1
|
Shoaran M, Sabaie H, Mostafavi M, Rezazadeh M. A comprehensive review of the applications of RNA sequencing in celiac disease research. Gene 2024; 927:148681. [PMID: 38871036 DOI: 10.1016/j.gene.2024.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
RNA sequencing (RNA-seq) has undergone substantial advancements in recent decades and has emerged as a vital technique for profiling the transcriptome. The transition from bulk sequencing to single-cell and spatial approaches has facilitated the achievement of higher precision at cell resolution. It provides valuable biological knowledge about individual immune cells and aids in the discovery of the molecular mechanisms that contribute to the development of autoimmune diseases. Celiac disease (CeD) is an autoimmune disorder characterized by a strong immune response to gluten consumption. RNA-seq has led to significantly advanced research in multiple fields, particularly in CeD research. It has been instrumental in studies involving comparative transcriptomics, nutritional genomics and wheat research, cancer research in the context of CeD, genetic and noncoding RNA-mediated epigenetic insights, disease monitoring and biomarker discovery, regulation of mitochondrial functions, therapeutic target identification and drug mechanism of action, dietary factors, immune cell profiling and the immune landscape. This review offers a comprehensive examination of recent RNA-seq technology research in the field of CeD, highlighting future challenges and opportunities for its application.
Collapse
Affiliation(s)
- Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Dieckman T, Schumann M, Beaumont H, Bontkes HJ, Koning F, Bouma G. Enduring Clinical Remission in Refractory Celiac Disease Type II With Tofacitinib: An Open-Label Clinical Study. Clin Gastroenterol Hepatol 2024; 22:2334-2336. [PMID: 38821313 DOI: 10.1016/j.cgh.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Refractory celiac disease type 2 (RCDII) is a rare condition with high mortality because of a lack of effective treatment strategies. RCDII is caused by clonal expansion of intraepithelial lymphocytes (IELs). Gain-of-function JAK1 mutations are frequently found in these cells.1,2 In a previous in vitro study,3 we demonstrated the potential of tofacitinib, a small-molecule JAK1/JAK3 inhibitor, to control activity of the aberrant IEL population. Here, we report on an open-label prospective pilot study with tofacitinib in patients with therapy-refractory RCDII (EudraCT 2018-001678-10; Dutch Trial Registry [LTR] NL7313). Between November 2019 and February 2022, 4 patients with an established diagnosis of RCDII4 who had failed previous therapies were treated in the Netherlands with tofacitinib 10 mg twice-daily for 12 weeks (Methods; Supporting Documents). Two patients in Germany who fulfilled the inclusion criteria received similar treatment outside this protocol.
Collapse
Affiliation(s)
- Tessa Dieckman
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Michael Schumann
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hanneke Beaumont
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Hetty J Bontkes
- Medical Immunology Laboratory, Laboratory Specialized Diagnostics & Research, Department of Laboratory Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Marchi E, Craig JW, Kalac M. Current and upcoming treatment approaches to uncommon subtypes of PTCL (EATL, MEITL, SPTCL, and HSTCL). Blood 2024; 144:1898-1909. [PMID: 38657272 DOI: 10.1182/blood.2023021788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
ABSTRACT Rare subtypes of peripheral T-cell lymphoma (PTCL) including enteropathy-associated T-cell lymphoma (EATL), monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), subcutaneous panniculitis-like T-cell lymphoma (SPTCL), and hepatosplenic T-cell lymphoma (HSTCL) are underrepresented in most registries and clinical studies. Most of the literature is obtained from small case series, single-institution retrospective studies, and subgroup analyses of the largest studies with few recent and ongoing exceptions. Although the pathogenesis and biology of these entities have yet to be fully elucidated, global efforts by the scientific community have started to shed some light on the most frequently deregulated pathways. In this review, we highlight the most pertinent clinical and pathologic features of rare subtypes of PTCL including EATL/MEITL, SPTCL, and HSTCL. We also summarize the results of recent developments identifying potential targets for novel therapeutic strategies based on molecular studies. Finally, we highlight the underrepresentation of these rare subtypes in most clinical trials, making evidence-based therapeutic decisions extremely challenging.
Collapse
Affiliation(s)
- Enrica Marchi
- Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Cancer Center, Charlottesville, VA
| | - Matko Kalac
- Department of Hematology and Oncology, University of California, Irvine, CA
| |
Collapse
|
4
|
de Leval L, Gaulard P, Dogan A. A practical approach to the modern diagnosis and classification of T- and NK-cell lymphomas. Blood 2024; 144:1855-1872. [PMID: 38728419 DOI: 10.1182/blood.2023021786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT T- and natural killer (NK)-cell lymphomas are neoplasms derived from immature T cells (lymphoblastic lymphomas), or more commonly, from mature T and NK cells (peripheral T-cell lymphomas, PTCLs). PTCLs are rare but show marked biological and clinical diversity. They are usually aggressive and may present in lymph nodes, blood, bone marrow, or other organs. More than 30 T/NK-cell-derived neoplastic entities are recognized in the International Consensus Classification and the classification of the World Health Organization (fifth edition), both published in 2022, which integrate the most recent knowledge in hematology, immunology, pathology, and genetics. In both proposals, disease definition aims to integrate clinical features, etiology, implied cell of origin, morphology, phenotype, and genetic features into biologically and clinically relevant clinicopathologic entities. Cell derivation from innate immune cells or specific functional subsets of CD4+ T cells such as follicular helper T cells is a major determinant delineating entities. Accurate diagnosis of T/NK-cell lymphoma is essential for clinical management and mostly relies on tissue biopsies. Because the histological presentation may be heterogeneous and overlaps with that of many benign lymphoid proliferations and B-cell lymphomas, the diagnosis is often challenging. Disease location, morphology, and immunophenotyping remain the main features guiding the diagnosis, often complemented by genetic analysis including clonality and high-throughput sequencing mutational studies. This review provides a comprehensive overview of the classification and diagnosis of T-cell lymphoma in the context of current concepts and scientific knowledge.
Collapse
MESH Headings
- Humans
- Lymphoma, Extranodal NK-T-Cell/diagnosis
- Lymphoma, Extranodal NK-T-Cell/classification
- Lymphoma, Extranodal NK-T-Cell/pathology
- Lymphoma, Extranodal NK-T-Cell/genetics
- Killer Cells, Natural/pathology
- Killer Cells, Natural/immunology
- Lymphoma, T-Cell/classification
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/genetics
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- Université Paris Est Créteil, Créteil, France
- INSERMU955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
5
|
TSURUTA T, MATSUMURA N, MIZUKAMI K, GOTO-KOSHINO Y, AOI T, YAMADA R, NAGAO I, SAKAMOTO M, NAKAGAWA T, FUKUOKA R, OHMI A, CHAMBERS JK, UCHIDA K, MOMOZAWA Y, TOMIYASU H. Investigation of the mutations in the genes involved in Janus kinase/signal transducer and activator of transcription pathway in canine large cell gastrointestinal lymphoma. J Vet Med Sci 2024; 86:1052-1055. [PMID: 39135232 PMCID: PMC11442398 DOI: 10.1292/jvms.24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/03/2024] [Indexed: 10/04/2024] Open
Abstract
Canine gastrointestinal lymphoma is known to be of T-cell origin in most cases, but the molecular biological aberrations have not been clarified. In human intestinal T-cell lymphoma, the mutations in the genes associated with Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway have been frequently observed. In this study, the gene mutations were investigated in 31 dogs with large cell gastrointestinal lymphoma (LCGIL) by focusing on the genes involved in JAK-STAT pathway. Next-generation sequencing analysis to examine the mutations in STAT3, STAT5B, and JAK1 genes throughout the exon regions revealed the mutations in STAT3 gene in two dogs and JAK1 gene in one dog. In conclusion, this study could not indicate the associations of gene mutations in JAK-STAT pathway with LCGIL in most canine cases.
Collapse
Affiliation(s)
- Takumi TSURUTA
- Department of Veterinary Internal Medicine, Graduate School
of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki MATSUMURA
- Department of Veterinary Internal Medicine, Graduate School
of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keijiro MIZUKAMI
- Laboratory for Genotyping Development, RIKEN Center for
Integrative Medical Sciences, Kanagawa, Japan
| | - Yuko GOTO-KOSHINO
- Veterinary Medical Center, Graduate School of Agricultural
and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomomi AOI
- Laboratory for Genotyping Development, RIKEN Center for
Integrative Medical Sciences, Kanagawa, Japan
| | - Ryoko YAMADA
- Laboratory for Genotyping Development, RIKEN Center for
Integrative Medical Sciences, Kanagawa, Japan
| | - Itsuma NAGAO
- Department of Veterinary Internal Medicine, Graduate School
of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Megumi SAKAMOTO
- Veterinary Medical Center, Graduate School of Agricultural
and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke NAKAGAWA
- Veterinary Medical Center, Graduate School of Agricultural
and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ray FUKUOKA
- Veterinary Medical Center, Graduate School of Agricultural
and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aki OHMI
- Veterinary Medical Center, Graduate School of Agricultural
and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of
Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihide MOMOZAWA
- Laboratory for Genotyping Development, RIKEN Center for
Integrative Medical Sciences, Kanagawa, Japan
| | - Hirotaka TOMIYASU
- Department of Veterinary Internal Medicine, Graduate School
of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Verdelho Machado M. Refractory Celiac Disease: What the Gastroenterologist Should Know. Int J Mol Sci 2024; 25:10383. [PMID: 39408713 PMCID: PMC11477276 DOI: 10.3390/ijms251910383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Fewer than 1% of patients with celiac disease (CD) will develop refractory CD (RCD). As such, most gastroenterologists might never need to manage patients with RCD. However, all gastroenterologists must be familiarized with the basic concepts of RCD and non-responsive CD (NRCD), since it can present as a severe disease with high mortality, not only due to intestinal failure, but also due to progression to enteropathy-associated T cell lymphoma (EATL) and a higher susceptibility to life-threatening infections. The diagnostic workup and differential diagnosis with other causes of gastrointestinal symptoms and villous atrophy, as well as the differentiation between type I and II RCD, are complex, and may require specialized laboratories and reference hospitals. Immunosuppression is efficient in the milder RCDI; however, the treatment of RCDII falls short, with current options probably only providing transient clinical improvement and delaying EATL development. This review summarizes the current diagnostic and therapeutic approach for patients with RCD that all doctors that manage patients with CD should know.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Gastroenterology Department, Hospital de Vila Franca de Xira, 2600-009 Lisbon, Portugal; ; Tel.: +351-912620306
- Gastroenterology Department, Faculdade de Medicina, Lisbon University, 1649-028 Lisboa, Portugal
| |
Collapse
|
7
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Miranda RN, Amador C, Chan JKC, Guitart J, Rech KL, Medeiros LJ, Naresh KN. Fifth Edition of the World Health Organization Classification of Tumors of the Hematopoietic and Lymphoid Tissues: Mature T-Cell, NK-Cell, and Stroma-Derived Neoplasms of Lymphoid Tissues. Mod Pathol 2024; 37:100512. [PMID: 38734236 DOI: 10.1016/j.modpat.2024.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This review focuses on mature T cells, natural killer (NK) cells, and stroma-derived neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors, including changes from the revised fourth edition. Overall, information has expanded, primarily due to advancements in genomic understanding. The updated classification adopts a hierarchical format. The updated classification relies on a multidisciplinary approach, incorporating insights from a diverse group of pathologists, clinicians, and geneticists. Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract, Epstein-Barr virus-positive nodal T- and NK-cell lymphoma, and several stroma-derived neoplasms of lymphoid tissues have been newly introduced or included. The review also provides guidance on how the fifth edition of the World Health Organization classification of hematolymphoid tumors can be applied in routine clinical practice.
Collapse
Affiliation(s)
- Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Catalina Amador
- Department of Pathology, University of Miami, Miami, Florida
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Joan Guitart
- Department of Dermatology, Northwestern University Feinberg Medical School, Chicago, Illinois
| | - Karen L Rech
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington.
| |
Collapse
|
9
|
Tye‐Din JA. Evolution in coeliac disease diagnosis and management. JGH Open 2024; 8:e13107. [PMID: 38957478 PMCID: PMC11217771 DOI: 10.1002/jgh3.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/04/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
The traditional gut-centric view of coeliac disease is evolving as immune and genetic insights underscore the central importance of a systemic, T cell immune response to gluten in disease pathogenesis. As the field increasingly recognize the limitations of small intestinal histology as the diagnostic standard, data supporting the accuracy of an immune (serologic) diagnosis of coeliac disease - well demonstrated in children - are growing for adults. Novel biomarkers such as interleukin-2 that identify the gluten-specific T cell demonstrate high sensitivity and specificity for coeliac disease and offer the potential for a diagnostic approach that avoids the need for gluten challenge. Asymptomatic disease and manifestations outside the gut pose considerable challenges for diagnosis using a case-finding strategy and enthusiasm for population screening is growing. The gluten-free diet remains a highly restrictive treatment and there is a paucity of controlled data to inform a safe gluten intake threshold. Ongoing symptoms and enteropathy are common and require systematic evaluation. Slowly-responsive disease is prevalent in the older patient diagnosed with coeliac disease, and super-sensitivity to gluten is an emerging concept that may explain many cases of nonresponsive disease. While there is great interest in developing novel therapies for coeliac disease, no drug has yet been registered. Efficacy studies are generally assessing drugs in patients with treated coeliac disease who undergo gluten challenge or in patients with nonresponsive disease; however, substantial questions remain around specific endpoints relevant for patients, clinicians and regulatory agencies and optimal trial design. Novel immune tools are providing informative readouts for clinical trials and are now shaping their design.
Collapse
Affiliation(s)
- Jason A Tye‐Din
- Immunology DivisionWalter and Eliza Hall InstituteParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of GastroenterologyThe Royal Melbourne HospitalParkvilleVictoriaAustralia
- Centre for Food & Allergy ResearchThe Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| |
Collapse
|
10
|
Saitta D, Henneken LM, Apputhurai P, Chen Yi Mei SL, Tye-Din JA. Budesonide Induces Favourable Histologic and Symptomatic Recovery in Patients with Non-responsive and Refractory Coeliac Disease When Given in an Open Capsule Format. Dig Dis Sci 2024; 69:2548-2557. [PMID: 38683433 PMCID: PMC11258102 DOI: 10.1007/s10620-024-08436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Non-responsive coeliac disease (NRCD), where symptoms and enteropathy persist despite a prolonged gluten-free diet (GFD), is common. Refractory coeliac disease (RCD), characterised by malabsorption and extensive enteropathy, is rare but serious. In both, treatment options are limited. Topical budesonide may help and an open capsule format promoting proximal small intestinal delivery may be advantageous. AIM To describe the effect of budesonide and its presentation on mucosal healing, symptoms, and tolerability in NRCD and RCD. METHODS A retrospective cohort study of NRCD and RCD patients who received budesonide for enteropathy despite a strict GFD for over 12 months. Primary outcome was improvement in histology. Symptoms and adverse treatment effects were recorded. RESULTS 50 patients with NRCD (n = 14; 86% F), RCD type 1 (n = 30; 60% F), and RCD type 2 (n = 6 based on aberrant duodenal T cells; 33% F) were identified. Common RCD symptoms were diarrhoea (68%), fatigue (40%), and weight loss (34%). 16 received closed capsule budesonide (CCB) 9 mg OD and 35 open capsule budesonide (OCB) 3 mg 3 times a day. Complete and partial mucosal healing was significantly higher after OCB compared to CCB (p < 0.001, Mann-Whitney U test). Symptom improvement was also significantly higher after OCB compared to CCB (p = 0.002, Mann-Whitney U test). Side effects were mild and self-limiting and were reported in 25% of both cohorts. CONCLUSION OCB was well tolerated and associated with improvements in enteropathy (83%) and symptoms (90%) in NRCD and RCD. Our findings support OCB as the preferred 1st-line therapy for NRCD and RCD type 1.
Collapse
Affiliation(s)
- Daniel Saitta
- Department of Gastroenterology, Western Hospital, Footscray, VIC, Australia
| | - Lee M Henneken
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
| | - Pragalathan Apputhurai
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia
| | - Swee Lin Chen Yi Mei
- Department of Gastroenterology, Box Hill Hospital, Box Hill, Victoria, Australia
| | - Jason A Tye-Din
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
11
|
Attygalle AD, Vroobel KM, Madej E, Tzioni MM, Zhang C, Chen Z, Ribeiro S, Calvachini S, Sharma B, Alexander EJ, Wotherspoon AC, Du MQ. A wolf in sheep's clothing: enteropathy associated T-cell lymphoma involving a nasal polyp masquerading as primary mucosal CD30-positive T-cell lymphoproliferative disorder. Histopathology 2024; 84:1238-1241. [PMID: 38383998 DOI: 10.1111/his.15161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Ayoma D Attygalle
- Department of Histopathology, The Royal Marsden Hospital, London, UK
| | | | - Ewelina Madej
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Maria-Myrsini Tzioni
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Chunye Zhang
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Zi Chen
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sara Ribeiro
- Department of Clinical Genomics, Royal Marsden Hospital, Sutton, UK
| | | | - Bhupinder Sharma
- Department of Radiology, The Royal Marsden Hospital, Institute of Cancer Research, London, UK
| | | | | | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Anderson RP, Verma R, Schumann M. A Look Into the Future: Are We Ready for an Approved Therapy in Celiac Disease? Gastroenterology 2024; 167:183-193. [PMID: 38355059 DOI: 10.1053/j.gastro.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
As it appears that we are currently at the cusp of an era in which drugs that are new, re-purposed, or "supplements" will be introduced to the management of celiac disease, we need to reflect on whether the framework is set for celiac disease to be treated increasingly with pharmaceuticals as well as diet. This refers to reflecting on the rigor of current diagnostic practices; the limitations of the current standard of care, which is a gluten-free diet; and that we lack objective markers of disease severity. Investigating these issues will help us to identify gaps in technology and practices that could be critical for selecting patients with a well-defined need for an improved or alternative treatment. Both aspects, circumscribed limitations of the gluten-free diet and diagnostics helping to define celiac disease target groups, together with the guiding requirements by the responsible regulatory authorities, will contribute to defining the subgroups of patients with confirmed celiac disease eligible for distinct pharmacologic strategies. Because many patients with celiac disease are diagnosed in childhood, these aspects need to be differentially discussed for the pediatric setting. In this perspective, we aimed to describe these contextual issues and then looked ahead to the future. What might be the major challenges in celiac disease clinics in the coming years once drugs are an option alongside diet? And what will be the future objectives for researchers who further decipher the mucosal immunology of celiac disease? Speculating on the answers to these questions is as stimulating as it is fascinating to be part of this turning point.
Collapse
Affiliation(s)
- Robert P Anderson
- Gastroenterology Service, Mackay Base Hospital, West Mackay, Queensland, Australia
| | - Ritu Verma
- University of Chicago, Comer Children's Hospital, Chicago, Illinois
| | - Michael Schumann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Malamut G, Soderquist CR, Bhagat G, Cerf-Bensussan N. Advances in Nonresponsive and Refractory Celiac Disease. Gastroenterology 2024; 167:132-147. [PMID: 38556189 DOI: 10.1053/j.gastro.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
Nonresponsive celiac disease (CeD) is relatively common. It is generally attributed to persistent gluten exposure and resolves after correction of diet errors. However, other complications of CeD and disorders clinically mimicking CeD need to be excluded. Novel therapies are being evaluated to facilitate mucosal recovery, which might benefit patients with nonresponsive CeD. Refractory CeD (RCeD) is rare and is divided into 2 types. The etiology of type I RCeD is unclear. A switch to gluten-independent autoimmunity is suspected in some patients. In contrast, type II RCeD represents a low-grade intraepithelial lymphoma. Type I RCeD remains a diagnosis of exclusion, requiring ruling out gluten intake and other nonmalignant causes of villous atrophy. Diagnosis of type II RCeD relies on the demonstration of a clonal population of neoplastic intraepithelial lymphocytes with an atypical immunophenotype. Type I RCeD and type II RCeD generally respond to open-capsule budesonide, but the latter has a dismal prognosis due to severe malnutrition and frequent progression to enteropathy-associated T-cell lymphoma; more efficient therapy is needed.
Collapse
Affiliation(s)
- Georgia Malamut
- Department of Gastroenterology, Assistance Publique-Hôpitaux de Paris Centre-Université Paris Cité, Hôpital Cochin, Paris, France; Laboratory of Intestinal Immunity, INSERM UMR 1163-Institut Imagine, Université Paris Cité, Paris, France.
| | - Craig R Soderquist
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163-Institut Imagine, Université Paris Cité, Paris, France.
| |
Collapse
|
14
|
Kojima K, Chambers JK, Nakashima K, Uchida K. Pro-inflammatory cytokine expression and the STAT1/3 pathway in canine chronic enteropathy and intestinal T-cell lymphoma. Vet Pathol 2024; 61:382-392. [PMID: 37906531 DOI: 10.1177/03009858231207017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The accumulation of intraepithelial lymphocytes (IELs) is a histopathological feature of canine chronic enteropathy (CE), and IELs are considered the cells of origin of intestinal T-cell lymphoma (ITCL). However, the pathogenic mechanism of IEL activation in CE remains unclear. This study hypothesized that the expression of proinflammatory cytokines, associated with cytotoxic T/NK-cell activation, is upregulated in CE and ITCL, and examined the expression of IFN-γ, IL-2, IL-12p35, IL-12p40, IL-15, and IL-21 and the downstream signal transducers and activators of transcription (STAT) pathway in the duodenal mucosa of dogs without lesions (n = 11; NC), with IEL-CE (n = 19; CE without intraepithelial lymphocytosis), IEL+CE (n = 29; CE with intraepithelial lymphocytosis), and with ITCL (n = 60). Quantitative polymerase chain reaction (PCR) revealed that IFN-γ and IL-21 were higher in IEL+CE than in IEL-CE or NC. Western blot revealed upregulation of STAT1 and STAT3 in IEL+CE. Double-labeling immunohistochemistry revealed a positive correlation between the Ki67 index of CD3+ T-cells and IFN-γ expression levels. Immunohistochemistry revealed a higher ratio of p-STAT1-positive villi in IEL+CE and ITCL than IEL-CE and NC, which positively correlated with IFN-γ expression levels. Among the 60 ITCL cases, neoplastic lymphocytes were immunopositive for p-STAT1 in 28 cases and p-STAT3 in 29 cases. These results suggest that IFN-γ and IL-21 contribute to the pathogenesis of IEL+CE, and IFN-γ may be involved in T-cell activation and mucosal injury in CE. STAT1 and STAT3 activation in ITCL cells suggests a role for the upregulation of the STAT pathway in the pathogenesis of ITCL.
Collapse
Affiliation(s)
| | | | - Ko Nakashima
- Japan Small Animal Medical Center, Tokorozawa, Japan
| | | |
Collapse
|
15
|
Iorgulescu JB, Medeiros LJ, Patel KP. Predictive and prognostic molecular biomarkers in lymphomas. Pathology 2024; 56:239-258. [PMID: 38216400 DOI: 10.1016/j.pathol.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024]
Abstract
Recent advances in molecular diagnostics have markedly expanded our understanding of the genetic underpinnings of lymphomas and catalysed a transformation in not just how we classify lymphomas, but also how we treat, target, and monitor affected patients. Reflecting these advances, the World Health Organization Classification, International Consensus Classification, and National Comprehensive Cancer Network guidelines were recently updated to better integrate these molecular insights into clinical practice. We summarise here the molecular biomarkers of lymphomas with an emphasis on biomarkers that have well-supported prognostic and predictive utility, as well as emerging biomarkers that show promise for clinical practice. These biomarkers include: (1) diagnostic entity-defining genetic abnormalities [e.g., B-cell acute lymphoblastic leukaemia (B-ALL) with KMT2A rearrangement]; (2) molecular alterations that guide patients' prognoses (e.g., TP53 loss frequently conferring worse prognosis); (3) mutations that serve as the targets of, and often a source of acquired resistance to, small molecular inhibitors (e.g., ABL1 tyrosine kinase inhibitors for B-ALL BCR::ABL1, hindered by ABL1 kinase domain resistance mutations); (4) the growing incorporation of molecular measurable residual disease (MRD) in the management of lymphoma patients (e.g., molecular complete response and sequencing MRD-negative criteria in multiple myeloma). Altogether, our review spans the spectrum of lymphoma types, from the genetically defined subclasses of precursor B-cell lymphomas to the highly heterogeneous categories of small and large cell mature B-cell lymphomas, Hodgkin lymphomas, plasma cell neoplasms, and T/NK-cell lymphomas, and provides an expansive summary of our current understanding of their molecular pathology.
Collapse
Affiliation(s)
- J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Keyur P Patel
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Fend F, van den Brand M, Groenen PJ, Quintanilla-Martinez L, Bagg A. Diagnostic and prognostic molecular pathology of lymphoid malignancies. Virchows Arch 2024; 484:195-214. [PMID: 37747559 PMCID: PMC10948535 DOI: 10.1007/s00428-023-03644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
With the explosion in knowledge about the molecular landscape of lymphoid malignancies and the increasing availability of high throughput techniques, molecular diagnostics in hematopathology has moved from isolated marker studies to a more comprehensive approach, integrating results of multiple genes analyzed with a variety of techniques on the DNA and RNA level. Although diagnosis of lymphoma still relies on the careful integration of clinical, morphological, phenotypic, and, if necessary molecular features, and only few entities are defined strictly by genetic features, genetic profiling has contributed profoundly to our current understanding of lymphomas and shaped the two current lymphoma classifications, the International Consensus Classification and the fifth edition of the WHO classification of lymphoid malignancies. In this review, the current state of the art of molecular diagnostics in lymphoproliferations is summarized, including clonality analysis, mutational studies, and gene expression profiling, with a focus on practical applications for diagnosis and prognostication. With consideration for differences in accessibility of high throughput techniques and cost limitations, we tried to distinguish between diagnostically relevant and in part disease-defining molecular features and optional, more extensive genetic profiling, which is usually restricted to clinical studies, patients with relapsed or refractory disease or specific therapeutic decisions. Although molecular diagnostics in lymphomas currently is primarily done for diagnosis and subclassification, prognostic stratification and predictive markers will gain importance in the near future.
Collapse
Affiliation(s)
- Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany.
| | - Michiel van den Brand
- Pathology-DNA, Location Rijnstate Hospital, Arnhem, the Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Patricia Jta Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, Tübingen, Germany
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Rajagopal A, Thompson CA, Chorzempa AK, Ryu AJ. Advanced enteropathy-associated T cell lymphoma (EATL) presenting with severe malabsorption and concomitantly diagnosed coeliac disease (CD). BMJ Case Rep 2023; 16:e258265. [PMID: 38142052 DOI: 10.1136/bcr-2023-258265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
Enteropathy-associated T cell lymphoma (EATL) is an aggressive subtype of non-Hodgkin's lymphoma often associated with coeliac disease (CD). We describe a previously healthy man in his 50 s who presented with a history of abdominal pain, failure to thrive and significant weight loss over a 3-month period. Investigations revealed a positive coeliac serology, diffuse duodenal atrophy with multiple duodenal and jejunal ulcers on endoscopy and mesenteric lymphadenopathy on CT imaging. Duodenal tissue biopsy confirmed a diagnosis of EATL Stage IVB. Chemotherapy with cyclophosphamide, doxorubicin, vincristine and prednisone regimen was initiated. This case highlights the need for greater awareness and consideration of EATL in individuals with worsening malabsorption and abdominal pain, irrespective of coeliac history.
Collapse
Affiliation(s)
- Anjali Rajagopal
- Department of Medicine, AI & Innovation, Mayo Clinic, Rochester, Minnesota, USA
| | - Carrie A Thompson
- Division of Hematology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Allison K Chorzempa
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander J Ryu
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Lewis NE, Zhou T, Dogan A. Biology and genetics of extranodal mature T-cell and NKcell lymphomas and lymphoproliferative disorders. Haematologica 2023; 108:3261-3277. [PMID: 38037802 PMCID: PMC10690927 DOI: 10.3324/haematol.2023.282718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023] Open
Abstract
The extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders represent a unique group of rare neoplasms with both overlapping and distinct clinicopathological, biological, and genomic features. Their predilection for specific sites, such as the gastrointestinal tract, aerodigestive tract, liver, spleen, and skin/soft tissues, underlies their classification. Recent genomic advances have furthered our understanding of the biology and pathogenesis of these diseases, which is critical for accurate diagnosis, prognostic assessment, and therapeutic decision-making. Here we review clinical, pathological, genomic, and biological features of the following extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders: primary intestinal T-cell and NK-cell neoplasms, hepatosplenic T-cell lymphoma, extranodal NK/T-cell lymphoma, nasal type, and subcutaneous panniculitis-like T-cell lymphoma.
Collapse
Affiliation(s)
- Natasha E. Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ting Zhou
- Molecular Diagnostic Laboratory, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
19
|
de Leval L, Bisig B. What is new in the classification of peripheral T cell lymphomas? PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:128-135. [PMID: 38047948 PMCID: PMC10739560 DOI: 10.1007/s00292-023-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 12/05/2023]
Abstract
In this review focus article, we highlight the main modifications introduced in the latest 2022 International Consensus Classification and World Health Organization classification (ICC and WHO-HAEM5) of mature T (and NK) cell neoplasms (PTCLs) and consequent implications for diagnostic practice. The changes result from recent advances in the genomic and molecular characterization of PTCLs and enhanced understanding of their pathobiology. Specifically, consideration is given to the following groups of diseases: Epstein-Barr virus (EBV)-associated neoplasms; follicular helper T cell lymphoma; anaplastic large cell lymphomas; primary intestinal T and NK cell lymphomas and lymphoproliferative disorders; and PTCL, not otherwise specified.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, 25 rue du Bugnon, 1011, Lausanne, Switzerland.
| | - Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital (CHUV) and Lausanne University, 25 rue du Bugnon, 1011, Lausanne, Switzerland
| |
Collapse
|
20
|
Stuver R, Epstein-Peterson ZD, Horwitz SM. Few and far between: clinical management of rare extranodal subtypes of mature T-cell and NK-cell lymphomas. Haematologica 2023; 108:3244-3260. [PMID: 38037801 PMCID: PMC10690914 DOI: 10.3324/haematol.2023.282717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/03/2023] [Indexed: 12/02/2023] Open
Abstract
While all peripheral T-cell lymphomas are uncommon, certain subtypes are truly rare, with less than a few hundred cases per year in the USA. There are often no dedicated clinical trials in these rare subtypes, and data are generally limited to case reports and retrospective case series. Therefore, clinical management is often based on this limited literature and extrapolation of data from the more common, nodal T-cell lymphomas in conjunction with personal experience. Nevertheless, thanks to tremendous pre-clinical efforts to understand these rare diseases, an increasing appreciation of the biological changes that underlie these entities is forming. In this review, we attempt to summarize the relevant literature regarding the initial management of certain rare subtypes, specifically subcutaneous panniculitis-like T-cell lymphoma, hepatosplenic T-cell lymphoma, intestinal T-cell lymphomas, and extranodal NK/T-cell lymphoma. While unequivocally established approaches in these diseases do not exist, we make cautious efforts to provide our approaches to clinical management when possible.
Collapse
Affiliation(s)
- Robert Stuver
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center.
| | - Zachary D Epstein-Peterson
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center; Department of Medicine, Weill Cornell Medical College
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center; Department of Medicine, Weill Cornell Medical College; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
21
|
Scarmozzino F, Pizzi M, Pelizzaro F, Angerilli V, Dei Tos AP, Piazza F, Savarino EV, Zingone F, Fassan M. Refractory celiac disease and its mimickers: a review on pathogenesis, clinical-pathological features and therapeutic challenges. Front Oncol 2023; 13:1273305. [PMID: 38023263 PMCID: PMC10662059 DOI: 10.3389/fonc.2023.1273305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Refractory celiac disease (RCD) and enteropathy-associated T-cell lymphoma (EATL) are rare, yet severe complications of celiac disease (CD). Over the last decades, several studies have addressed the biology and clinical-pathological features of such conditions, highlighting unique disease patterns and recurrent genetic events. Current classification proposals identify two forms of RCD, namely: (i) type 1 RCD (RCD-I), characterized by phenotypically normal intra-epithelial lymphocytes (IELs); and (ii) type 2 RCD (RCD-II), featuring phenotypically aberrant IELs. While RCD-I likely represents a gluten-independent dysimmune reaction against small bowel epithelial cells, RCD-II is better considered an in situ aggressive T-cell lymphoma, with high rates of progression to overt EATL. The diagnosis of RCD and EATL is often challenging, due to misleading clinical-pathological features and to significant overlap with several CD-unrelated gastro-intestinal disorders. Similarly, the treatment of RCD and EATL is an unmet clinical need for both gastroenterologists and hematologists. Moving from such premises, this review aims to provide a comprehensive view of RCD and EATL, specifically considering their pathogenesis and the many still open issues concerning their diagnosis and clinical management.
Collapse
Affiliation(s)
- Federico Scarmozzino
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgical, Gastroenterological and Oncological Sciences -DISCOG, University of Padua School of Medicine, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Francesco Piazza
- Hematology & Clinical Immunology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Edoardo Vincenzo Savarino
- Gastroenterology Unit, Department of Surgical, Gastroenterological and Oncological Sciences -DISCOG, University of Padua School of Medicine, Padua, Italy
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgical, Gastroenterological and Oncological Sciences -DISCOG, University of Padua School of Medicine, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
- Veneto Institute of Oncology, IOV-IRCCS, Padua, Italy
| |
Collapse
|
22
|
Falini B, Lazzi S, Pileri S. A comparison of the International Consensus and 5th WHO classifications of T-cell lymphomas and histiocytic/dendritic cell tumours. Br J Haematol 2023; 203:369-383. [PMID: 37387351 DOI: 10.1111/bjh.18940] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Since the publication in 2017 of the revised 4th Edition of the World Health Organization (WHO) classification of haematolymphoid tumours, here referred to as WHO-HAEM4, significant clinicopathological, immunophenotypic and molecular advances have been made in the field of lymphomas, contributing to refining the diagnostic criteria of several diseases, upgrading entities previously defined as provisional and identifying new entities. This process has resulted in two recent classification proposals of lymphoid neoplasms: the International Consensus Classification (ICC) and the 5th edition of the WHO classification (WHO-HAEM5). In this paper, we review and compare the two classifications in terms of diagnostic criteria and entity definition, focusing on T-cell lymphomas and histiocytic/dendritic cell tumours. Moreover, we update the genetic data of the various pathological entities. The main goal is to provide a tool to facilitate the work of the pathologists, haematologists and researchers involved in the diagnosis and treatment of these haematological malignancies.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Haematology and CREO, University and Santa Maria della Misericordia Hospital of Perugia, Perugia, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, Institute of Pathology, University of Siena, Siena, Italy
| | - Stefano Pileri
- European Institute of Oncology IRCCS, Milan, Italy
- Diatech Pharmacogenetics, Jesi, Italy
| |
Collapse
|
23
|
Patt YS, Lahat A, David P, Patt C, Eyade R, Sharif K. Unraveling the Immunopathological Landscape of Celiac Disease: A Comprehensive Review. Int J Mol Sci 2023; 24:15482. [PMID: 37895160 PMCID: PMC10607730 DOI: 10.3390/ijms242015482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Celiac disease (CD) presents a complex interplay of both innate and adaptive immune responses that drive a variety of pathological manifestations. Recent studies highlight the role of immune-mediated pathogenesis, pinpointing the involvement of antibodies against tissue transglutaminases (TG2, TG3, TG6), specific HLA molecules (DQ2/8), and the regulatory role of interleukin-15, among other cellular and molecular pathways. These aspects illuminate the systemic nature of CD, reflecting its wide-reaching impact that extends beyond gastrointestinal symptoms to affect other physiological systems and giving rise to a range of pathological landscapes, including refractory CD (RCD) and, in severe cases, enteropathy-associated T cell lymphoma. The existing primary therapeutic strategy, a gluten-free diet (GFD), poses significant challenges, such as low adherence rates, necessitating alternative treatments. Emerging therapies target various stages of the disease pathology, from preventing immunogenic gluten peptide absorption to enhancing intestinal epithelial integrity and modulating the immune response, heralding potential breakthroughs in CD management. As the understanding of CD deepens, novel therapeutic avenues are emerging, paving the way for more effective and sophisticated treatment strategies with the aim of enhancing the quality of life of CD patients. This review aims to delineate the immunopathology of CD and exploring its implications on other systems, its complications and the development of novel treatments.
Collapse
Affiliation(s)
- Yonatan Shneor Patt
- Department of Internal Medicine B, Sheba Medical Center, Ramat Gan 52621, Israel; (Y.S.P.); (P.D.); (C.P.); (R.E.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Adi Lahat
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
- Department of Gastroenterology, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Paula David
- Department of Internal Medicine B, Sheba Medical Center, Ramat Gan 52621, Israel; (Y.S.P.); (P.D.); (C.P.); (R.E.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Chen Patt
- Department of Internal Medicine B, Sheba Medical Center, Ramat Gan 52621, Israel; (Y.S.P.); (P.D.); (C.P.); (R.E.)
- The Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Rowand Eyade
- Department of Internal Medicine B, Sheba Medical Center, Ramat Gan 52621, Israel; (Y.S.P.); (P.D.); (C.P.); (R.E.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Kassem Sharif
- Department of Internal Medicine B, Sheba Medical Center, Ramat Gan 52621, Israel; (Y.S.P.); (P.D.); (C.P.); (R.E.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel;
- Department of Gastroenterology, Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|
24
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Abdullah SAA, Goa P, Vandenberghe E, Flavin R. Update on the Pathogenesis of Enteropathy-Associated T-Cell Lymphoma. Diagnostics (Basel) 2023; 13:2629. [PMID: 37627888 PMCID: PMC10453492 DOI: 10.3390/diagnostics13162629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
EATL is an aggressive T-cell non-Hodgkin lymphoma with poor prognosis and is largely localized to the small intestine. EATL is closely associated with coeliac disease (CD) and is seen mostly in patients originating from Northern Europe. Various factors are associated with an increased risk of developing EATL, such as viral infection, advanced age, being male, and the presence of the HLA-DQ2 haplotype. Clonal rearrangements in the TCR-β and γ genes have been reported in all EATL morphological variants with distinctive immunophenotypic characteristics. Although EATL can occur de novo, individuals with RCDII are at a higher risk of developing EATL. The cells of origin of EATL has been postulated to be normal small intestinal intraepithelial T-lymphocytes (IELs), and more recent evidence suggests a link between innate precursor IELs and EATL derived from refractory coeliac disease type II (RCDII). The immune microenvironment of mucosal cells within the small intestine enhances the process of neoplastic transformation of IELs into EATL. Cytokines such as IL-15 can activate and crucially deregulate the JAK-STAT signaling pathway by binding to receptors on the surface of IELs. Furthermore, mutations in the JAK/STAT pathway have been associated with RCDII-derived EATL.
Collapse
Affiliation(s)
| | - Patricia Goa
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Elisabeth Vandenberghe
- Department of Haematology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Haematology, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Richard Flavin
- Department of Histopathology, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| |
Collapse
|
26
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
27
|
Jha D, Al-Taie Z, Krek A, Eshghi ST, Fantou A, Laurent T, Tankelevich M, Cao X, Meringer H, Livanos AE, Tokuyama M, Cossarini F, Bourreille A, Josien R, Hou R, Canales-Herrerias P, Ungaro RC, Kayal M, Marion J, Polydorides AD, Ko HM, D’souza D, Merand R, Kim-Schulze S, Hackney JA, Nguyen A, McBride JM, Yuan GC, Colombel JF, Martin JC, Argmann C, Suárez-Fariñas M, Petralia F, Mehandru S. Myeloid cell influx into the colonic epithelium is associated with disease severity and non-response to anti-Tumor Necrosis Factor Therapy in patients with Ulcerative Colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542863. [PMID: 37333091 PMCID: PMC10274630 DOI: 10.1101/2023.06.02.542863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic chronic inflammatory disease of the colon with sharply rising global prevalence. Dysfunctional epithelial compartment (EC) dynamics are implicated in UC pathogenesis although EC-specific studies are sparse. Applying orthogonal high-dimensional EC profiling to a Primary Cohort (PC; n=222), we detail major epithelial and immune cell perturbations in active UC. Prominently, reduced frequencies of mature BEST4+OTOP2+ absorptive and BEST2+WFDC2+ secretory epithelial enterocytes were associated with the replacement of homeostatic, resident TRDC+KLRD1+HOPX+ γδ+ T cells with RORA+CCL20+S100A4+ TH17 cells and the influx of inflammatory myeloid cells. The EC transcriptome (exemplified by S100A8, HIF1A, TREM1, CXCR1) correlated with clinical, endoscopic, and histological severity of UC in an independent validation cohort (n=649). Furthermore, therapeutic relevance of the observed cellular and transcriptomic changes was investigated in 3 additional published UC cohorts (n=23, 48 and 204 respectively) to reveal that non-response to anti-Tumor Necrosis Factor (anti-TNF) therapy was associated with EC related myeloid cell perturbations. Altogether, these data provide high resolution mapping of the EC to facilitate therapeutic decision-making and personalization of therapy in patients with UC.
Collapse
Affiliation(s)
- Divya Jha
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Shadi Toghi Eshghi
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Aurelie Fantou
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Thomas Laurent
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Michael Tankelevich
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuan Cao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Hadar Meringer
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E Livanos
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Cossarini
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arnaud Bourreille
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Regis Josien
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Ruixue Hou
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Pablo Canales-Herrerias
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan C. Ungaro
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maia Kayal
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James Marion
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Huaibin M. Ko
- Department of Pathology and Cell Biology, Columbia University Medical Center-New York Presbyterian Hospital, New York, New York
| | - Darwin D’souza
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphael Merand
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Core, Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason A. Hackney
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Allen Nguyen
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Jacqueline M. McBride
- Biomarker Discovery, OMNI, Genentech Inc. South SanFrancisco, CA, USA
- OMNI Biomarker Development, Genentech Inc. South SanFrancisco, CA, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Jean Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C. Martin
- Université de Nantes, Inserm, CHU Nantes, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Carmen Argmann
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Mayte Suárez-Fariñas
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York City, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
| | - Saurabh Mehandru
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Bruneau J, Khater S, Isnard P, Lhermitte L, Brouzes C, Sibon D, Asnafi V, Berrebi D, Rabant M, Neven B, Cellier C, Hermine O, Molina TJ. [Immunopathology of the small intestine]. Ann Pathol 2023:S0242-6498(23)00080-9. [PMID: 37156715 DOI: 10.1016/j.annpat.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
The gastrointestinal tract is the site of exciting immunological interactions between the epithelium and the mucosa-associated lymphoid tissue, leading to the immune response to food and microbial antigens in the digestive lumen. The objective of this review is to present the main dysimmune pathologies of the digestive tract leading to an enteropathy. As examples, we describe celiac and non-celiac enteropathies to clarify a florid diagnostic framework, by identifying a spectrum of elementary lesions, which must be confronted with the clinico biological context of the patient to orient the diagnosis. The microscopic lesions observed are most often non-specific and may be encountered in several diagnostic settings. Moreover, it is a set of elementary lesions in each clinical context that will orient the diagnostic framework. Celiac disease is the main etiology of enteropathy with villous atrophy, its diagnosis is multidisciplinary and there are many differential diagnoses. We will discuss celiac disease lymphomatous complications as enteropathy associated T-cell lymphoma including refractory sprue type 2. We will then present the non-celiac enteropathies. Among these, enteropathies of unknown etiology may be associated with a primary immune deficiency that may be reflected by florid lymphoid hyperplasia of the gastrointestinal tract and/or be associated with an infectious etiology that should also be constantly sought. Finally, we will discuss of induced enteropathy by new immunomodulatory treatments.
Collapse
Affiliation(s)
- Julie Bruneau
- Service d'anatomie et de cytologie pathologique, hôpitaux universitaires Necker-Enfants Malades et Robert Debré, AP-HP, université de Paris Cité, Paris, France.
| | - Shérine Khater
- Service de gastro-entérologie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris (AP-HP), université Paris Cité, Paris, France
| | - Pierre Isnard
- Service d'anatomie et de cytologie pathologique, hôpitaux universitaires Necker-Enfants Malades et Robert Debré, AP-HP, université de Paris Cité, Paris, France
| | - Ludovic Lhermitte
- Laboratoire d'onco-hématologie, hôpital universitaire Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris (AP-HP), université Paris Cité, Paris, France
| | - Chantal Brouzes
- Laboratoire d'onco-hématologie, hôpital universitaire Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris (AP-HP), université Paris Cité, Paris, France
| | - David Sibon
- Service d'hématologie, hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris (AP-HP), université Paris-Est-Créteil, Créteil, France
| | - Vahid Asnafi
- Laboratoire d'onco-hématologie, hôpital universitaire Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris (AP-HP), université Paris Cité, Paris, France
| | - Dominique Berrebi
- Service d'anatomie et de cytologie pathologique, hôpitaux universitaires Necker-Enfants Malades et Robert Debré, AP-HP, université de Paris Cité, Paris, France
| | - Marion Rabant
- Service d'anatomie et de cytologie pathologique, hôpitaux universitaires Necker-Enfants Malades et Robert Debré, AP-HP, université de Paris Cité, Paris, France
| | - Bénédicte Neven
- Service d'immuno-hématologie et rhumatologie pédiatrique, hôpital universitaire Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris (AP-HP), université Paris Cité, Paris, France
| | - Christophe Cellier
- Service de gastro-entérologie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris (AP-HP), université Paris Cité, Paris, France
| | - Olivier Hermine
- Service d'hématologie, hôpital universitaire Necker-Enfants Malades, Assistance publique-Hôpitaux de Paris, AP-HP, université Paris Cité, Paris, France
| | - Thierry Jo Molina
- Service d'anatomie et de cytologie pathologique, hôpitaux universitaires Necker-Enfants Malades et Robert Debré, AP-HP, université de Paris Cité, Paris, France
| |
Collapse
|
29
|
Drillet G, Pastoret C, Moignet A, Lamy T, Marchand T. Large granular lymphocyte leukemia: An indolent clonal proliferative disease associated with an array of various immunologic disorders. Rev Med Interne 2023:S0248-8663(23)00119-4. [PMID: 37087371 DOI: 10.1016/j.revmed.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023]
Abstract
Large granular lymphocyte leukemia (LGLL) is a chronic lymphoproliferative disorder characterized by the proliferation of T or NK cytotoxic cells in the peripheral blood, the spleen and the bone marrow. Neutropenia leading to recurrent infections represents the main manifestation of LGLL. One specificity of LGLL is its frequent association with auto-immune disorders, among them first and foremost rheumatoid arthritis, and other hematologic diseases, including pure red cell aplasia and bone marrow failure. The large spectrum of manifestations and the classical indolent course contribute to the diagnosis difficulties and the frequency of underdiagnosed cases. Of importance, the dysimmune manifestations disappear with the treatment of LGLL as the blood cell counts normalize, giving a strong argument for a pathological link between the two entities. The therapeutic challenge results from the high rate of relapses following the first line of immunosuppressive drugs. New targeted agents, some of which are currently approved in autoimmune diseases, appear to be relevant therapeutic strategies to treat LGLL, by targeting key activated pathways involved in the pathogenesis of the disease, including JAK-STAT signaling.
Collapse
Affiliation(s)
- G Drillet
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France.
| | - C Pastoret
- Laboratoire d'hématologie, centre hospitalier universitaire de Rennes, Rennes, France
| | - A Moignet
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France
| | - T Lamy
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France; Université Rennes 1, Rennes, France; CIC 1414, Rennes, France; Institut national de la santé et de la recherche médicale (INSERM) U1236, Rennes, France
| | - T Marchand
- Service d'hématologie clinique, centre hospitalier universitaire de Rennes, Rennes, France; Université Rennes 1, Rennes, France; Institut national de la santé et de la recherche médicale (INSERM) U1236, Rennes, France
| |
Collapse
|
30
|
An update on genetic aberrations in T-cell neoplasms. Pathology 2023; 55:287-301. [PMID: 36801152 DOI: 10.1016/j.pathol.2022.12.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023]
Abstract
T-cell neoplasms are a highly heterogeneous group of leukaemias and lymphomas that represent 10-15% of all lymphoid neoplasms. Traditionally, our understanding of T-cell leukaemias and lymphomas has lagged behind that of B-cell neoplasms, in part due to their rarity. However, recent advances in our understanding of T-cell differentiation, based on gene expression and mutation profiling and other high throughput methods, have better elucidated the pathogenetic mechanisms of T-cell leukaemias and lymphomas. In this review, we provide an overview of many of the molecular abnormalities that occur in various types of T-cell leukaemia and lymphoma. Much of this knowledge has been used to refine diagnostic criteria that has been included in the fifth edition of the World Health Organization. This knowledge is also being used to improve prognostication and identify novel therapeutic targets, and we expect this progress will continue, eventually resulting in improved outcomes for patients with T-cell leukaemias and lymphomas.
Collapse
|
31
|
Ivanova M, Bottiglieri L, Sajjadi E, Venetis K, Fusco N. Malignancies in Patients with Celiac Disease: Diagnostic Challenges and Molecular Advances. Genes (Basel) 2023; 14:376. [PMID: 36833303 PMCID: PMC9956047 DOI: 10.3390/genes14020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Celiac disease (CD) is a multiorgan autoimmune disorder of the chronic intestinal disease group characterized by duodenal inflammation in genetically predisposed individuals, precipitated by gluten ingestion. The pathogenesis of celiac disease is now widely studied, overcoming the limits of the purely autoimmune concept and explaining its hereditability. The genomic profiling of this condition has led to the discovery of numerous genes involved in interleukin signaling and immune-related pathways. The spectrum of disease manifestations is not limited to the gastrointestinal tract, and a significant number of studies have considered the possible association between CD and neoplasms. Patients with CD are found to be at increased risk of developing malignancies, with a particular predisposition of certain types of intestinal cancer, lymphomas, and oropharyngeal cancers. This can be partially explained by common cancer hallmarks present in these patients. The study of gut microbiota, microRNAs, and DNA methylation is evolving to find the any possible missing links between CD and cancer incidence in these patients. However, the literature is extremely mixed and, therefore, our understanding of the biological interplay between CD and cancer remains limited, with significant implications in terms of clinical management and screening protocols. In this review article, we seek to provide a comprehensive overview of the genomics, epigenomics, and transcriptomics data on CD and its relation to the most frequent types of neoplasms that may occur in these patients.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| |
Collapse
|
32
|
Yap DRY, Lim JQ, Huang D, Ong CK, Chan JY. Emerging predictive biomarkers for novel therapeutics in peripheral T-cell and natural killer/T-cell lymphoma. Front Immunol 2023; 14:1068662. [PMID: 36776886 PMCID: PMC9909478 DOI: 10.3389/fimmu.2023.1068662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) and natural killer/T-cell lymphoma (NKTCL) are rare subtypes of non-Hodgkin's lymphoma that are typically associated with poor treatment outcomes. Contemporary first-line treatment strategies generally involve the use of combination chemoimmunotherapy, radiation and/or stem cell transplant. Salvage options incorporate a number of novel agents including epigenetic therapies (e.g. HDAC inhibitors, DNMT inhibitors) as well as immune checkpoint inhibitors. However, validated biomarkers to select patients for individualized precision therapy are presently lacking, resulting in high treatment failure rates, unnecessary exposure to drug toxicities, and missed treatment opportunities. Recent advances in research on the tumor and microenvironmental factors of PTCL and NKTCL, including alterations in specific molecular features and immune signatures, have improved our understanding of these diseases, though several issues continue to impede progress in clinical translation. In this Review, we summarize the progress and development of the current predictive biomarker landscape, highlight potential knowledge gaps, and discuss the implications on novel therapeutics development in PTCL and NKTCL.
Collapse
Affiliation(s)
- Daniel Ren Yi Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
33
|
de Leval L, Feldman AL, Pileri S, Nakamura S, Gaulard P. Extranodal T- and NK-cell lymphomas. Virchows Arch 2023; 482:245-264. [PMID: 36336765 PMCID: PMC9852223 DOI: 10.1007/s00428-022-03434-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
Non-cutaneous extranodal NK/T cell lymphoproliferations constitute a heterogenous group of rare neoplasms, occurring primarily in the gastro-intestinal tract, nasal area, spleen, and liver. Their nomenclature refers to their usual clinical presentation and predilection for specific anatomic sites-i.e. extranodal NK/T-cell lymphoma, nasal-type, hepatosplenic T-cell lymphoma, primary intestinal T-cell lymphomas, indolent lymphoproliferative disorders of the gastrointestinal tract, and breast implant-associated anaplastic large cell lymphoma. Extranodal tissues may also be involved by T-cell leukemias, or other entities usually presenting as nodal diseases. Primary extranodal entities range from indolent to highly aggressive diseases. Here, we will review the clinicopathologic features of the pertinent entities including the recent advances in their molecular and genetic characterization, with an emphasis on the changes introduced in the 2022 International Consensus Classification of lymphoid neoplasms, and highlight the diagnostic criteria helpful to sort out the distinction with potential mimickers.
Collapse
Affiliation(s)
- Laurence de Leval
- grid.8515.90000 0001 0423 4662Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, 25 rue du Bugnon, CH- 1011 Lausanne, Switzerland
| | - Andrew L. Feldman
- grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN USA
| | - Stefano Pileri
- grid.15667.330000 0004 1757 0843Haematopathology Division, IRCCS, Istituto Europeo Di Oncologia, IEO, Milano, Italy
| | - Shigeo Nakamura
- grid.437848.40000 0004 0569 8970Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Philippe Gaulard
- grid.412116.10000 0004 1799 3934Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France ,grid.462410.50000 0004 0386 3258Inserm U955, Faculty of Medicine, IMRB, University of Paris-Est Créteil, Créteil, France
| |
Collapse
|
34
|
Masle-Farquhar E, Jackson KJL, Peters TJ, Al-Eryani G, Singh M, Payne KJ, Rao G, Avery DT, Apps G, Kingham J, Jara CJ, Skvortsova K, Swarbrick A, Ma CS, Suan D, Uzel G, Chua I, Leiding JW, Heiskanen K, Preece K, Kainulainen L, O'Sullivan M, Cooper MA, Seppänen MRJ, Mustjoki S, Brothers S, Vogel TP, Brink R, Tangye SG, Reed JH, Goodnow CC. STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2D hi CD8 + T cell dysregulation and accumulation. Immunity 2022; 55:2386-2404.e8. [PMID: 36446385 DOI: 10.1016/j.immuni.2022.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia.
| | | | - Timothy J Peters
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mandeep Singh
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kathryn J Payne
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Geetha Rao
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Danielle T Avery
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gabrielle Apps
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Jennifer Kingham
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Christopher J Jara
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ksenia Skvortsova
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cindy S Ma
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Daniel Suan
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, USA; Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kaarina Heiskanen
- Children's Immunodeficiency Unit, Hospital for Children and Adolescents, and Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Leena Kainulainen
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Megan A Cooper
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | | | - Tiphanie P Vogel
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Brink
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stuart G Tangye
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne H Reed
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher C Goodnow
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
35
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Green PHR, Paski S, Ko CW, Rubio-Tapia A. AGA Clinical Practice Update on Management of Refractory Celiac Disease: Expert Review. Gastroenterology 2022; 163:1461-1469. [PMID: 36137844 DOI: 10.1053/j.gastro.2022.07.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022]
Abstract
DESCRIPTION The purpose of this expert review is to summarize the diagnosis and management of refractory celiac disease. It will review evaluation of patients with celiac disease who have persistent or recurrent symptoms, differential diagnosis, nutritional support, potential therapeutic options, and surveillance for complications of this condition. METHODS This expert review was commissioned and approved by the American Gastroenterological Association (AGA) Institute Clinical Practice Updates Committee (CPUC) and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership and underwent internal peer review by the CPUC and external peer review through standard procedures of Gastroenterology. These Best Practice Advice (BPA) statements were drawn from a review of the published literature and from expert opinion. Since systematic reviews were not performed, these BPA statements do not carry formal ratings of the quality of evidence or strength of the presented considerations. Best Practice Advice Statements BEST PRACTICE ADVICE 1: In patients believed to have celiac disease who have persistent or recurrent symptoms or signs, the initial diagnosis of celiac disease should be confirmed by review of prior diagnostic testing, including serologies, endoscopies, and histologic findings. BEST PRACTICE ADVICE 2: In patients with confirmed celiac disease with persistent or recurrent symptoms or signs (nonresponsive celiac disease), ongoing gluten ingestion should be excluded as a cause of these symptoms with serologic testing, dietitian review, and detection of immunogenic peptides in stool or urine. Esophagogastroduodenoscopy with small bowel biopsies should be performed to look for villous atrophy. If villous atrophy persists or the initial diagnosis of celiac disease was not confirmed, consider other causes of villous atrophy, including common variable immunodeficiency, autoimmune enteropathy, tropical sprue, and medication-induced enteropathy. BEST PRACTICE ADVICE 3: For patients with nonresponsive celiac disease, after exclusion of gluten ingestion, perform a systematic evaluation for other potential causes of symptoms, including functional bowel disorders, microscopic colitis, pancreatic insufficiency, inflammatory bowel disease, lactose or fructose intolerance, and small intestinal bacterial overgrowth. BEST PRACTICE ADVICE 4: Use flow cytometry, immunohistochemistry, and T-cell receptor rearrangement studies to distinguish between subtypes of refractory celiac disease and to exclude enteropathy-associated T-cell lymphoma. Type 1 refractory celiac disease is characterized by a normal intraepithelial lymphocyte population and type 2 is defined by the presence of an aberrant, clonal intraepithelial lymphocyte population. Consultation with an expert hematopathologist is necessary to interpret these studies. BEST PRACTICE ADVICE 5: Perform small bowel imaging with capsule endoscopy and computed tomography or magnetic resonance enterography to exclude enteropathy-associated T-cell lymphoma and ulcerative jejunoileitis at initial diagnosis of type 2 refractory celiac disease. BEST PRACTICE ADVICE 6: Complete a detailed nutritional assessment with investigation of micronutrient and macronutrient deficiencies in patients diagnosed with refractory celiac disease. Check albumin as an independent prognostic factor. BEST PRACTICE ADVICE 7: Correct deficiencies in macro- and micronutrients using oral supplements and/or enteral support. Consider parenteral nutrition for patients with severe malnutrition due to malabsorption. BEST PRACTICE ADVICE 8: Corticosteroids, most commonly open-capsule budesonide or, if unavailable, prednisone, are the medication of choice and should be used as first-line therapy in either type 1 or type 2 refractory celiac disease. BEST PRACTICE ADVICE 9: Patients with refractory celiac disease require regular follow-up by a multidisciplinary team, including gastroenterologists and dietitians, to assess clinical and histologic response to therapy. Identify local experts with expertise in celiac disease to assist with management. BEST PRACTICE ADVICE 10: Patients with refractory celiac disease without response to steroids may benefit from referral to a center with expertise for management or evaluation for inclusion in clinical trials.
Collapse
Affiliation(s)
| | - Shirley Paski
- Cedars-Sinai Medical Center, Los Angeles, California
| | - Cynthia W Ko
- Department of Medicine, University of Washington, Seattle, Washington.
| | - Alberto Rubio-Tapia
- Celiac Disease Program, Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
37
|
Nandi N, Croci GA, Rossi FG, Cro L, Vecchi M, Elli L. Normalization of duodenal mucosa after treatment with Janus kinase (JAK) inhibitor in refractory celiac disease type 2. Clin Res Hepatol Gastroenterol 2022; 46:101960. [PMID: 35623554 DOI: 10.1016/j.clinre.2022.101960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Nicoletta Nandi
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy; Center for Prevention and Diagnosis of Celiac Disease and Division of Gastroenterology and Endoscopy, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan 20122, Italy
| | - Giorgio Alberto Croci
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy; Division of Pathology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan 20122, Italy
| | - Francesca Gaia Rossi
- Division of Hemaotology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan 20122, Italy
| | - Lilla Cro
- Servizio di Citofluorimetria, Laboratorio Centrale, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy; Center for Prevention and Diagnosis of Celiac Disease and Division of Gastroenterology and Endoscopy, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan 20122, Italy
| | - Luca Elli
- Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy; Center for Prevention and Diagnosis of Celiac Disease and Division of Gastroenterology and Endoscopy, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, Milan 20122, Italy.
| |
Collapse
|
38
|
Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, Brousset P, Cerroni L, de Leval L, Dirnhofer S, Dogan A, Feldman AL, Fend F, Friedberg JW, Gaulard P, Ghia P, Horwitz SM, King RL, Salles G, San-Miguel J, Seymour JF, Treon SP, Vose JM, Zucca E, Advani R, Ansell S, Au WY, Barrionuevo C, Bergsagel L, Chan WC, Cohen JI, d'Amore F, Davies A, Falini B, Ghobrial IM, Goodlad JR, Gribben JG, Hsi ED, Kahl BS, Kim WS, Kumar S, LaCasce AS, Laurent C, Lenz G, Leonard JP, Link MP, Lopez-Guillermo A, Mateos MV, Macintyre E, Melnick AM, Morschhauser F, Nakamura S, Narbaitz M, Pavlovsky A, Pileri SA, Piris M, Pro B, Rajkumar V, Rosen ST, Sander B, Sehn L, Shipp MA, Smith SM, Staudt LM, Thieblemont C, Tousseyn T, Wilson WH, Yoshino T, Zinzani PL, Dreyling M, Scott DW, Winter JN, Zelenetz AD. The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee. Blood 2022; 140:1229-1253. [PMID: 35653592 PMCID: PMC9479027 DOI: 10.1182/blood.2022015851] [Citation(s) in RCA: 590] [Impact Index Per Article: 295.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Since the publication of the Revised European-American Classification of Lymphoid Neoplasms in 1994, subsequent updates of the classification of lymphoid neoplasms have been generated through iterative international efforts to achieve broad consensus among hematopathologists, geneticists, molecular scientists, and clinicians. Significant progress has recently been made in the characterization of malignancies of the immune system, with many new insights provided by genomic studies. They have led to this proposal. We have followed the same process that was successfully used for the third and fourth editions of the World Health Organization Classification of Hematologic Neoplasms. The definition, recommended studies, and criteria for the diagnosis of many entities have been extensively refined. Some categories considered provisional have now been upgraded to definite entities. Terminology for some diseases has been revised to adapt nomenclature to the current knowledge of their biology, but these modifications have been restricted to well-justified situations. Major findings from recent genomic studies have impacted the conceptual framework and diagnostic criteria for many disease entities. These changes will have an impact on optimal clinical management. The conclusions of this work are summarized in this report as the proposed International Consensus Classification of mature lymphoid, histiocytic, and dendritic cell tumors.
Collapse
Affiliation(s)
- Elias Campo
- Haematopathology Section, Hospital Clínic of Barcelona, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Barcelona, Spain
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - James R Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, and Laboratoire d'Excellence Toulouse Cancer, Toulouse, France
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ahmet Dogan
- Laboratory of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | | | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Créteil, France
- Mondor Institute for Biomedical Research, INSERM U955, Faculty of Medicine, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Strategic Research Program on Chronic Lymphocytic Leukemia, Division of Experimental Oncology, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Steven M Horwitz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rebecca L King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, CIBERONC, Pamplona, Spain
| | - John F Seymour
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - Julie M Vose
- Division of Hematology-Oncology, Department of Internal Medicine, University of Nebraska Medical Center, University of Nebraska, Omaha, NE
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, and Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ranjana Advani
- Stanford Cancer Center, Blood and Marrow Transplant Program, Stanford University, Stanford, CA
| | - Stephen Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Wing-Yan Au
- Blood-Med Clinic, Hong Kong, People's Republic of China
| | - Carlos Barrionuevo
- Department of Pathology, Instituto Nacional de Enfermedades Neoplásicas, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Andrew Davies
- Cancer Research UK Centre, Centre for Cancer Immunology, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncology Research, Hospital of Perugia, University of Perugia , Perugia, Italy
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Harvard University, Boston, MA
| | - John R Goodlad
- National Health Service Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - John G Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Eric D Hsi
- Department of Pathology, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, NC
| | - Brad S Kahl
- Oncology Division, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Won-Seog Kim
- Hematology and Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Shaji Kumar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | | - Camille Laurent
- Department of Pathology, Institut Universitaire du Cancer de Toulouse-Oncopole, and Laboratoire d'Excellence Toulouse Cancer, Toulouse, France
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - John P Leonard
- Weill Department of Medicine, Weill Medical College, Cornell University, New York, NY
| | - Michael P Link
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Stanford University School of Medicine, Stanford University, Stanford, CA
| | - Armando Lopez-Guillermo
- Department of Hematology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Maria Victoria Mateos
- Department of Hematology, Hospital Universitario de Salamanca, Instituto de Investigación Biomédica de Salamanca, Centro de Investigación del Cancer, Universidad de Salamanca, Salamanca, Spain
| | - Elizabeth Macintyre
- Laboratoire d'Onco-Hématologie, AP-HP, Hôpital Necker-Enfants Malades, Université de Paris Cité and Institut Necker-Enfants Malades, Paris, France
| | - Ari M Melnick
- Division of Hematology and Oncology, Weill Medical College, Cornell University, New York, NY
| | - Franck Morschhauser
- Department of Hematology, Centre Hospitalier Universitaire de Lille, University Lille, Lille, France
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Marina Narbaitz
- Department of Pathology, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina and Fundacion para combatir la leucemia (FUNDALEU), Buenos Aires, Argentina
| | - Astrid Pavlovsky
- Fundación para Combatir la Leucemia (FUNDALEU), Centro de Hematología Pavlovsky, Buenos Aires, Argentina
| | - Stefano A Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, Milan, Italy
| | - Miguel Piris
- Jiménez Díaz Foundation University Hospital, Universidad Autónoma de Madrid, Madrid, Spain
| | - Barbara Pro
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Vincent Rajkumar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Steven T Rosen
- Beckman Research Institute, and Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laurie Sehn
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Sonali M Smith
- Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Catherine Thieblemont
- Service Hémato-Oncologie, AP-HP, Hôpital Saint-Louis, Paris, France
- DMU-DHI, Université de Paris-Paris Diderot, Paris, France
| | - Thomas Tousseyn
- Department of Pathology, Universitair Ziekenhuis Leuven Hospitals, Leuven, Belgium
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Pier-Luigi Zinzani
- Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seragnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - David W Scott
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL; and
| | - Andrew D Zelenetz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College, Cornell University, New York, NY
| |
Collapse
|
39
|
Levescot A, Malamut G, Cerf-Bensussan N. Immunopathogenesis and environmental triggers in coeliac disease. Gut 2022; 71:gutjnl-2021-326257. [PMID: 35879049 PMCID: PMC9554150 DOI: 10.1136/gutjnl-2021-326257] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Coeliac disease (CD) is a frequent immune enteropathy induced by gluten in genetically predisposed individuals. Its pathogenesis has been extensively studied and CD has emerged as a model disease to decipher how the interplay between environmental and genetic factors can predispose to autoimmunity and promote lymphomagenesis. The keystone event is the activation of a gluten-specific immune response that is driven by molecular interactions between gluten, the indispensable environmental factor, HLA-DQ2/8, the main predisposing genetic factor and transglutaminase 2, the CD-specific autoantigen. The antigluten response is however not sufficient to induce epithelial damage which requires the activation of cytotoxic CD8+ intraepithelial lymphocytes (IEL). In a plausible scenario, cooperation between cytokines released by gluten-specific CD4+ T cells and interleukin-15 produced in excess in the coeliac gut, licenses the autoimmune-like attack of the gut epithelium, likely via sustained activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway in IEL. Demonstration that lymphomas complicating CD arise from IEL that have acquired gain-of-function JAK1 or STAT3 mutations stresses the key role of this pathway and explains how gluten-driven chronic inflammation may promote this rare but most severe complication. If our understanding of CD pathogenesis has considerably progressed, several questions and challenges remain. One unsolved question concerns the considerable variability in disease penetrance, severity and presentation, pointing to the role of additional genetic and environmental factors that remain however uneasy to untangle and hierarchize. A current challenge is to transfer the considerable mechanistic insight gained into CD pathogenesis into benefits for the patients, notably to alleviate the gluten-free diet, a burden for many patients.
Collapse
Affiliation(s)
- Anais Levescot
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| | - Georgia Malamut
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
- Université Paris Cité, APHP Centre, Gastroenterology Department, Hôpital Cochin, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| |
Collapse
|
40
|
Catassi C, Verdu EF, Bai JC, Lionetti E. Coeliac disease. Lancet 2022; 399:2413-2426. [PMID: 35691302 DOI: 10.1016/s0140-6736(22)00794-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Coeliac disease is an autoimmune disorder that primarily affects the small intestine, and is caused by the ingestion of gluten in genetically susceptible individuals. Prevalence in the general population ranges from 0·5% to 2%, with an average of about 1%. The development of the coeliac enteropathy depends on a complex immune response to gluten proteins, including both adaptive and innate mechanisms. Clinical presentation of coeliac disease is highly variable and includes classical and non-classical gastrointestinal symptoms, extraintestinal manifestations, and subclinical cases. The disease is associated with a risk of complications, such as osteoporosis and intestinal lymphoma. Diagnosis of coeliac disease requires a positive serology (IgA anti-transglutaminase 2 and anti-endomysial antibodies) and villous atrophy on small-intestinal biopsy. Treatment involves a gluten-free diet; however, owing to the high psychosocial burden of such a diet, research into alternative pharmacological treatments is currently very active.
Collapse
Affiliation(s)
- Carlo Catassi
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy; Celiac Center and Mucosal Immunology and Biology Research, MassGeneral Hospital for Children-Harvard Medical School, Boston, MA, USA.
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Julio Cesar Bai
- Department of Medicine, Dr C Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina; Research Institutes, Universidad del Salvador, Buenos Aires, Argentina
| | - Elena Lionetti
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
41
|
Bianchi N, Doneda L, Elli L, Taccioli C, Vaira V, Scricciolo A, Lombardo V, Terrazzan A, Colapietro P, Terranova L, Bergamini C, Vecchi M, Scaramella L, Nandi N, Roncoroni L. Circulating microRNAs Suggest Networks Associated with Biological Functions in Aggressive Refractory Type 2 Celiac Disease. Biomedicines 2022; 10:biomedicines10061408. [PMID: 35740429 PMCID: PMC9219665 DOI: 10.3390/biomedicines10061408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023] Open
Abstract
Despite following a gluten-free diet, which is currently the only effective therapy for celiac disease, about 5% of patients can develop serious complications, which in the case of refractory type 2 could evolve towards intestinal lymphoma. In this study, we have identified a set of 15 microRNAs in serum discriminating between the two types of refractory disease. Upregulated miR-770-5p, miR-181b-2-3p, miR-1193, and miR-1226-3p could be useful for the better stratification of patients and the monitoring of disease development, while miR-490-3p was found to be dysregulated in patients with refractory type 1. Finally, by using bioinformatic tools applied to the analysis of the targets of dysregulated microRNAs, we have completed a more precise assessment of their functions. These mainly include the pathway of response to Transforming Growth Factor β cell-cell signaling by Wnt; epigenetic regulation, especially novel networks associated with transcriptional and post-transcriptional alterations; and the well-known inflammatory profiles.
Collapse
Affiliation(s)
- Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Street L. Borsari 46, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Luisa Doneda
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Street Pascal 36, 20133 Milan, Italy; (L.D.); (L.R.)
| | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
- Correspondence:
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy;
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Street F. Sforza 35, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Alice Scricciolo
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
| | - Vincenza Lombardo
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Street L. Borsari 46, 44121 Ferrara, Italy; (N.B.); (A.T.)
| | - Patrizia Colapietro
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Leonardo Terranova
- Respiratory Unit and Cystic Fibrosis Adult Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Street F. Sforza 35, 20122 Milan, Italy;
| | - Carlo Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Street L. Borsari 46, 44121 Ferrara, Italy;
| | - Maurizio Vecchi
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Lucia Scaramella
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
| | - Nicoletta Nandi
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (A.S.); (V.L.); (M.V.); (L.S.); (N.N.)
- Department of Pathophysiology and Transplantation, University of Milan, Street F. Sforza 35, 20122 Milan, Italy;
| | - Leda Roncoroni
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Street Pascal 36, 20133 Milan, Italy; (L.D.); (L.R.)
| |
Collapse
|
42
|
Hue SSS, Ng SB, Wang S, Tan SY. Cellular Origins and Pathogenesis of Gastrointestinal NK- and T-Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:2483. [PMID: 35626087 PMCID: PMC9139583 DOI: 10.3390/cancers14102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intestinal immune system, which must ensure appropriate immune responses to both pathogens and commensal microflora, comprises innate lymphoid cells and various T-cell subsets, including intra-epithelial lymphocytes (IELs). An example of innate lymphoid cells is natural killer cells, which may be classified into tissue-resident, CD56bright NK-cells that serve a regulatory function and more mature, circulating CD56dim NK-cells with effector cytolytic properties. CD56bright NK-cells in the gastrointestinal tract give rise to indolent NK-cell enteropathy and lymphomatoid gastropathy, as well as the aggressive extranodal NK/T cell lymphoma, the latter following activation by EBV infection and neoplastic transformation. Conventional CD4+ TCRαβ+ and CD8αβ+ TCRαβ+ T-cells are located in the lamina propria and the intraepithelial compartment of intestinal mucosa as type 'a' IELs. They are the putative cells of origin for CD4+ and CD8+ indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and intestinal T-cell lymphoma, NOS. In addition to such conventional T-cells, there are non-conventional T-cells in the intra-epithelial compartment that express CD8αα and innate lymphoid cells that lack TCRs. The central feature of type 'b' IELs is the expression of CD8αα homodimers, seen in monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which primarily arises from both CD8αα+ TCRαβ+ and CD8αα+ TCRγδ+ IELs. EATL is the other epitheliotropic T-cell lymphoma in the GI tract, a subset of which arises from the expansion and reprograming of intracytoplasmic CD3+ innate lymphoid cells, driven by IL15 and mutations of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| |
Collapse
|
43
|
Felber J, Bläker H, Fischbach W, Koletzko S, Laaß M, Lachmann N, Lorenz P, Lynen P, Reese I, Scherf K, Schuppan D, Schumann M, Aust D, Baas S, Beisel S, de Laffolie J, Duba E, Holtmeier W, Lange L, Loddenkemper C, Moog G, Rath T, Roeb E, Rubin D, Stein J, Török H, Zopf Y. Aktualisierte S2k-Leitlinie Zöliakie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:790-856. [PMID: 35545109 DOI: 10.1055/a-1741-5946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jörg Felber
- Medizinische Klinik II - Gastroenterologie, Hepatologie, Endokrinologie, Hämatologie und Onkologie, RoMed Klinikum Rosenheim, Rosenheim, Deutschland
| | - Hendrik Bläker
- Institut für Pathologie, Universitätsklinikum Leipzig AöR, Leipzig, Deutschland
| | | | - Sibylle Koletzko
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU-Klinikum München, München, Deutschland.,Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, 10-719 Olsztyn, Polen
| | - Martin Laaß
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland
| | - Nils Lachmann
- Institut für Transfusionsmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Pia Lorenz
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - Petra Lynen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - Imke Reese
- Ernährungsberatung und -therapie Allergologie, München, Deutschland
| | - Katharina Scherf
- Institute of Applied Biosciences Department of Bioactive and Functional Food Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Deutschland
| | - Detlef Schuppan
- Institut für Translationale Immunologie, Johannes Gutenberg-Universität Mainz, Mainz, Deutschland.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Schumann
- Medizinische Klinik I für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cutaneous presentation of enteropathy-associated T-cell lymphoma masquerading as a DUSP22-rearranged CD30+ lymphoproliferation. Virchows Arch 2022; 481:653-657. [PMID: 35366115 DOI: 10.1007/s00428-022-03309-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
DUSP22 gene rearrangements are recurrent in systemic and cutaneous ALK-negative anaplastic large cell lymphomas, rarely encountered in other cutaneous CD30+ lymphoproliferations, and typically absent in other peripheral T-cell lymphomas. We report the case of a 51-year-old woman, with longstanding celiac disease and a rapidly enlarging leg ulcer, due to a DUSP22-rearranged CD30+ T-cell lymphoproliferation. Subsequent history revealed an intestinal enteropathy-associated T-cell lymphoma (EATL). Identical monoclonal TR gene rearrangements and mutations in STAT3 and JAK1 typical of EATL were present in the cutaneous and intestinal lesions. No DUSP22 rearrangement was detected in the patient's intestinal tumour, nor in 15 additional EATLs tested. These findings indicate that DUSP22 rearrangements are not entirely specific of ALCLs, may rarely occur as a secondary aberration in EATL, and expand the differential diagnosis of DUSP22-rearranged cutaneous CD30+ lymphoproliferative disorders.
Collapse
|
45
|
Demiroren K. Possible relationship between refractory celiac disease and malignancies. World J Clin Oncol 2022; 13:200-208. [PMID: 35433292 PMCID: PMC8966511 DOI: 10.5306/wjco.v13.i3.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/16/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CeD) is a chronic autoimmune disorder that is triggered by gluten in genetically susceptible individuals, and that is characterized by CeD-specific antibodies, HLA-DQ2 and/or HLA-DQ8 haplotypes, enteropathy and different clinical pictures related to many organs. Intestinal lymphoma may develop as a result of refractory CeD. If a patient diagnosed with CeD is symptomatic despite a strict gluten-free diet for at least 12 months, and does not improve with severe villous atrophy, refractory CeD can be considered present. The second of the two types of refractory CeD has abnormal monoclonal intraepithelial lymphocytes and can be considered as pre-lymphoma, and the next picture that will emerge is enteropathy-associated T-cell lymphoma. This manuscript addresses "CeD and malignancies" through a review of current literature and guidelines.
Collapse
Affiliation(s)
- Kaan Demiroren
- Department of Pediatric Gastroenterology, University of Health Sciences, Yuksek Ihtisas Teaching Hospital, Bursa 16000, Turkey
| |
Collapse
|
46
|
Single-Cell Analysis of Refractory Celiac Disease Demonstrates Inter- and Intra-Patient Aberrant Cell Heterogeneity. Cell Mol Gastroenterol Hepatol 2022; 14:173-192. [PMID: 35338007 PMCID: PMC9123272 DOI: 10.1016/j.jcmgh.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Refractory celiac disease type II (RCDII) is a rare indolent lymphoma in the small intestine characterized by a clonally expanded intraepithelial intracellular CD3+surfaceCD3-CD7+CD56- aberrant cell population. However, RCDII pathogenesis is ill-defined. Here, we aimed at single-cell characterization of the innate and adaptive immune system in RCDII. METHODS Paired small intestinal and blood samples from 12 RCDII patients and 6 healthy controls were assessed by single-cell mass cytometry with a 39-cell surface marker antibody panel, designed to capture heterogeneity of the innate and adaptive immune system. A second single-cell mass cytometry panel that included transcription factors and immune checkpoints was used for analysis of paired samples from 5 RCDII patients. Single-cell RNA sequencing analysis was performed on duodenal samples from 2 RCDII patients. Finally, we developed a 40-marker imaging mass cytometry antibody panel to evaluate cell-cell interactions in duodenal biopsy specimens of RCDII patients. RESULTS We provide evidence for intertumoral and intratumoral cell heterogeneity within the duodenal and peripheral aberrant cell population present in RCDII. Phenotypic discrepancy was observed between peripheral and duodenal aberrant cells. In addition, we observed that part of the aberrant cell population proliferated and observed co-localization of aberrant cells with CD163+ antigen-presenting cells (APCs) in situ. In addition, we observed phenotypic discrepancy between peripheral and duodenal aberrant cells. CONCLUSIONS Novel high-dimensional single-cell technologies show substantial intertumoral and intratumoral heterogeneity in the aberrant cell population in RCDII. This may underlie variability in refractory disease status between patients and responsiveness to therapy, pointing to the need for personalized therapy in RCDII based on patient-specific immune profiles.
Collapse
|
47
|
Okumura K. Re: Association between intestinal neoplasms and celiac disease - beyond celiac disease and more. World J Gastrointest Oncol 2022; 14:746-747. [PMID: 35321274 PMCID: PMC8919020 DOI: 10.4251/wjgo.v14.i3.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/17/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
The association between celiac disease and enteropathy-associated T cell lymphoma has been known. The pathogenesis of the development of malignant neoplasms remains limited. In addition to celiac disease, we believe that other underlying mechanisms contribute to the developing malignant neoplasms.
Collapse
Affiliation(s)
- Kenji Okumura
- Department of Surgery, Westchester Medical Center / New York Medical College, Valhalla, NY 10595, United States
| |
Collapse
|
48
|
Murray JA. Several faces of refractory coeliac disease type 2. Gut 2022; 71:449-450. [PMID: 33785554 DOI: 10.1136/gutjnl-2021-324251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/08/2022]
Affiliation(s)
- Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Primary Gastrointestinal T-Cell Lymphoma and Indolent Lymphoproliferative Disorders: Practical Diagnostic and Treatment Approaches. Cancers (Basel) 2021; 13:cancers13225774. [PMID: 34830926 PMCID: PMC8616126 DOI: 10.3390/cancers13225774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary It is challenging for pathologists to diagnose primary gastrointestinal T-cell neoplasms. Besides the rarity of the diseases, the small biopsy material makes it more difficult to differentiate between non-neoplastic inflammation and secondary involvement of extra gastrointestinal lymphoma. Since this group of diseases ranges from aggressive ones with a very poor prognosis to indolent ones that require caution to avoid overtreatment, the impact of the diagnosis on the patient is enormous. Although early treatment of aggressive lymphoma is essential, the treatment strategy is not well established, which is a problem for clinicians. This review provides a cross-sectional comparison of histological findings. Unlike previous reviews, we summarized up-to-date clinically relevant information including the treatment strategies as well as practical differential diagnosis based on thorough literature review. Abstract Primary gastrointestinal (GI) T-cell neoplasms are extremely rare heterogeneous disease entities with distinct clinicopathologic features. Given the different prognoses of various disease subtypes, clinicians and pathologists must be aware of the key characteristics of these neoplasms, despite their rarity. The two most common aggressive primary GI T-cell lymphomas are enteropathy-associated T-cell lymphoma and monomorphic epitheliotropic intestinal T-cell lymphoma. In addition, extranodal natural killer (NK)/T-cell lymphoma of the nasal type and anaplastic large cell lymphoma may also occur in the GI tract or involve it secondarily. In the revised 4th World Health Organization classification, indolent T-cell lymphoproliferative disorder of the GI tract has been incorporated as a provisional entity. In this review, we summarize up-to-date clinicopathological features of these disease entities, including the molecular characteristics of primary GI T-cell lymphomas and indolent lymphoproliferative disorders. We focus on the latest treatment approaches, which have not been summarized in existing reviews. Further, we provide a comprehensive review of available literature to address the following questions: How can pathologists discriminate subtypes with different clinical prognoses? How can primary GI neoplasms be distinguished from secondary involvement? How can these neoplasms be distinguished from non-specific inflammatory changes at an early stage?
Collapse
|
50
|
Pelizzaro F, Marsilio I, Fassan M, Piazza F, Barberio B, D’Odorico A, Savarino EV, Farinati F, Zingone F. The Risk of Malignancies in Celiac Disease-A Literature Review. Cancers (Basel) 2021; 13:cancers13215288. [PMID: 34771450 PMCID: PMC8582432 DOI: 10.3390/cancers13215288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CeD) is an immune-mediated enteropathy precipitated by ingestion of gluten in genetically predisposed individuals. Considering that CeD affects approximately 1% of the Western population, it may be considered a global health problem. In the large majority of cases, CeD has a benign course, characterized by the complete resolution of symptoms and a normal life expectancy after the beginning of a gluten-free-diet (GFD); however, an increased risk of developing malignancies, such as lymphomas and small bowel carcinoma (SBC), has been reported. In particular, enteropathy-associated T-cell lymphoma (EATL), a peculiar type of T-cell lymphoma, is characteristically associated with CeD. Moreover, the possible association between CeD and several other malignancies has been also investigated in a considerable number of studies. In this paper, we aim to provide a comprehensive review of the current knowledge about the associations between CeD and cancer, focusing in particular on EATL and SBC, two rare but aggressive malignancies.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, 35128 Padova, Italy; (F.P.); (I.M.); (B.B.); (A.D.); (E.V.S.); (F.F.)
| | - Ilaria Marsilio
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, 35128 Padova, Italy; (F.P.); (I.M.); (B.B.); (A.D.); (E.V.S.); (F.F.)
| | - Matteo Fassan
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University Hospital of Padova, 35128 Padova, Italy;
- Veneto Oncology Institute, IOV-IRCCS, 35128 Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology, University Hospital of Padova, 35128 Padova, Italy;
| | - Brigida Barberio
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, 35128 Padova, Italy; (F.P.); (I.M.); (B.B.); (A.D.); (E.V.S.); (F.F.)
| | - Anna D’Odorico
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, 35128 Padova, Italy; (F.P.); (I.M.); (B.B.); (A.D.); (E.V.S.); (F.F.)
| | - Edoardo V. Savarino
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, 35128 Padova, Italy; (F.P.); (I.M.); (B.B.); (A.D.); (E.V.S.); (F.F.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, 35128 Padova, Italy; (F.P.); (I.M.); (B.B.); (A.D.); (E.V.S.); (F.F.)
| | - Fabiana Zingone
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, 35128 Padova, Italy; (F.P.); (I.M.); (B.B.); (A.D.); (E.V.S.); (F.F.)
- Correspondence:
| |
Collapse
|