1
|
Anto Michel N, Ljubojevic-Holzer S, Bugger H, Zirlik A. Cellular Heterogeneity of the Heart. Front Cardiovasc Med 2022; 9:868466. [PMID: 35548426 PMCID: PMC9081371 DOI: 10.3389/fcvm.2022.868466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/23/2022] [Indexed: 11/18/2022] Open
Abstract
Recent advances in technology such as the introduction of high throughput multidimensional tools like single cell sequencing help to characterize the cellular composition of the human heart. The diversity of cell types that has been uncovered by such approaches is by far greater than ever expected before. Accurate identification of the cellular variety and dynamics will not only facilitate a much deeper understanding of cardiac physiology but also provide important insights into mechanisms underlying its pathological transformation. Distinct cellular patterns of cardiac cell clusters may allow differentiation between a healthy heart and a sick heart while potentially predicting future disease at much earlier stages than currently possible. These advances have already extensively improved and will ultimately revolutionize our knowledge of the mechanisms underlying cardiovascular disease as such. In this review, we will provide an overview of the cells present in the human and rodent heart as well as genes that may be used for their identification.
Collapse
|
2
|
Giardullo L, Corrado A, Maruotti N, Cici D, Mansueto N, Cantatore FP. Adipokine role in physiopathology of inflammatory and degenerative musculoskeletal diseases. Int J Immunopathol Pharmacol 2021; 35:20587384211015034. [PMID: 33983056 PMCID: PMC8127732 DOI: 10.1177/20587384211015034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
We performed a systematic literature review to summarize the underlying pathogenic mechanisms by which adipokines influence rheumatological diseases and the resulting clinical manifestations. Increasing evidence display that numerous adipokines may significantly influence the development or clinical course of various rheumatological diseases. Despite the normal anti- or pro-inflammatory role of the cytokines, the serum level varies enormously in various rheumatological diseases. The expression of high levels of pro-inflammatory cytokines such as leptin or visfatin, respectively in systemic lupus erythematosus and in rheumatoid arthritis, represents a negative prognostic factor; other adipokines such as adiponectin, broadly known for their anti-inflammatory effects, showed a correlation with disease activity in rheumatoid arthritis. In the near future pro-inflammatory cytokines may represent a potential therapeutic target to restrain the severity of rheumatological diseases. Further studies on adipokines may provide important information on the pathogenesis of these diseases, which are not yet fully understood. The mechanisms by which adipokines induce, worsen, or suppress inflammatory and degenerative musculoskeletal pathologies and their clinical significance will be discussed in this review.
Collapse
Affiliation(s)
- Liberato Giardullo
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Addolorata Corrado
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Nicola Maruotti
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Daniela Cici
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Natalia Mansueto
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Clinic “Mario Carrozzo”, Department of Medical and Surgical Sciences, University of Foggia, “Policlinico Riuniti” University Hospital, Foggia, Italy
| |
Collapse
|
3
|
Oh A, Okazaki R, Sam F, Valero-Muñoz M. Heart Failure With Preserved Ejection Fraction and Adipose Tissue: A Story of Two Tales. Front Cardiovasc Med 2019; 6:110. [PMID: 31428620 PMCID: PMC6687767 DOI: 10.3389/fcvm.2019.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of heart failure in the presence of a normal left ventricular ejection fraction. Although it accounts for up to 50% of all clinical presentations of heart failure, there are no evidence-based therapies for HFpEF to reduce morbidity and mortality. Additionally there is a lack of mechanistic understanding about the pathogenesis of HFpEF. HFpEF is associated with many comorbidities (such as obesity, hypertension, type 2 diabetes, atrial fibrillation, etc.) and is coupled with both cardiac and extra-cardiac abnormalities. Large outcome trials and registries reveal that being obese is a major risk factor for HFpEF. There is increasing focus on investigating the link between obesity and HFpEF, and the role that the adipose tissue and the heart, and the circulating milieu play in development and pathogenesis of HFpEF. This review discusses features of the obese-HFpEF phenotype and highlights proposed mechanisms implicated in the inter-tissue communication between adipose tissue and the heart in obesity-associated HFpEF.
Collapse
Affiliation(s)
- Albin Oh
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Ross Okazaki
- Boston University School of Medicine, Boston, MA, United States
| | - Flora Sam
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
- Boston University School of Medicine, Boston, MA, United States
- Section of Cardiovascular Medicine, Boston Medical Center, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Maria Valero-Muñoz
- Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Neumann E, Lepper N, Vasile M, Riccieri V, Peters M, Meier F, Hülser ML, Distler O, Gay S, Mahavadi P, Günther A, Roeb E, Frommer KW, Diller M, Müller-Ladner U. Adipokine expression in systemic sclerosis lung and gastrointestinal organ involvement. Cytokine 2019; 117:41-49. [PMID: 30784899 DOI: 10.1016/j.cyto.2018.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/12/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The immunomodulatory properties of adipokines have previously been reported in autoimmune disorders. Less is known about the role of adipokines in systemic sclerosis (SSc). Lung and gastrointestinal tract are frequently involved in SSc; therefore, these organs were analyzed for adipokine expression as well as pulmonary samples of patients suffering from idiopathic pulmonary fibrosis (IPF) as comparison. METHODS Gastric samples (antrum, corpus) of SSc were analyzed immunohistochemically for adiponectin, resistin and visfatin compared with non-SSc related gastritis. Inflammatory cells were quantified in gastric samples and correlated with adipokine expression. Lung samples of SSc, IPF and healthy controls were also analyzed. Protein levels of lung tissue lysates and bronchoalveolar lavages (BAL) in minor fibrotic stages were measured by ELISA. RESULTS Lung sections of donor parenchyma showed significantly stronger adiponectin signals as IPF and SSc (donor vs. IPF: p < 0.0001). In SSc and IPF, resistin and visfatin were increased within immune cell infiltrates, but overall no difference in expression for resistin or visfatin compared to controls was observed. In BAL and lung protein lysates of early stages of fibrosis, adiponectin and visfatin were not reduced in IPF and SSc compared to controls. In gastric samples collected by standard endoscopic gastric biopsy, adiponectin was also significantly reduced in SSc- compared to non-SSc gastritis (p = 0.049) while resistin and visfatin were comparable although deeper fibrotic layers were not included in the respective samples. Adiponectin-positive tissues showed higher amounts of CD4+ but not CD8+ T cells. Controls showed no correlation between CD4+ T cells and resistin, whereas SSc showed significantly more CD4+ T cells in resistin-negative tissues. CONCLUSION Adipokines are expressed in gastric and lung samples of patients with SSc and in lung samples affected by IPF. Prominently, adiponectin levels were reduced in fibrotic SSc gastritic tissue as well as in IPF and SSc lung tissue. Consequently, adiponectin expression seems to be associated with fibrotic progression in the context of SSc and IPF.
Collapse
Affiliation(s)
- Elena Neumann
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany.
| | - Nina Lepper
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Massimiliano Vasile
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany; Dept Internal Medicine and Medical Specialties, Sapienza University Rome, Rome, Italy
| | - Valeria Riccieri
- Dept Internal Medicine and Medical Specialties, Sapienza University Rome, Rome, Italy
| | - Marvin Peters
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Florian Meier
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Marie-Lisa Hülser
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Oliver Distler
- Div Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Steffen Gay
- Div Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Poornima Mahavadi
- Med Clinic II, Pneumology, Justus-Liebig-University Giessen, Germany
| | - Andreas Günther
- Med Clinic II, Pneumology, Justus-Liebig-University Giessen, Germany
| | - Elke Roeb
- Med Clinic II, Gastroenterology, Justus-Liebig-University Giessen, Germany
| | - Klaus W Frommer
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Magnus Diller
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Ulf Müller-Ladner
- Dept of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
5
|
Sente T, Gevaert A, Van Berendoncks A, Vrints CJ, Hoymans VY. The evolving role of adiponectin as an additive biomarker in HFrEF. Heart Fail Rev 2018; 21:753-769. [PMID: 27480276 DOI: 10.1007/s10741-016-9578-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heart failure (HF) is a growing health problem. Despite improved management and outcome, the number of patients with HF is expected to keep rising in the following years. In recent research, adiponectin was shown to exert beneficial effects in the cardiovascular system, but the protein was also implicated in the development and progression of HF. The objective of this review is to provide an overview of current knowledge on the role of adiponectin in HF with reduced ejection fraction. We discuss the cardioprotective and (anti-) inflammatory actions of adiponectin and its potential use in clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- Tahnee Sente
- Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Edegem, Belgium.
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Andreas Gevaert
- Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - An Van Berendoncks
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Christiaan J Vrints
- Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Vicky Y Hoymans
- Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
6
|
The Role of Serum Adiponectin for Outcome Prediction in Patients with Dilated Cardiomyopathy and Advanced Heart Failure. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3818292. [PMID: 29318144 PMCID: PMC5727561 DOI: 10.1155/2017/3818292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 11/17/2022]
Abstract
Clinical interpretation of patients' plasma adiponectin (APN) remains challenging; its value as biomarker in dilated cardiomyopathy (DCM) is equivocal. We evaluated whether circulating APN level is an independent predictor of composite outcome: death, left ventricle assist device (LVAD) implantation, and heart transplantation (HT) in patients with nonischemic DCM. 57 patients with nonischemic DCM (average LV diastolic diameter 6.85 cm, LV ejection fraction 26.63%, and pulmonary capillary wedge pressure 22.06 mmHg) were enrolled. Patients underwent echocardiography, right heart catheterization, and endomyocardial biopsy. During a mean follow-up of 33.42 months, 15 (26%) patients died, 12 (21%) patients underwent HT, and 8 (14%) patients were implanted with LVAD. APN level was significantly higher in patients who experienced study endpoints (23.4 versus 10.9 ug/ml, p = 0.01). APN was associated with worse outcome in univariate Cox proportional hazards model (HR 1.04, CI 1.02-1.07, p = 0.001) but lost significance adjusting for other covariates. Average global strain (AGS) is an independent outcome predictor (HR 1.42, CI 1.081-1.866, p = 0.012). Increased circulating APN level was associated with higher mortality and may be an additive prognostic marker in DCM with advanced HF. Combination of serum (APN, BNP, TNF-α) and echocardiographic (AGS) markers may increase the HF predicting power for the nonischemic DCM patients.
Collapse
|
7
|
Memon AG, Rahman MA, Alghasham A, Hamid S, Hamid Q. Correlation between adipocytokines and AGE products in diabetic and non-diabetic patients with myocardial infarction. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-013-1298-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Abstract
Scleroderma is a systemic autoimmune disease of unknown etiology whose characteristic features include endothelial cell dysfunction, fibroblast proliferation, and immune dysregulation. Although almost any organ can be pathologically involved in scleroderma, lung complications including interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are the leading cause of death in patients with this condition. Currently, the molecular mechanisms leading to development of scleroderma-related lung disease are poorly understood; however, the systemic nature of this condition has led many to implicate circulating factors in the pathogenesis of some of its organ impairment. In this article we focus on a new class of circulating factors derived from adipose-tissue called adipokines, which are known to be altered in scleroderma. Recently, the adipokines adiponectin and leptin have been found to regulate biological activity in endothelial, fibroblast, and immune cell types in lung and in many other tissues. The pleiotropic nature of these circulating factors and their functional activity on many cell types implicated in the pathogenesis of ILD and PAH suggest these hormones may be mechanistically involved in the onset and/or progression of scleroderma-related lung diseases.
Collapse
|
9
|
Summer R, Walsh K, Medoff BD. Obesity and pulmonary arterial hypertension: Is adiponectin the molecular link between these conditions? Pulm Circ 2012; 1:440-7. [PMID: 22530098 PMCID: PMC3329073 DOI: 10.4103/2045-8932.93542] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a condition of unknown etiology whose pathological features include increased vascular resistance, perivascular inflammatory cell infiltration and pulmonary arteriolar remodeling. Although risk factors for PAH are poorly defined, recent studies indicate that obesity may be an important risk factor for this condition. The mechanisms leading to this association are largely unknown, but bioactive mediators secreted from adipose tissue have been implicated in this process. One of the most important mediators released from adipose tissue is the adipokine adiponectin. Adiponectin is highly abundant in the circulation of lean healthy individuals, and possesses well-described metabolic and antiinflammatory actions. Levels of adiponectin decrease with increasing body mass, and low levels are directly linked to the development of PAH in mice. Moreover, overexpression of adiponectin has been shown to protect mice from developing PAH in response to inflammation and hypoxia. Based on the findings from these studies, it is suggested that the effects of adiponectin are mediated, in part, through its antiinflammatory and antiproliferative properties. In this review, we discuss the emerging evidence demonstrating a role for adiponectin in lung vascular homeostasis and discuss how deficiency in this adipocyte-derived hormone might explain the recent association between obesity and PAH.
Collapse
Affiliation(s)
- Ross Summer
- The Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
10
|
Medoff BD. Fat, fire and muscle--the role of adiponectin in pulmonary vascular inflammation and remodeling. Pulm Pharmacol Ther 2012; 26:420-6. [PMID: 22750271 DOI: 10.1016/j.pupt.2012.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a life-threatening condition that results from a heterogeneous group of diseases, many of which demonstrate characteristic pathologic changes of pulmonary vascular inflammation and remodeling. Recent clinical studies indicate obesity to be a risk factor for the development of pulmonary hypertension; however, the mechanisms leading to this association are unknown. Adipocytes secrete multiple bioactive mediators that can influence inflammation and tissue remodeling, suggesting that adipose tissue may directly influence the pathogenesis of pulmonary hypertension. One of these mediators is adiponectin, a protein with a wide range of metabolic, anti-inflammatory, and anti-proliferative activities. Paradoxically, adiponectin is present in high concentration in the serum of lean healthy individuals, but decreases in obesity. Studies suggest that relative adiponectin-deficiency may contribute to the development of inflammatory diseases in obesity, and recent animal studies implicate adiponectin in the pathogenesis of pulmonary hypertension. Most notably, experimental studies show that adiponectin can reduce lung vascular remodeling in response to inflammation and hypoxia. Moreover, mice deficient in adiponectin develop a spontaneous lung vascular phenotype characterized by age-dependent increases in peri-vascular inflammatory cells and elevated pulmonary artery pressures. Emerging evidence indicates adiponectin's effects are mediated through anti-inflammatory and anti-proliferative actions on cells in the lung. This review aims to synthesize the existing data related to adiponectin's effects on the pulmonary vasculature and to discuss how changes in adiponectin levels might contribute to the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Benjamin D Medoff
- Pulmonary and Critical Care Unit and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
11
|
Aghamohammadzadeh R, Withers S, Lynch F, Greenstein A, Malik R, Heagerty A. Perivascular adipose tissue from human systemic and coronary vessels: the emergence of a new pharmacotherapeutic target. Br J Pharmacol 2012; 165:670-82. [PMID: 21564083 DOI: 10.1111/j.1476-5381.2011.01479.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Fat cells or adipocytes are distributed ubiquitously throughout the body and are often regarded purely as energy stores. However, recently it has become clear that these adipocytes are engine rooms producing large numbers of metabolically active substances with both endocrine and paracrine actions. White adipocytes surround almost every blood vessel in the human body and are collectively termed perivascular adipose tissue (PVAT). It is now well recognized that PVAT not only provides mechanical support for any blood vessels it invests, but also secretes vasoactive and metabolically essential cytokines known as adipokines, which regulate vascular function. The emergence of obesity as a major challenge to our healthcare systems has contributed to the growing interest in adipocyte dysfunction with a view to discovering new pharmacotherapeutic agents to help rescue compromised PVAT function. Very few PVAT studies have been carried out on human tissue. This review will discuss these and the hypotheses generated from such research, as well as highlight the most significant and clinically relevant animal studies showing the most pharmacological promise. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
|
12
|
Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. Crit Care Med 2010; 38:2329-34. [PMID: 20890191 DOI: 10.1097/ccm.0b013e3181fa0561] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE : Adiponectin, an anti-inflammatory cytokine produced by adipose tissue, has been shown to modulate survival in animal models of critical illness. We examined the association between plasma adiponectin and clinical outcomes in critically ill patients with acute respiratory failure. DESIGN : Secondary analysis of a single-center, randomized controlled trial. SETTING : Medical intensive care unit of a university-based, tertiary medical center. PATIENTS : One hundred seventy-five subjects with acute respiratory failure enrolled in randomized, controlled pilot trial of Early versus Delayed Enternal Nutrition (EDEN pilot study). INTERVENTIONS : None. MEASUREMENTS AND MAIN RESULTS : Adiponectin measured within 48 hrs of respiratory failure (Apn1) was inversely correlated with body mass index (r=-0.25, p=.007) and was higher in females (median, 12.6 μg/mL; interquartile range, 7.6-17.1) than males (9.45 μg/mL; 6.2-14.2; p=.02). Adiponectin increased at day 6 (Apn1: 11.4 μg/mL [6.6-15.3] vs. Apn6: 14.1 μg/mL [10.3-18.6], p<.001). This increase was significant only in survivors (Δ adiponectin in survivors: 3.9±6 μg/mL, n=80, p<.001 vs. Δ in nonsurvivors: 1.69±4.6 μg/mL, n=14, p=.19). Higher Apn1 was significantly associated with 28-day mortality (odds ratio 1.59 per 5-μg/mL increase; 95% confidence interval 1.15-2.21; p=.006). No measured demographic, clinical, or cytokine covariates, including interleukin-6, interleukin-8, interleukin-10, interleukin-1β, interleukin-12, tumor necrosis factor-α, and interferon-γ, were confounders or effect modifiers of this association between adiponectin and mortality. CONCLUSIONS : Independent of measured covariates, increased plasma adiponectin levels measured within 48 hrs of respiratory failure are associated with mortality. This finding suggests that factors derived from adipose tissue play a role in modulating the response to critical illness.
Collapse
|
13
|
O'Shea KM, Chess DJ, Khairallah RJ, Rastogi S, Hecker PA, Sabbah HN, Walsh K, Stanley WC. Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload. Am J Physiol Heart Circ Physiol 2010; 298:H1639-45. [PMID: 20348222 DOI: 10.1152/ajpheart.00957.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent data suggest adiponectin, an adipocyte-derived hormone, affects development of heart failure in response to hypertension. Severe short-term pressure overload [1-3 wk of transverse aortic constriction (TAC)] in adiponectin(-/-) mice causes greater left ventricle (LV) hypertrophy than in wild-type (WT) mice, but conflicting results are reported regarding LV remodeling, with either increased or decreased LV end diastolic volume compared with WT mice. Here we assessed the effects of prolonged TAC on LV hypertrophy and remodeling. WT and adiponectin(-/-) mice were subjected to TAC and maintained for 6 wk. Regardless of strain, TAC induced similar LV hypertrophy ( approximately 70%) and upregulation of mRNA for heart failure marker genes. However, LV chamber size was dramatically different, with classic LV dilation in WT TAC mice but concentric LV hypertrophy in adiponectin(-/-) mice. LV end diastolic and systolic volumes were lower and ejection fraction higher in adiponectin(-/-) TAC mice compared with WT, indicating that adiponectin deletion prevented LV remodeling and deterioration in systolic function. The activities of marker enzymes of mitochondrial oxidative capacity were reduced in WT TAC mice by approximately 35%, whereas enzyme activities were maintained at sham levels in adiponectin(-/-) TAC mice. In conclusion, in WT mice, long-term pressure overload caused dilated LV hypertrophy accompanied by decreased activity of mitochondrial oxidative enzymes. Although adiponectin deletion did not affect LV hypertrophy, it prevented LV chamber remodeling and preserved mitochondrial oxidative capacity, suggesting that adiponectin plays a permissive role in mediating changes in cardiac structure and metabolism in response to pressure overload.
Collapse
Affiliation(s)
- Karen M O'Shea
- Division of Cardiology, Dept. of Medicine, Univ. of Maryland-Baltimore, 20 Penn St., HSF2, Rm. S022, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|