diagnostic modality for different clinical scenarios, and the evolving treatment of H pylori infections, including the use of antibiotic susceptibility testing to aid regimen selection.
Collapse
Affiliation(s)
- Jaehoon Cho
- Division of Gastroenterology, Brown University, 593 Eddy Street, POB 240, Providence, RI 02903, USA
| | - Akriti Prashar
- Department of Gastroenterology, Hepatology and Nutrition, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G0A4, Canada
| | - Nicola L Jones
- Department of Gastroenterology, Hepatology and Nutrition, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; Cell Biology Program, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario M5G0A4, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Steven F Moss
- Division of Gastroenterology, Brown University, 593 Eddy Street, POB 240, Providence, RI 02903, USA.
| |
Collapse
|
49
|
Xu J, Wang Y, Wang Z, Wang Y, He X. T-17, a spirostanol saponin, inhibits p53-independent proliferation and p53-dependent migration of gastric cancer cells. Steroids 2021; 170:108828. [PMID: 33781788 DOI: 10.1016/j.steroids.2021.108828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/21/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
The p53 tumor suppressor gene contributes to a series of life processes of cells. Previously, we have shown that T-17, a spirostanol saponin extracted from Tupistra chinensis induces cell cycle arrest, apoptosis and autophagy in gastric cancer cells. The p53 is essential in the cell cycle arrest induced by T-17, however, the effect of p53 on T-17-induced apoptosis and autophagy is still unclear. Here, our study shows that T-17 has no difference in the sensitivity of gastric cancer cells with different p53 status. By transfecting p53 siRNA into AGS cells (p53 wild type cells) or wild-type p53 into KATO-III cells (p53 deficiency cells), T-17 was found to induce apoptosis and autophagy in gastric cancer cells in a p53-independent manner. Pre-treatment with N-acetylcysteine (NAC, a ROS scavenger) demonstrated that reactive oxygen species (ROS) mediated T-17-induced p53-independent apoptosis. Besides, T-17 induces apoptosis and autophagy in gastric cancer cells by decreasing the expression of HMGB1, also in a p53-independent manner. But when we detected the inhibitory effect of T-17 on gastric cancer cell migration, it was found that p53 is essential. These experimental results showed that T-17 induced apoptosis and autophagy in gastric cancer cells in a p53-independent manner, but inhibited the migration of gastric cancer cells in a p53-dependent manner. Our research indicates that T-17 is a potential candidate for gastric cancer and provides support for better utilization of Tupistra chinensis.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhe Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
50
|
Helicobacter pylori induced gastric carcinogenesis - The best molecular model we have? Best Pract Res Clin Gastroenterol 2021; 50-51:101743. [PMID: 33975683 DOI: 10.1016/j.bpg.2021.101743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 01/31/2023]
Abstract
Gastric carcinogenesis can be described as a consequence of multilevel molecular alterations that is triggered by a cascade of events. Historically, diet and environmental factors have been identified to substantially contribute to carcinogenesis before the discovery of Helicobacter pylori (H. pylori). But H. pylori infection has revolutionized the understanding of gastric carcinogenesis. Although the model of H. pylori-driven carcinogenesis remains valid, there is a continuous effort to precisely delineate the molecular pathways involved and to understand the interplay with additional risk factors including recent relevant knowledge on the stomach microbiota. In this review, we provide an updated view on the models of gastric carcinogenesis. This includes historically appreciated H. pylori-induced models and expands these taking recent molecular data into consideration. Based on the data provided, we conclude that indeed H. pylori-carcinogenesis remains one of the best-established models at least for a subset of gastric cancers. Implementation of the recently identified molecular subtypes in novel genetic animal models is required to expand our knowledge on H. pylori-independent carcinogenesis.
Collapse
|