1
|
Gao F, Mu G, Tuo Y. Lactiplantibacillus plantarum Y44 Complex Fermented Milk Regulates Lipid Metabolism in Mice Fed with High-Fat Diet by Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25767-25781. [PMID: 39530424 DOI: 10.1021/acs.jafc.4c08671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The benefits of fermented milk containing Lactiplantibacillus plantarum (L. plantarum) Y44, known for its weight loss properties, remain unclear. For this, we evaluated the effects of the complex fermented milk (Y44-CFM), obtained through the cofermentation of cow's milk and soybean milk with L. plantarum Y44 and traditional starters, on high-fat diet (HFD)-fed C57BL/6 mice. Our study found that the oral administration of Y44-CFM significantly reduced body weight gain and hepatic lipid accumulation in HFD-fed mice while also mitigating liver injury. Additionally, Y44-CFM regulated the expression of enzymes associated with lipid metabolism in the serum, as well as the corresponding or related genes in the liver, such as fatty acid synthase. Furthermore, HFD-induced systemic inflammation, oxidative stress, and intestinal barrier dysfunction were improved. The primary alterations in hepatic metabolism involved glycerophospholipids and amino acids, including the biosynthesis of valine, leucine, and isoleucine. The diversity and overall structure of the gut microbiota were also regulated, resulting in a significant decrease in the ratio of Firmicutes to Bacteroidetes (F/B) and unclassified_f_Lachnospiraceae, along with a notable increase in Oscillospiraceae. The correlation analysis indicated that Y44-CFM influenced hepatic lipid metabolism by mediating intestinal flora and its production of short-chain fatty acids, ultimately leading to weight reduction.
Collapse
Affiliation(s)
- Fei Gao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
2
|
Serio VB, Rosati D, Maffeo D, Rina A, Ghisalberti M, Bellan C, Spiga O, Mari F, Palmieri M, Frullanti E. The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers. Cancers (Basel) 2024; 16:2887. [PMID: 39199663 PMCID: PMC11352340 DOI: 10.3390/cancers16162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer (LC) continues to be an important public health problem, being the most common form of cancer and a major cause of cancer deaths worldwide. Despite the great bulk of research to identify genetic susceptibility genes by genome-wide association studies, only few loci associated to nicotine dependence have been consistently replicated. Our previously published study in few phenotypically discordant sib-pairs identified a combination of germline truncating mutations in known cancer susceptibility genes in never-smoker early-onset LC patients, which does not present in their healthy sib. These results firstly demonstrated the presence of an oligogenic combination of disrupted cancer-predisposing genes in non-smokers patients, giving experimental support to a model of a "private genetic epidemiology". Here, we used a combination of whole-exome and RNA sequencing coupled with a discordant sib's model in a novel cohort of pairs of never-smokers early-onset LC patients and in their healthy sibs used as controls. We selected rare germline variants predicted as deleterious by CADD and SVM bioinformatics tools and absent in the healthy sib. Overall, we identified an average of 200 variants per patient, about 10 of which in cancer-predisposing genes. In most of them, RNA sequencing data reinforced the pathogenic role of the identified variants showing: (i) downregulation in LC tissue (indicating a "second hit" in tumor suppressor genes); (ii) upregulation in cancer tissue (likely oncogene); and (iii) downregulation in both normal and cancer tissue (indicating transcript instability). The combination of the two techniques demonstrates that each patient has an average of six (with a range from four to eight) private mutations with a functional effect in tumor-predisposing genes. The presence of a unique combination of disrupting events in the affected subjects may explain the absence of the familial clustering of non-small-cell lung cancer. In conclusion, these findings indicate that each patient has his/her own "predisposing signature" to cancer development and suggest the use of personalized therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Viola Bianca Serio
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Diletta Rosati
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Debora Maffeo
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Angela Rina
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Marco Ghisalberti
- Thoracic Surgery Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Cristiana Bellan
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy;
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Maria Palmieri
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Elisa Frullanti
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| |
Collapse
|
3
|
Fan J, Shang F, Pan H, Yuan C, Liu T, Yi L, Wang J, Dou W. Body color plasticity of Diaphorina citri reflects a response to environmental stress. INSECT SCIENCE 2024; 31:937-952. [PMID: 37715371 DOI: 10.1111/1744-7917.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023]
Abstract
Body color polyphenism is common in Diaphorina citri. Previous studies compared physiological characteristics in D. citri, but the ecological and biological significance of its body color polyphenism remains poorly understood. We studied the ecological and molecular effects of stressors related to body color in D. citri. Crowding or low temperature induced a high proportion of gray morphs, which had smaller bodies, lower body weight, and greater susceptibility to the insecticide dinotefuran. We performed transcriptomic and metabolomics analysiis of 2 color morphs in D. citri. Gene expression dynamics revealed that the differentially expressed genes were predominantly involved in energy metabolism, including fatty acid metabolism, amino acid metabolism, and carbohydrate metabolism. Among these genes, plexin, glycosidase, phospholipase, take out, trypsin, and triacylglycerol lipase were differentially expressed in 2 color morphs, and 6 hsps (3 hsp70, hsp83, hsp90, hsp68) were upregulated in gray morphs. The metabolome data showed that blue morphs exhibited a higher abundance of fatty acid and amino acid, whereas the content of carbohydrates was elevated in gray morphs. This study partly explains the body color polyphenism of D. citri and provides insights into the molecular changes of stress response of D. citri.
Collapse
Affiliation(s)
- Jiayao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huimin Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chenyang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tianyuan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Long Yi
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Kellett DO, Aziz Q, Humphries JD, Korsak A, Braga A, Gutierrez Del Arroyo A, Crescente M, Tinker A, Ackland GL, Gourine AV. Transcriptional response of the heart to vagus nerve stimulation. Physiol Genomics 2024; 56:167-178. [PMID: 38047311 PMCID: PMC11281814 DOI: 10.1152/physiolgenomics.00095.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.
Collapse
Affiliation(s)
- Daniel O Kellett
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Qadeer Aziz
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan D Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Marilena Crescente
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Andrew Tinker
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Sahni S, Nahm C, Ahadi MS, Sioson L, Byeon S, Chou A, Maloney S, Moon E, Pavlakis N, Gill AJ, Samra J, Mittal A. Gene expression profiling of pancreatic ductal adenocarcinomas in response to neoadjuvant chemotherapy. Cancer Med 2023; 12:18050-18061. [PMID: 37533202 PMCID: PMC10523964 DOI: 10.1002/cam4.6411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
AIM Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all major cancers. Chemotherapy is the mainstay systemic therapy for PDAC, and chemoresistance is a major clinical problem leading to therapeutic failure. This study aimed to identify key differences in gene expression profile in tumors from chemoresponsive and chemoresistant patients. METHODS Archived formalin-fixed paraffin-embedded tumor tissue samples from patients treated with neoadjuvant chemotherapy were obtained during surgical resection. Specimens were macrodissected and gene expression analysis was performed. Multi- and univariate statistical analysis was performed to identify differential gene expression profile of tumors from good (0%-30% residual viable tumor [RVT]) and poor (>30% RVT) chemotherapy-responders. RESULTS Initially, unsupervised multivariate modeling was performed by principal component analysis, which demonstrated a distinct gene expression profile between good- and poor-chemotherapy responders. There were 396 genes that were significantly (p < 0.05) downregulated (200 genes) or upregulated (196 genes) in tumors from good responders compared to poor responders. Further supervised multivariate analysis of significant genes by partial least square (PLS) demonstrated a highly distinct gene expression profile between good- and poor responders. A gene biomarker of panel (IL18, SPA17, CD58, PTTG1, MTBP, ABL1, SFRP1, CHRDL1, IGF1, and CFD) was selected based on PLS model, and univariate regression analysis of individual genes was performed. The identified biomarker panel demonstrated a very high ability to diagnose good-responding PDAC patients (AUROC: 0.977, sensitivity: 82.4%; specificity: 87.0%). CONCLUSION A distinct tumor biological profile between PDAC patients who either respond or not respond to chemotherapy was identified.
Collapse
Affiliation(s)
- Sumit Sahni
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
| | - Christopher Nahm
- Western Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Mahsa S. Ahadi
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Loretta Sioson
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sooin Byeon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Angela Chou
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Sarah Maloney
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Elizabeth Moon
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Sydney Cancer Center, Royal North Shore HospitalSt LeonardsNew South WalesAustralia
- Northern Cancer InstituteSt LeonardsNew South WalesAustralia
| | - Anthony J. Gill
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Department of Anatomical Pathology, NSW Health PathologyRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and HealthUniversity of SydneySt LeonardsNew South WalesAustralia
- Northern Clinical School, Kolling Institute of Medical ResearchUniversity of SydneySt LeonardsNew South WalesAustralia
- Australian Pancreatic CentreSydneyNew South WalesAustralia
- Upper Gastrointestinal Surgical UnitRoyal North Shore Hospital and North Shore Private HospitalSt LeonardsNew South WalesAustralia
- The University of Notre Dame AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
6
|
Pati B, Sendh S, Sahu B, Pani S, Jena N, Bal NC. Recent advancements in pharmacological strategies to modulate energy balance for combating obesity. RSC Med Chem 2023; 14:1429-1445. [PMID: 37593583 PMCID: PMC10429841 DOI: 10.1039/d3md00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023] Open
Abstract
The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.
Collapse
Affiliation(s)
- Benudhara Pati
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Satyabrata Sendh
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Sunil Pani
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Nivedita Jena
- Institute of Life Science, DBT ILS Bioincubator Bhubaneswar Odisha 751021-India
| | - Naresh Chandra Bal
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| |
Collapse
|
7
|
Chen Y, Chen S, Zhu J, Yang S, Yu Q, Xu S. PRKAA1 predicts prognosis and is associated with immune characteristics in gastric cancer. Funct Integr Genomics 2023; 23:252. [PMID: 37482545 DOI: 10.1007/s10142-023-01176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
PRKAA1 is the α-subunit of 5-AMP-activated protein kinase. This study aimed to investigate the role of PRKAA1 expression with multiple clinical parameters, the overall survival rate, blood indexes, and immune infiltration in gastric cancer (GC) patients. We investigated PRKAA1 expression data in GC patients using ELISA, protein atlas, UALCAN, and GEPIA. PRKAA1 expression was associated with immune cell infiltration, and immune cell types were analyzed with the TIMER, DICE, and protein atlas databases. We compared the level of PRKAA1 expression based on the clinical features of GC patients (n = 345). GC patients were divided into two groups based on PRKAA1 expression, and the lymphocyte subsets, overall survival rate, and clinical parameters were compared with peripheral blood mononuclear cell and biochemical indexes. PRKAA1 was highly expressed in the serum of GC patients compared with that of healthy individuals. GC patients with distant metastases, a later TNM stage, and stage IV in UICC exhibited higher PRKAA1 expression. PRKAA1 expression was significantly correlated with circulating T cells. The protein atlas and DICE database results confirmed that PRKAA1 was closely associated with T cells in a single-cell cluster. Furthermore, GC patients with low PRKAA1 expression had better OS rates. PRKAA1 may serve as a potential prognostic biomarker for GC and have an association with immune infiltrates.
Collapse
Affiliation(s)
- Yongyi Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Siyu Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jing Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shaoxue Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qiong Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Songxiao Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
8
|
Mei Y, Chen Q, Li YP, Chen YH, Xia J, Zeng J, Yu LH, Li W, Cui J. Genetic polymorphisms of PRKAA1 (AMPKα1) and postherpetic pain susceptibility: Multicenter, randomized control, and haplotype analysis study. Front Mol Neurosci 2023; 16:1128429. [PMID: 36818655 PMCID: PMC9928852 DOI: 10.3389/fnmol.2023.1128429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is a pivotal regulatory protein in energy metabolism. In a pilot study, we found that AMPK-associated energy metabolism imbalance in neurons contributes to the occurrence and maintenance of neuropathic pain (NeP). This study aimed to explore the relationship between genetic polymorphisms of AMPK gene (Rs13361707, rs3792822, and rs10074991) in PRKAA1 and postherpetic neuralgia (PHN) in Chinese individuals. Hundred and thirty two patients with PHN and 118 control individuals were enrolled in this study. All blood samples were shuffled and blinded to the person performing the haplotype analysis. Rs13361707, rs3792822, and rs10074991 PRKAA1 genotypes were identified in all participants. Dominant and recessive models were used for evaluating the association between these nucleotide polymorphisms and PHN susceptibility. A haplotype analysis of PHN patients and healthy controls was performed. Clinical characteristics between the two groups were not significantly different (p > 0.05) except that the ages in control subjects were younger than the PHN patients (p < 0.05). Genotypes and allele frequencies are significantly different between the PHN patients and control subjects for the rs13361707 and rs10074991 polymorphisms (p < 0.05), but not for rs3792822 (p > 0.05). In addition, the CCG haplotype of rs13361707-rs3792822-rs10074991 correlated negatively with PHN occurrence, but TCA was positively correlated with PHN (p < 0.05). Our results indicate that PRKAA1 gene polymorphisms rs13361707 and rs10074991 were associated with a risk of PHN, and that the CCG haplotype of rs13361707-rs3792822-rs10074991 correlated negatively with PHN occurrence in haplotype analysis. TCA was positively associated with PHN in Chinese individuals.
Collapse
Affiliation(s)
- Yang Mei
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China,Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qi Chen
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu-Ping Li
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yao-hua Chen
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Juan Xia
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Zeng
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Le-hua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Li
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China,*Correspondence: Wei Li, ✉
| | - Jian Cui
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, China,Jian Cui, ✉
| |
Collapse
|
9
|
Mei Y, Mu Y, Wang W, Tan BT, Chen YH, Li YP, Zhu D, Li W, Cui J, Yu LH. Effect of AMPK Subunit Alpha 2 Polymorphisms on Postherpetic Pain Susceptibility in Southwestern Han Chinese. J Pain Res 2022; 15:3319-3326. [PMID: 36304487 PMCID: PMC9595063 DOI: 10.2147/jpr.s385913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
Introduction Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) can influence energy metabolism. Energy metabolism imbalance is closely associated with the occurrence of neuropathic pain (NeP). Rs10789038 and rs2796498 are genetic polymorphisms of PRKAA2, the gene encoding AMPK, which is closely related to energy metabolism imbalance. This study aimed to explore the relationship between PRKAA2 and postherpetic neuralgia (PHN) in the southwestern Chinese Han population. Methods This study enrolled 132 PHN patients and 118 healthy subjects. The rs10789038 and rs2796498 PRKAA2 genotypes were identified in all participants. The association between these single nucleotide polymorphisms and PHN susceptibility was evaluated in the dominant and recessive models. Haplotype analysis of patients with PHN and healthy controls was performed. Results The PHN patients were older than the healthy subjects (P < 0.05); however, the other clinical characteristics between two groups were not significantly different (all P >0.05). Genotypes and allele frequencies differed significantly between PHN patients and healthy subjects in the rs10789038 polymorphism (P < 0.05), but not in rs2796498 (P > 0.05). In addition, the GG haplotype of rs10789038-rs2796498 correlated negatively with PHN occurrence in haplotype analysis (P < 0.05). Conclusion PHN occurrence may be related to the PRKAA2 rs10789038 A>G genetic polymorphism in the southwestern Chinese Han population.
Collapse
Affiliation(s)
- Yang Mei
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China,Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Yang Mu
- Department of Rehabilitation Medicine, Chongqing University Fuling Hospital, Chongqing, People’s Republic of China
| | - Win Wang
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Bo-Tao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yao-Hua Chen
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yu-Ping Li
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dan Zhu
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Li
- Department of Pain Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Jian Cui
- Department of Pain Medicine, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China,Correspondence: Jian Cui; Le-Hua Yu, Email ;
| | - Le-Hua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
10
|
Lee S, Yang HK, Lee HJ, Park DJ, Kong SH, Park SK. Systematic review of gastric cancer-associated genetic variants, gene-based meta-analysis, and gene-level functional analysis to identify candidate genes for drug development. Front Genet 2022; 13:928783. [PMID: 36081994 PMCID: PMC9446437 DOI: 10.3389/fgene.2022.928783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Objective: Despite being a powerful tool to identify novel variants, genome-wide association studies (GWAS) are not sufficient to explain the biological function of variants. In this study, we aimed to elucidate at the gene level the biological mechanisms involved in gastric cancer (GC) development and to identify candidate drug target genes. Materials and methods: We conducted a systematic review for GWAS on GC following the PRISMA guidelines. Single nucleotide polymorphism (SNP)-level meta-analysis and gene-based analysis (GBA) were performed to identify SNPs and genes significantly associated with GC. Expression quantitative trait loci (eQTL), disease network, pathway enrichment, gene ontology, gene-drug, and chemical interaction analyses were conducted to elucidate the function of the genes identified by GBA. Results: A review of GWAS on GC identified 226 SNPs located in 91 genes. In the comprehensive GBA, 44 genes associated with GC were identified, among which 12 genes (THBS3, GBAP1, KRTCAP2, TRIM46, HCN3, MUC1, DAP3, EFNA1, MTX1, PRKAA1, PSCA, and ABO) were eQTL. Using disease network and pathway analyses, we identified that PRKAA, THBS3, and EFNA1 were significantly associated with the PI3K-Alt-mTOR-signaling pathway, which is involved in various oncogenic processes, and that MUC1 acts as a regulator in both the PI3K-Alt-mTOR and P53 signaling pathways. Furthermore, RPKAA1 had the highest number of interactions with drugs and chemicals. Conclusion: Our study suggests that PRKAA1, a gene in the PI3K-Alt-mTOR-signaling pathway, could be a potential target gene for drug development associated with GC in the future. Systematic Review Registration: website, identifier registration number.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Han-Kwang Yang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyuk-Joon Lee
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Do Joong Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong-Ho Kong
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sue K. Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Meng Y, Ding P, Wang H, Yang X, Wang Z, Nie D, Liu J, Huang Y, Su G, Hu J, Su Y, Du X, Dong N, Jia H, Zhang H, Zhang J, Li J. Ca2+/calmodulin-dependent protein kinase II inhibition reduces myocardial fatty acid uptake and oxidation after myocardial infarction. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159120. [DOI: 10.1016/j.bbalip.2022.159120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022]
|
12
|
Tang H, Han Q, Yin Y. Screening of Important Markers in Peripheral Blood Mononuclear Cells to Predict Female Osteoporosis Risk Using LASSO Regression Algorithm and SVM Method. Evol Bioinform Online 2022; 18:11769343221075014. [PMID: 35110962 PMCID: PMC8801634 DOI: 10.1177/11769343221075014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Osteoporosis is a bone disease that increases the patient’s risk of fracture. We aimed to identify robust marker genes related to osteoporosis based on different bioinformatic methods and multiple datasets. Methods: Three datasets from Gene Expression Omnibus (GEO) were utilized for analysis separately. Significantly differentially expressed genes (DEGs) from comparing high hip and low hip low bone mineral density (BMD) groups in the first dataset were identified for Gene Ontology (GO), Gene set enrichment analysis (GSEA) and Kyoto encyclopedia of genes and genomes (KEGG) to investigate the discrepantly enriched biological processes between high hip and low hip group. Last absolute shrinkage and selection operator (LASSO), SVM model and protein-protein interaction (PPI) regulatory network were performed and generated robust marker genes for downstream TF-target and miRNA-target prediction. Results: Several DEGs between high hip BMD group and low hip BMD group were obtained. And the metabolism-related pathways such as metabolic pathways, carbon metabolism, glyoxylate and dicarboxylate metabolism shown enrichment in these DEGs. Integration with LASSO regression analysis, 8 differential expression genes ( SH3BP1, NARF, ANKRD34B, RNF40, ZNF473, AKT1, SHMT1, and VASH1) in GSE62402 were identified as the optimal differential genes combination. Moreover, the SVM validation analysis in GSE56814 and GSE56815 datasets showed that the characteristic gene combinations presented high diagnostic effects, and the model AUC areas for GSE56814 was 0.899 and for GSE56815 was 0.921. Furthermore, the subcellular localization analysis of the 8 genes revealed that 4 proteins were located in the cytoplasm, 3 proteins were located in the nucleus, and 1 protein was located in the mitochondria. Additionally, the related TFs and miRNAs by performing TF-target and miRNA-target prediction for 5 genes ( AKT1, SHMT1, ZNF473, RNF40 and VASH1) were investigated from PPI network. Conclusion: The optimal differential genes combination ( SH3BP1, NARF, ANKRD34B, RNF40, ZNF473, AKT1, SHMT1, and VASH1) presented high diagnostic effect for osteoporosis risk.
Collapse
Affiliation(s)
- Hongwei Tang
- Department of Orthopedics, Jiading District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qingtian Han
- Department of Orthopedics, Jiading District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yong Yin
- Department of Orthopedics, Jiading District Central Hospital Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
13
|
Bardet-Biedl syndrome proteins modulate the release of bioactive extracellular vesicles. Nat Commun 2021; 12:5671. [PMID: 34580290 PMCID: PMC8476602 DOI: 10.1038/s41467-021-25929-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Primary cilia are microtubule based sensory organelles important for receiving and processing cellular signals. Recent studies have shown that cilia also release extracellular vesicles (EVs). Because EVs have been shown to exert various physiological functions, these findings have the potential to alter our understanding of how primary cilia regulate specific signalling pathways. So far the focus has been on lgEVs budding directly from the ciliary membrane. An association between cilia and MVB-derived smEVs has not yet been described. We show that ciliary mutant mammalian cells demonstrate increased secretion of small EVs (smEVs) and a change in EV composition. Characterisation of smEV cargo identified signalling molecules that are differentially loaded upon ciliary dysfunction. Furthermore, we show that these smEVs are biologically active and modulate the WNT response in recipient cells. These results provide us with insights into smEV-dependent ciliary signalling mechanisms which might underly ciliopathy disease pathogenesis. Extracellular vesicles (EV) are known to be released from the primary cilium, but the role ciliary proteins play in EV biogenesis remains unexplored. Here, the authors demonstrate increased secretion of small EVs with altered cargo composition from cells with known ciliarelated mutations. Wnt related molecules made up a majority of altered cargo
Collapse
|
14
|
Wang X, Zimmermann HR, Lockhart SN, Craft S, Ma T. Decreased Levels of Blood AMPKα1 but not AMPKα2 Isoform in Patients with Mild Cognitive Impairment and Alzheimer's Disease: A Pilot Study. J Alzheimers Dis 2021; 76:217-224. [PMID: 32444538 DOI: 10.3233/jad-191189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND There is an urgent need to develop feasible biomarkers for diagnosis and prognosis of Alzheimer's disease (AD). Mounting evidence implicates that dysregulation of energy metabolism is a key and early event in AD pathogenesis. AMP-activated protein kinase (AMPK) is a central molecular sensor that plays a critical role in maintaining cellular energy homeostasis, and aberrant brain AMPK activities are linked to AD pathophysiology. OBJECTIVE We aimed to investigated protein levels of AMPKα isoforms, AMPKα1 and AMPKα2, in plasma samples from patients clinically diagnosed with mild cognitive impairment (MCI) or AD, along with age-matched healthy controls. METHODS 30 participants (10 MCI, 10 AD, and 10 controls) were included in our pilot study. Plasma levels of AMPKα1 and AMPKα2 were determined by ELISA. Receiver operating characteristic (ROC) analysis was used to assess sensitivity and specificity. Linear regression was used to assess the correlation between levels of AMPKα isoforms and other biomarkers. RESULTS Plasma levels of AMPKα1 were decreased in MCI and AD patients, while levels of AMPKα2 were unaltered as compared to controls. ROC analysis showed relatively high sensitivity and specificity for AMPKα1 to distinguish MCI and AD from controls. Linear regression analysis showed that plasma levels of AMPKα1 were correlated with a brain imaging biomarker (AD signature cortical thicknesses). CONCLUSION Plasma levels of AMPKα1 were decreased in MCI and AD patients. Future endeavor to explore whether blood AMPKα1 protein expression has the value as a potential biomarker for AD and MCI diagnosis shall be encouraged.
Collapse
Affiliation(s)
- Xin Wang
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Helena R Zimmermann
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology & Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Physiology and Pharmacology, and Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Zhu H, Wang G, Zhu H, Xu A. MTFR2, A Potential Biomarker for Prognosis and Immune Infiltrates, Promotes Progression of Gastric Cancer Based on Bioinformatics Analysis and Experiments. J Cancer 2021; 12:3611-3625. [PMID: 33995638 PMCID: PMC8120185 DOI: 10.7150/jca.58158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Mitochondrial fission regulator 2 (MTFR2) which can promote mitochondrial fission, has recently been reported to be involved in tumorigenesis. However, little is known about its expression levels and function in gastric cancer (GC). This study aims to clarify the role of MTFR2 in GC. Methods:We firstly determined the expression level and prognostic value of MTFR2 in GC by integrated bioinformatics (Oncomine, GEPIA, Kaplan-Meier Plotter database) and experimental approaches (RT-qPCR, western blot, immunohistochemistry). After constructing stable down-regulated GC cells, the biological functions of MTFR2 in vitro and in vivo were studied through cell clone formation, wound healing, transwell and tumor formation experiments.To understand the reason for the high expression of MTFR2 in GC, copy number alternation, promoter methylation and mutation of MTFR2 were detected by UALCAN and cBioPortal. TargetScanHuman and PROMO databases were also used to explore the miRNAs and transcription factors of MTFR2, and the regulatory network was visualized by Cytoscape. LinkedOmics was used to detect the co-expression profile, and then these co-expressed genes were used for gene oncology function and pathway enrichment analysis to deepen the understanding of MTFR2 mechanism. The protein interaction network of MTFR2 was constructed by the GeneMANIA platform. Docking study of the binding mode was conducted by H DOCK webserver, and PYMOL is used for visualization, and analysis. TIMER database was used to explore the correlation between MTFR2 expression level and immune cells infiltration and gene markers of tumor infiltrating immune cells. Results: We demonstrated that MTFR2 was up-regulated in GC, and its overexpression led to poorer prognosis. MTFR2 downregulation inhibited the proliferation, migration, and invasion of GC cells in vitro and in vivo. By bioinformatics analysis, we identified the possible factors in MTFR2 overexpression. Moreover, function and pathway enrichment analyses found that MTFR2 was involved in chromosome segregation, catalytic activity, cell cycle, and ribonucleic acid transport. A MTFR2-protein interaction network revealed a potential direct protein interaction between MTFR2 and protein kinase adenosine-monophosphate-activated catalytic subunit alpha 1 (PRKAA1), and their potential binding site was predicted in a molecular docking model. In addition, we also found that MTFR2 may be correlated with immune infiltration in GC. Conclusions: Our study has effectively revealed the expression, prognostic value, potential functional networks, protein interactions and immune infiltration of MTFR2 in GC. Altogether, our data identify the possible underlying mechanisms of MTFR2 and suggest that MTFR2 may be a prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Hai Zhu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Gang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| | - Haixing Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, People's Republic of China
| | - Aman Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China.,Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230001, People's Republic of China
| |
Collapse
|
16
|
Peng R, Chen Y, Wei L, Li G, Feng D, Liu S, Jiang R, Zheng S, Chen Y. Resistance to FGFR1-targeted therapy leads to autophagy via TAK1/AMPK activation in gastric cancer. Gastric Cancer 2020; 23:988-1002. [PMID: 32617693 DOI: 10.1007/s10120-020-01088-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibroblast growth factor receptor 1 (FGFR1) is frequently dysregulated in various tumors. FGFR inhibitors have shown promising therapeutic value in several preclinical models. However, tumors resistant to FGFR inhibitors have emerged, compromising therapeutic outcomes by demonstrating markedly aggressive metastatic progression; however, the underlying signaling mechanism of resistance remains unknown. METHODS We established FGFR inhibitor-resistant cell models using two gastric cancer (GC) cell lines, MGC-803 and BGC-823. RNA-seq was performed to determine the continuous cellular transcriptome changes between parental and resistant cells. We explored the mechanism of resistance to FGFR inhibitor, using a subcutaneous tumor model and GC patient-derived tumor organotypic culture. RESULTS We observed that FGFR1 was highly expressed in GC and FGFR1 inhibitor-resistant cell lines, demonstrating elevated levels of autophagic activity. These resistant cells were characterized by epithelial-mesenchymal transition (EMT) required to facilitate metastatic outgrowth. In drug-resistant cells, the FGFR1 inhibitor regulated GC cell autophagy via AMPK/mTOR signal activation, which could be blocked using either pharmacological inhibitors or essential gene knockdown. Furthermore, TGF-β-activated kinase 1 (TAK1) amplification and metabolic restrictions led to AMPK pathway activation and autophagy. In vitro and in vivo results demonstrated that the FGFR inhibitor AZD4547 and TAK1 inhibitor NG25 synergistically inhibited proliferation and autophagy in AZD4547-resistant cell lines and patient-derived GC organotypic cultures. CONCLUSIONS We elucidated the molecular mechanisms underlying primary resistance to FGFR1 inhibitors in GC, and revealed that the inhibition of FGFR1 and TAK1 signaling could present a potential novel therapeutic strategy for FGFR1 inhibitor-resistant GC patients.
Collapse
Affiliation(s)
- Rui Peng
- Department of General Surgery, Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Yan Chen
- Key Laboratory of Emergency and Trauma of Ministry of Education, Tumor Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China
| | - Liangnian Wei
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Dongju Feng
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Siru Liu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Tumor Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, Jiangsu, China.
| | - Shaojiang Zheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Tumor Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
| | - Yun Chen
- Department of General Surgery, Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China.
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
17
|
Qiu L, Qu X, He J, Cheng L, Zhang R, Sun M, Yang Y, Wang J, Wang M, Zhu X, Guo W. Predictive model for risk of gastric cancer using genetic variants from genome-wide association studies and high-evidence meta-analysis. Cancer Med 2020; 9:7310-7316. [PMID: 32777176 PMCID: PMC7541133 DOI: 10.1002/cam4.3354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified some single nucleotide polymorphisms (SNPs) associated with the risk of gastric cancer (GCa). However, currently, there is no published predictive model to assess the risk of GCa. In the present study, risk-associated SNPs derived from GWAS and large meta-analyses were selected to construct a predictive model to assess the risk of GCa. A total of 1115 GCa cases and 1172 controls from the eastern Chinese population were included. Logistic regression models were used to identify SNPs that correlated with the risk of GCa. A predictive model to assess the risk of GCa was established by receiver operating characteristic curve analysis. Multifactor dimensionality reduction (MDR) and classification and regression tree (CART) were applied to calculate the effect of high-order gene-environment interactions on risk of the cancer. A total of 42 SNPs were selected for further analysis. The results revealed that ASH1L rs80142782, PKLR rs3762272, PRKAA1 rs13361707, MUC1 rs4072037, PSCA rs2294008, and PLCE1 rs2274223 polymorphisms were associated with a risk of GCa. The area under curve considering both genetic factors and BMI was 3.10% higher than that of BMI alone. MDR analysis revealed that rs13361707 and rs4072307 variants and BMI had interaction effects on susceptibility to GCa, with the highest predictive accuracy (61.23%) and cross-validation consistency (100/100). CART analysis also supported this interaction model that non-overweight status and a six SNP panel could synergistically increase the susceptibility to GCa. The six SNP panel for predicting the risk of GCa may provide new tools for prevention of the cancer based on GWAS and large meta-analyses derived genetic variants.
Collapse
Affiliation(s)
- Lixin Qiu
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofei Qu
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Jing He
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Lei Cheng
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Ruoxin Zhang
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Menghong Sun
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Fudan‐Taizhou Institute of Health SciencesTaizhouChina
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
- Fudan‐Taizhou Institute of Health SciencesTaizhouChina
| | - Mengyun Wang
- Cancer InstituteCollaborative Innovation Center for Cancer MedicineFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaodong Zhu
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Weijian Guo
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
18
|
Sahni S, Gillson J, Park KC, Chiang S, Leck LYW, Jansson PJ, Richardson DR. NDRG1 suppresses basal and hypoxia-induced autophagy at both the initiation and degradation stages and sensitizes pancreatic cancer cells to lysosomal membrane permeabilization. Biochim Biophys Acta Gen Subj 2020; 1864:129625. [PMID: 32335136 DOI: 10.1016/j.bbagen.2020.129625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND N-myc downstream regulated gene 1 (NDRG1) is an established stress-response protein. This study investigated the effects of NDRG1 on autophagic degradation and how this can be therapeutically exploited. METHODS Cell culture, western analysis, confocal microscopy, acridine orange staining, cholesterol determination, cellular proliferation assessment and combination index (CI) estimation. RESULTS NDRG1 expression suppressed autophagic degradation and autolysosome formation, measured by increased p62 expression and reduced co-localization between the well-characterized, autophagosomal and lysosomal markers, LC3 and LAMP2, respectively. NDRG1 elicited autophagic suppression at the initiation stage of autophagy. The NDRG1-inducer and anti-cancer agent, di-2-pyridylketone 4,4,-dimethyl-3-thiosemicarbazone (Dp44mT), was able to induce lysosomal membrane permeabilization (LMP). Over-expression of NDRG1 further sensitized cells to LMP mediated by both Dp44mT, or the redox active Dp44mT‑copper complex. This sensitization may be mediated via a decrease in cholesterol levels upon NDRG1 expression, as cholesterol stabilizes lysosomal membranes. However, the effect of NDRG1 on cholesterol appeared independent of the key energy homeostasis sensor, 5' AMP-activated protein kinase (AMPK), whose activation was significantly (p < 0.001) reduced by NDRG1. Finally, Dp44mT synergistically potentiated the anti-proliferative activity of Gemcitabine that activates autophagy. In fact, Dp44mT and Gemcitabine (Combination Index (CI): 0.38 ± 0.07) demonstrated higher synergism versus the autophagy inhibitor, Bafilomycin A1 and Gemcitabine (CI: 0.64 ± 0.19). CONCLUSIONS AND GENERAL SIGNIFICANCE Collectively, this study demonstrated a dual-inhibitory mechanism of NDRG1 on autophagic activity, and that NDRG1 expression sensitized cells to Dp44mT-induced LMP. Considering the ability of Dp44mT to inhibit autophagy, studies demonstrated the potential of combination therapy for cancer treatment of Dp44mT with Gemcitabine.
Collapse
Affiliation(s)
- Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Josef Gillson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Northern Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shannon Chiang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lionel Yi Wen Leck
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Cancer Drug Resistance Program, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Cancer Drug Resistance Program, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Centre for Cancer Cell Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia.
| |
Collapse
|
19
|
Wang JJ, Zhang T, Chen QM, Zhang RQ, Li L, Cheng SF, Shen W, Lei CZ. Genomic Signatures of Selection Associated With Litter Size Trait in Jining Gray Goat. Front Genet 2020; 11:286. [PMID: 32273886 PMCID: PMC7113370 DOI: 10.3389/fgene.2020.00286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Litter size (LS), an important economic trait in livestock, is so complicate that involves many aspects of reproduction, the underlying mechanism of which particularly in goat has always been scanty. To uncover the genetic basis of LS, the genomic sequence of Jining Gray goat groups (one famous breed for high prolificacy in China) with LS 1, 2, and 3 for firstborn was analyzed, obtaining 563.67 Gb sequence data and a total of 31,864,651 high-quality single nucleotide polymorphisms loci were identified. Particularly, the increased heterozygosity in higher LS groups, and large continuous homozygous segments associated with lower LS group had been uncovered. Through an integrated analysis of three popular methods for detecting selective sweeps (Fst, nucleotide diversity, and Tajima’s D statistic), 111 selected regions and 42 genes associated with LS were scanned genome wide. The candidate genes with highest selective signatures included KIT, KCNH7, and KMT2E in LS2 and PAK1, PRKAA1, and SMAD9 in LS3 group, respectively. Meanwhile, functional terms of programmed cell death involved in cell development and regulation of insulin receptor signaling pathway were mostly enriched with 42 candidate genes, which also included reproduction related terms of steroid metabolic process and cellular response to hormone stimulus. In conclusion, our study identified novel candidate genes involving in regulation of LS in goat, which expand our understanding of genetic fundament of reproductive ability, and the novel insights regarding to LS would be potentially applied to improve reproductive performance.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Qiu-Ming Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rui-Qian Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chu-Zhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Gao Y, Zhang J, He L, Shi X, Han L, Yu Q, Yang Y, Song R, Han M, Zhao S. Associations among adenosine monophosphate-activated protein kinase, glycolysis, muscle characteristics, and apoptosis in postmortem bovines longissimus muscle. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03458-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Singhal G, Morgan J, Jawahar MC, Corrigan F, Jaehne EJ, Toben C, Breen J, Pederson SM, Manavis J, Hannan AJ, Baune BT. Effects of aging on the motor, cognitive and affective behaviors, neuroimmune responses and hippocampal gene expression. Behav Brain Res 2020; 383:112501. [PMID: 31987935 DOI: 10.1016/j.bbr.2020.112501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
The known effects of aging on the brain and behavior include impaired cognition, increases in anxiety and depressive-like behaviors, and reduced locomotor activity. Environmental exposures and interventions also influence brain functions during aging. We investigated the effects of normal aging under controlled environmental conditions and in the absence of external interventions on locomotor activity, cognition, anxiety and depressive-like behaviors, immune function and hippocampal gene expression in C57BL/6 mice. Healthy mice at 4, 9, and 14 months of age underwent behavioral testing using an established behavioral battery, followed by cellular and molecular analysis using flow cytometry, immunohistochemistry, and quantitative PCR. We found that 14-month-old mice showed significantly reduced baseline locomotion, increased anxiety, and impaired spatial memory compared to younger counterparts. However, no significant differences were observed for depressive-like behavior in the forced-swim test. Microglia numbers in the dentate gyrus, as well as CD8+ memory T cells increased towards late middle age. Aging processes exerted a significant effect on the expression of 43 genes of interest in the hippocampus. We conclude that aging is associated with specific changes in locomotor activity, cognition, anxiety-like behaviors, neuroimmune responses and hippocampal gene expression.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Julie Morgan
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Magdalene C Jawahar
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - Frances Corrigan
- Division of Health Sciences, The University of South Australia, Adelaide, SA, Australia.
| | - Emily J Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia; School of Psychology and Public Health, LIMS2, Room 204, La Trobe University, Bundoora, Melbourne, Vic, Australia.
| | - Catherine Toben
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia.
| | - James Breen
- Robinson Research Institute, The University of Adelaide, SA, Australia; Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Stephen M Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| | - Jim Manavis
- Centre for Neurological Diseases, School of Medicine, Faculty of Health, The University of Adelaide, Adelaide, SA, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Bernhard T Baune
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; Department of Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
22
|
Fan X, Hou T, Sun T, Zhu L, Zhang S, Tang K, Wang Z. Starvation stress affects the maternal development and larval fitness in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133897. [PMID: 31425978 DOI: 10.1016/j.scitotenv.2019.133897] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/15/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The starvation is a common and severe stress for animal survival and development. In aquatic environment, many fish suffer starvation stress in different extent because of the natural migration or feed limitation. When subjected to starved conditions, organisms will employ various adaptive physiological, biochemical, and behavioral changes to regulate metabolism and maintain homeostasis. In the present study, adult female zebrafish were deprived of feed for 1 to 3 weeks to detect the starved effects on adults and larvae. The results showed that biological indexes, RNA/DNA ratios, and nutritional indexes significantly decreased in the female fish after starvation. The number of mature follicles reduced while the average spawning diameter of oocytes increased. For the larvae, the maternal starvation stress distinctly delayed embryonic hatching, decreased larval body length, disrupted larval swimming ability, and reduced survival rate at early-life stages. Furthermore, we found that DNA methylation might conduce to the downregulated mRNA expression of anti-Müllerian hormone and cytochrome P450 aromatase in retarded ovaries under starved conditions. Significant effects on autophagic transcription were shown in maternal ovary and larvae responded to starvation stress. Taken together, our study systematically revealed the reproductive impairments of starvation stress and would facilitate the investigation of environmental stress in teleost fish.
Collapse
Affiliation(s)
- Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianzi Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kui Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
Shen B, Han S, Wang Y, Yang Z, Zou Z, Liu J, Zhao Z, Wu R, Wang C. Bta-miR-152 affects intracellular triglyceride content by targeting the UCP3 gene. J Anim Physiol Anim Nutr (Berl) 2019; 103:1365-1373. [PMID: 31355500 DOI: 10.1111/jpn.13162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
According to our previous studies, bta-miR-152, PRKAA1 and UCP3 are differentially expressed in mammary gland tissues of high milk fat and low milk fat cows, and the trend in bta-miR-152 expression is opposite from those of PRKAA1 and UCP3. To further identify the function and regulatory mechanism of bta-miR-152 in milk fat metabolism, we investigated the effect of bta-miR-152 on cellular triglyceride content in bovine mammary epithelial cells cultured in vitro, on the basis of bta-miR-152 overexpression and inhibition assays. The target genes of bta-miR-152 were identified through qPCR, Western blotting and dual luciferase reporter gene detection. Compared with that in the control group, the expression of UCP3 was significantly lower in the bta-miR-152 mimic group, the expression of PRKAA1 was decreased, and the intracellular TAG content was significantly increased. After transfection with bta-miR-152 inhibitor, the expression of UCP3 increased significantly, and the expression of PRKAA1 decreased, but the difference was not significant; in addition, the intracellular TAG content decreased significantly. Therefore, we concluded that bta-miR-152 affects the intracellular TAG content by targeting UCP3.
Collapse
Affiliation(s)
- Binglei Shen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuo Han
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuxuan Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuonina Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ziwen Zou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Juan Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhihui Zhao
- Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
24
|
Merlot AM, Kalinowski DS, Kovacevic Z, Jansson PJ, Sahni S, Huang MLH, Lane DJ, Lok H, Richardson DR. Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Curr Med Chem 2019; 26:302-322. [DOI: 10.2174/0929867324666170705120809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
Metals are vital cellular elements necessary for multiple indispensable biological processes of living organisms, including energy transduction and cell proliferation. Interestingly, alterations in metal levels and also changes in the expression of proteins involved in metal metabolism have been demonstrated in a variety of cancers. Considering this and the important role of metals for cell growth, the development of drugs that sequester metals has become an attractive target for the development of novel anti-cancer agents. Interest in this field has surged with the design and development of new generations of chelators of the thiosemicarbazone class. These ligands have shown potent anticancer and anti-metastatic activity in vitro and in vivo. Due to their efficacy and safe toxicological assessment, some of these agents have recently entered multi-center clinical trials as therapeutics for advanced and resistant tumors. This review highlights the role and changes in homeostasis of metals in cancer and emphasizes the pre-clinical development and clinical assessment of metal ion-binding agents, namely, thiosemicarbazones, as antitumor agents.
Collapse
Affiliation(s)
- Angelica M. Merlot
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Danuta S. Kalinowski
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Patric J. Jansson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Michael L.-H. Huang
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Darius J.R. Lane
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Hiu Lok
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| | - Des R. Richardson
- Molecular Pharmacology and Pathology Program, The University of Sydney, Department of Pathology and Bosch Institute, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, 2006, Australia
| |
Collapse
|
25
|
Analysis of miRNA-seq in the liver of common carp (Cyprinus carpio L.) in response to different environmental temperatures. Funct Integr Genomics 2018; 19:265-280. [DOI: 10.1007/s10142-018-0643-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 02/07/2023]
|
26
|
Meng J, Fan X, Zhang M, Hao Z, Liang C. Do polymorphisms in protein kinase catalytic subunit alpha-1 gene associated with cancer susceptibility? a meta-analysis and systematic review. BMC MEDICAL GENETICS 2018; 19:189. [PMID: 30340465 PMCID: PMC6194619 DOI: 10.1186/s12881-018-0704-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
Abstract
Background Currently, several studies have demonstrated that PRKAA1 polymorphisms conduce to the development of cancer. PRKAA1 gene encodes the AMP-activated protein kinase summit-α1, and plays an important role in cell metabolism. Thus, we performed a systematic review and meta-analysis of all enrolled eligible case-control studies to obtain a precise correlation between PRKAA1 polymorphism and cancer susceptibility. Methods Extensive retrieve was performed in Web of Science, Google Scholar, PubMed, EMbase, CNKI and Wanfang databases up to August 26, 2018. Odds ratios (ORs) and 95% CIs were performed to evaluate the overall strength of the associations in five models, as well as in subgroup analyses, stratified by ethnicity, cancer type or source of control. Q-test, Egger’s test and Begg’s funnel plot were applied to evaluate the heterogeneity and publication bias. In-silico analysis was performed to demonstrate the relationship of PRKAA1 expression correlated with cancer tissues and survival time. Results Twenty-two case-control studies from 14 publications were enrolled, with 17,068 cases and 20,871 controls for rs13361707, and 2514 cases and 3193 controls for rs10074991. Overall, we identified that the PRKAA1 rs13361707 polymorphism is not significantly associated with cancer susceptibility under all five genetic models. For rs10074991, we revealed a significant decrease risk in allelic comparison model (B vs. A: OR = 0.774, 95% CI = 0.642–0.931, PAdjust = 3.376*10− 2), heterozygote comparison model (BA vs. AA: OR = 0.779 95%CI = 0.691–0.877, PAdjust = 9.86*10− 10;), and dominant genetic model (BB + BA vs. AA: OR = 0.697 95%CI = 0.533–0.912, PAdjust = 4.211*10− 2;). Evidence from TCGA database and GTEx projects indicated that the expression of PRKAA1 in gastric cancer tissue is higher, compared to normal stomach tissue, as well as it in breast cancer and esophageal squamous cell carcinoma. However, the Kaplan-Meier estimate showed that there is no significant difference of OS and RFS between the low and high PRKAA1 TPM groups in gastric cancer, breast cancer, and esophageal carcinoma. Conclusions To sum up, PRKAA1 rs13361707 polymorphism is not participant with the increased risk of cancer, while the A allele of PRKAA1 rs10074991 revealed a significant decrease risk. Electronic supplementary material The online version of this article (10.1186/s12881-018-0704-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China
| | - Xinyao Fan
- Graduate School of Anhui Medical University, No. 81th, Meishan Road, Hefei, 230032, Anhui, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China. .,Institute of Urology, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China. .,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, No. 218th, Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
27
|
Chen M, Jiang B, He B, Tang M, Wang P, Chen L, Lu J, Lu P. Genetic variations in PRKAA1 predict the risk and progression of gastric Cancer. BMC Cancer 2018; 18:923. [PMID: 30253744 PMCID: PMC6156979 DOI: 10.1186/s12885-018-4818-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background PRKAA1 encodes α-subunit of 5-AMP-activated protein kinase (AMPK), which has been implicated in the pathogenesis of carcinoma of the stomach. Previous works have suggested that polymorphisms in the PRKAA1 may be associated with the risk of non-cardiac gastric cancer (NCGC), but whether PRKAA1 polymorphisms are related to clinical pathologic characteristics of gastric cancer and its clinical outcome is largely unknown. Methods We carried out a case-control study including a total of 481 gastric cancer patients and 490 healthy controls. The genotypes of enrolled polymorphisms were identified with Sequenom MassARRAY platform. Results This study showed that rs10074991 GG genotype (adjusted OR = 1.44, 95%CI:0.99–2.09, p = 0.056) has a borderline significantly increased risk for gastric cancer, which was consistent with the result of additive model (adjusted OR = 1.21, 95%CI:1.01–1.46, p = 0.042). In similar, an increased risk of gastric cancer was also observed for rs13361707 TC genotype (adjusted OR = 1.47, 95%CI: 1.01–2.14, p = 0.043; additive model: adjusted OR = 1.22, 95%CI: 1.02–1.47, p = 0.033). Furthermore, the rs154268 and rs461404 were also found associated with increased gastric cancer risk, which may be influenced by age, tumor type and differentiation, and tumor stage. Haplotype analysis indicated A-G-C-T-C-G haplotype (rs6882903, rs10074991, rs13361707, rs3805490, rs154268 and rs461404) is associated with increased risk of gastric cancer (OR = 1.29, 95%CI: 1.02–1.62, p = 0.035). The univariate analysis for overall survival (OS) revealed that both of rs10074991 and rs13361707 variants are associated with poor OS in patients with NCGC. Conclusion This case-control study provided the evidence thatrs13361707CC, rs10074991GG, rs461404GG, and rs154268CC are associated with increased gastric cancer risk, especially for NCGC, and that patients with rs10074991 G or rs13361707 C allele have a poor OS. Electronic supplementary material The online version of this article (10.1186/s12885-018-4818-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minbin Chen
- Department of Radiotherapy & Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China
| | - Baohu Jiang
- Department of Critical Care Medicine, The affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu Province, China
| | - Bangshun He
- General Clinical Research center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 220006, Jiangsu Province, China
| | - Min Tang
- Department of Radiotherapy & Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu Province, China
| | - Ping Wang
- Departments of Medical biology, Wannan Medical College, Wuhu, Anhui Province, China
| | - Li Chen
- Department of Gastroenterology, Xuzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
| | - Jianwei Lu
- Departments of Medical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Jiangsu Province Institute of Cancer, Nanjing, Jiangsu Province, China
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, Jiangsu Province, China.
| |
Collapse
|
28
|
Wu MH, Huang PH, Hsieh M, Tsai CH, Chen HT, Tang CH. Endothelin-1 promotes epithelial-mesenchymal transition in human chondrosarcoma cells by repressing miR-300. Oncotarget 2018; 7:70232-70246. [PMID: 27602960 PMCID: PMC5342549 DOI: 10.18632/oncotarget.11835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 12/24/2022] Open
Abstract
Chondrosarcoma is a malignant tumor of mesenchymal origin predominantly composed of cartilage-producing cells. This type of bone cancer is extremely resistant to radiotherapy and chemotherapy. Surgical resection is the primary treatment, but is often difficult and not always practical for metastatic disease, so more effective treatments are needed. In particular, it would be helpful to identify molecular markers as targets for therapeutic intervention. Endothelin-1 (ET-1), a potent vasoconstrictor, has been shown to enhance chondrosarcoma angiogenesis and metastasis. We report that ET-1 promotes epithelial–mesenchymal transition (EMT) in human chondrosarcoma cells. EMT is a key pathological event in cancer progression, during which epithelial cells lose their junctions and apical-basal polarity and adopt an invasive phenotype. Our study verifies that ET-1 induces the EMT phenotype in chondrosarcoma cells via the AMP-activated protein kinase (AMPK) pathway. In addition, we show that ET-1 increases EMT by repressing miR-300, which plays an important role in EMT-enhanced tumor metastasis. We also show that miR-300 directly targets Twist, which in turn results in a negative regulation of EMT. We found a highly positive correlation between ET-1 and Twist expression levels as well as tumor stage in chondrosarcoma patient specimens. Therefore, ET-1 may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung, Taiwan.,Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung, Taiwan
| | - Pei-Han Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Mingli Hsieh
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
29
|
The inhibitory effect of minocycline on radiation-induced neuronal apoptosis via AMPKα1 signaling-mediated autophagy. Sci Rep 2017; 7:16373. [PMID: 29180765 PMCID: PMC5703722 DOI: 10.1038/s41598-017-16693-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Due to an increasing concern about radiation-induced cognitive deficits for brain tumor patients receiving radiation therapy, developing and evaluating countermeasures has become inevitable. Our previous study has found that minocycline, a clinical available antibiotics that can easily cross the blood brain barrier, mitigates radiation-induced long-term memory loss in rats, accompanied by decreased hippocampal neuron apoptosis. Thus, in the present study, we report an unknown mechanism underlying the neuroprotective effect of minocycline. We demonstrated that minocycline prevented primary neurons from radiation-induced apoptosis and promoted radiation-induced autophagy in vitro. Moreover, using an immortalized mouse hippocampal neuronal cell line, HT22 cells, we found that the protective effect of minocycline on irradiated HT22 cells was not related to DNA damage repair since minocycline did not facilitate DNA DSB repair in irradiated HT22 cells. Further investigation showed that minocycline significantly enhanced X-irradiation-induced AMPKα1 activation and autophagy, thus resulting in decreased apoptosis. Additionally, although the antioxidant potential of minocycline might contribute to its apoptosis-inhibitory effect, it was not involved in its enhancive effect on radiation-induced AMPKα1-mediated autophagy. Taken together, we have revealed a novel mechanism for the protective effect of minocycline on irradiated neurons, e.g. minocycline protects neurons from radiation-induced apoptosis via enhancing radiation-induced AMPKα1-mediated autophagy.
Collapse
|
30
|
Sahni S, Bae DH, Jansson PJ, Richardson DR. The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacol Res 2017; 119:118-127. [DOI: 10.1016/j.phrs.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
31
|
Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tümer Z, Nielsen JE, Nielsen TT. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion 2017; 34:103-114. [PMID: 28263872 DOI: 10.1016/j.mito.2017.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/11/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene. We show increased oxidative stress, abnormalities in the antioxidant system, changes in complexes involved in oxidative phosphorylation and changes in mitochondrial morphology in SCA2 patient fibroblasts compared to controls, and we show that treatment with CoQ10 can partially reverse these changes. Together, our results suggest that oxidative stress and mitochondrial dysfunction may be contributory factors to the pathophysiology of SCA2 and that therapeutic strategies involving manipulation of the antioxidant system could prove to be of clinical benefit.
Collapse
Affiliation(s)
- Nanna Cornelius
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jonathan H Wardman
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Iain P Hargreaves
- Pharmacy and Biomolecular Sciences, James Parsons Building, John Moore's University, Liverpool L3 3AF, United Kingdom
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Anne Sigaard Bie
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, Glostrup, University of Copenhagen, Denmark
| | - Jørgen E Nielsen
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Section of Neurogenetics, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark.
| | - Troels T Nielsen
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
32
|
The Anticancer Agent, Di-2-Pyridylketone 4,4-Dimethyl-3-Thiosemicarbazone (Dp44mT), Up-Regulates the AMPK-Dependent Energy Homeostasis Pathway in Cancer Cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2916-2933. [DOI: 10.1016/j.bbamcr.2016.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022]
|
33
|
Yuan J, Zhang Y, Yan FT, Zheng X. Association of PRKAA1 gene polymorphisms with chronic hepatitis B virus infection in Chinese Han population. Braz J Infect Dis 2016; 20:564-568. [PMID: 27612659 PMCID: PMC9427558 DOI: 10.1016/j.bjid.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Studies have indicated that AMPK play critical roles in the regulation of innate immunity and inflammatory responses. However, the role of the polymorphisms of PRKAA1 gene in immune-response to infectious organisms remains unknown. To evaluate the potential role of PRKAA1/AMPKα1 in the immune-response to HBV, we conducted this case-control study. METHODS We recruited 276 patients (145 men and 131 women; average age, 51.6 years) with chronic HBV infection (CHB) and 303 healthy controls (166 men and 137 women; average age, 54.2 years). All the subjects were unrelated individuals of Chinese Han Population. Three SNPs of PRKAA1gene were tested. RESULTS Rs1002424 polymorphism showed significant difference in the allele frequencies, but no difference in the genotype frequencies (allele: p=0.039411, OR95%CI=0.783479 [0.621067-0.988362]; genotype: p=0.104758); rs13361707 polymorphism showed significance in allele analysis, but not in genotype analysis (allele: p=0.034749, OR95%CI=1.284303 [1.017958-1.620335]; genotype: p=0.098027); rs3792822 polymorphism was demonstrated to have significant differences in both genotype and allele frequencies between cases and controls (allele: p=0.029286, OR95%CI= 0.741519 [0.566439-0.970716]; genotype: p=0.034560). The haplotype results showed that CTG and TCA in the rs13361707-rs1002424-rs3792822 block were significantly associated with the happening of HBV (CTG: p=0.036854, OR95%CI=1.281 [1.015-1.617]; p=0.030841, OR95%CI=0.743 [0.568-0.973]). CONCLUSION These findings suggest that PRKAA1 polymorphisms may contribute to the susceptibility of chronic HBV infection in Chinese Han origin.
Collapse
Affiliation(s)
- Jun Yuan
- Shaanxi Provincial People's Hospital, Clinical Laboratory, Xi'an, China.
| | - Yan Zhang
- Shaanxi Provincial People's Hospital, Department of CT, Xi'an, China
| | - Fu-Tang Yan
- Shaanxi Provincial People's Hospital, Clinical Laboratory, Xi'an, China
| | - Xiao Zheng
- Shaanxi Provincial People's Hospital, Clinical Laboratory, Xi'an, China
| |
Collapse
|
34
|
Lu J, Tang M, Li H, Xu Z, Weng X, Li J, Yu X, Zhao L, Liu H, Hu Y, Tan Z, Yang L, Zhong M, Zhou J, Fan J, Bode AM, Yi W, Gao J, Sun L, Cao Y. EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma. Cancer Lett 2016; 380:191-200. [PMID: 27255972 DOI: 10.1016/j.canlet.2016.05.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 02/05/2023]
Abstract
We conducted this research to explore the role of latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus (EBV) in modulating the DNA damage response (DDR) and its regulatory mechanisms in radioresistance. Our results revealed that LMP1 repressed the repair of DNA double strand breaks (DSBs) by inhibiting DNA-dependent protein kinase (DNA-PK) phosphorylation and activity. Moreover, LMP1 reduced the phosphorylation of AMP-activated protein kinase (AMPK) and changed its subcellular location after irradiation, which appeared to occur through a disruption of the physical interaction between AMPK and DNA-PK. The decrease in AMPK activity was associated with LMP1-mediated glycolysis and resistance to apoptosis induced by irradiation. The reactivation of AMPK significantly promoted radiosensitivity both in vivo and in vitro. The AMPKα (Thr172) reduction was associated with a poorer clinical outcome of radiation therapy in NPC patients. Our data revealed a new mechanism of LMP1-mediated radioresistance and provided a mechanistic rationale in support of the use of AMPK activators for facilitating NPC radiotherapy.
Collapse
Affiliation(s)
- Jingchen Lu
- Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongde Li
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhijie Xu
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinxian Weng
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiangjiang Li
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinfang Yu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheqiong Tan
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lifang Yang
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China; Molecular Imaging Center, Central South University, Changsha, China
| | - Meizuo Zhong
- Department of Medical Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhou
- Key Laboratory of Chinese Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Key Laboratory of Chinese Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Wei Yi
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jinghe Gao
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lunquan Sun
- Molecular Imaging Center, Central South University, Changsha, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis of Chinese Ministry of Public Health, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Chinese Ministry of Education, Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, China; Molecular Imaging Center, Central South University, Changsha, China.
| |
Collapse
|
35
|
Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, Oliveira FMDJ, Burth P, Bozza PT, Castro Faria MV, Silva AR, de Castro-Faria-Neto HC. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis. PLoS One 2016; 11:e0153607. [PMID: 27078880 PMCID: PMC4831806 DOI: 10.1371/journal.pone.0153607] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/31/2016] [Indexed: 01/18/2023] Open
Abstract
Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA).
Collapse
Affiliation(s)
| | | | | | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24020–15 Niterói, RJ, Brazil
| | - Patrícia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, 21040–900 Rio de Janeiro, RJ, Brazil
| | - Mauro Velho Castro Faria
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, 20550–900 Rio de Janeiro, RJ, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, 21040–900 Rio de Janeiro, RJ, Brazil
- * E-mail: (ARS); (HCCFN)
| | - Hugo Caire de Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, 21040–900 Rio de Janeiro, RJ, Brazil
- Universidade Estácio de Sá, Programa de Produtividade Científica, Rio de Janeiro, RJ, Brazil
- * E-mail: (ARS); (HCCFN)
| |
Collapse
|
36
|
Paul-Samojedny M, Pudełko A, Kowalczyk M, Fila-Daniłow A, Suchanek-Raif R, Borkowska P, Kowalski J. Combination Therapy with AKT3 and PI3KCA siRNA Enhances the Antitumor Effect of Temozolomide and Carmustine in T98G Glioblastoma Multiforme Cells. BioDrugs 2016; 30:129-44. [DOI: 10.1007/s40259-016-0160-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Shen B, Zhang L, Lian C, Lu C, Zhang Y, Pan Q, Yang R, Zhao Z. Deep Sequencing and Screening of Differentially Expressed MicroRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells. Int J Mol Sci 2016; 17:200. [PMID: 26901190 PMCID: PMC4783934 DOI: 10.3390/ijms17020200] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 11/16/2022] Open
Abstract
Milk fat is a key factor affecting milk quality and is also a major trait targeted in dairy cow breeding. To determine how the synthesis and the metabolism of lipids in bovine milk is regulated at the miRNA level, primary mammary epithelial cells (pMEC) derived from two Chinese Holstein dairy cows that produced extreme differences in milk fat percentage were cultured by the method of tissue nubbles culture. Small RNA libraries were constructed from each of the two pMEC groups, and Solexa sequencing and bioinformatics analysis were then used to determine the abundance of miRNAs and their differential expression pattern between pMECs. Target genes and functional prediction of differentially expressed miRNAs by Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analysis illustrated their roles in milk fat metabolism. Results show that a total of 292 known miRNAs and 116 novel miRNAs were detected in both pMECs. Identification of known and novel miRNA candidates demonstrated the feasibility and sensitivity of sequencing at the cellular level. Additionally, 97 miRNAs were significantly differentially expressed between the pMECs. Finally, three miRNAs including bta-miR-33a, bta-miR-152 and bta-miR-224 whose predicted target genes were annotated to the pathway of lipid metabolism were screened and verified by real-time qPCR and Western-blotting experiments. This study is the first comparative profiling of the miRNA transcriptome in pMECs that produce different milk fat content.
Collapse
Affiliation(s)
- Binglei Shen
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Liying Zhang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Chuanjiang Lian
- National Key Laboratory of Veterinary Biotechnology and Laboratory Animal and Comparative Medicine Unit, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Chunyan Lu
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Yonghong Zhang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Qiqi Pan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Runjun Yang
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Zhihui Zhao
- College of Animal Science, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
38
|
Shrestha A, Nepal S, Kim MJ, Chang JH, Kim SH, Jeong GS, Jeong CH, Park GH, Jung S, Lim J, Cho E, Lee S, Park PH. Critical Role of AMPK/FoxO3A Axis in Globular Adiponectin-Induced Cell Cycle Arrest and Apoptosis in Cancer Cells. J Cell Physiol 2015; 231:357-69. [DOI: 10.1002/jcp.25080] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Anup Shrestha
- College of Pharmacy; Yeungnam University; Gyeongsan Republic of Korea
| | - Saroj Nepal
- College of Pharmacy; Yeungnam University; Gyeongsan Republic of Korea
| | - Mi Jin Kim
- College of Pharmacy; Yeungnam University; Gyeongsan Republic of Korea
| | - Jae Hoon Chang
- College of Pharmacy; Yeungnam University; Gyeongsan Republic of Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine; Kyungpook National University; Daegu Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy; Keimyung University; Daegu Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy; Keimyung University; Daegu Republic of Korea
| | - Gyu Hwan Park
- College of Pharmacy; Kyungpook National University; Daegu Republic of Korea
| | - Sunghee Jung
- Radioisotope Research Division, Department of Research Reactor Utilization; Korea Atomic Energy Research Institute; Daejeon Republic of Korea
| | - Jaecheong Lim
- Radioisotope Research Division, Department of Research Reactor Utilization; Korea Atomic Energy Research Institute; Daejeon Republic of Korea
| | - Eunha Cho
- Radioisotope Research Division, Department of Research Reactor Utilization; Korea Atomic Energy Research Institute; Daejeon Republic of Korea
| | - Soyoung Lee
- Radioisotope Research Division, Department of Research Reactor Utilization; Korea Atomic Energy Research Institute; Daejeon Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy; Yeungnam University; Gyeongsan Republic of Korea
| |
Collapse
|
39
|
Tsai CH, Tsai HC, Huang HN, Hung CH, Hsu CJ, Fong YC, Hsu HC, Huang YL, Tang CH. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells. Oncotarget 2015; 6:258-70. [PMID: 25404641 PMCID: PMC4381593 DOI: 10.18632/oncotarget.2724] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 11/06/2014] [Indexed: 12/28/2022] Open
Abstract
Resistin is a recently discovered adipocyte-secreting adipokine, which may play a critical role in modulating cancer pathogenesis. Chondrosarcoma is a highly malignant tumor known to frequently metastasize; however, the role of resistin in the metastasis of human chondrosarcoma is largely unknown. Here, we found that the expression of resistin was higher in chondrosarcoma biopsy tissues than in normal cartilage. Moreover, treatment with resistin increased matrix metalloproteinase (MMP)-2 expression and promoted cell migration in human chondrosarcoma cells. Co-transfection with microRNA (miR)-519d mimic resulted in reversed resistin-mediated cell migration and MMP-2 expression. Additionally, AMP-activated protein kinase (AMPK) and p38 inhibitors or siRNAs reduced the resistin-increased cell migration and miR-519d suppression, and inhibition of resistin expression resulted in suppression of MMP-2 expression and lung metastasis in vivo. Taken together, our results indicate that resistin promotes chondrosarcoma metastasis and MMP-2 expression through activation of the AMPK/p38 signaling pathway and down-regulation of miR-519d expression. Therefore, resistin may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ho-Ning Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hung Hung
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan. School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Horng-Chaung Hsu
- Department of Medicine and Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan. Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan. Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan. Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
40
|
Mocellin S, Verdi D, Pooley KA, Nitti D. Genetic variation and gastric cancer risk: a field synopsis and meta-analysis. Gut 2015; 64:1209-19. [PMID: 25731870 DOI: 10.1136/gutjnl-2015-309168] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/06/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Data on genetic susceptibility to sporadic gastric carcinoma have been published at a growing pace, but to date no comprehensive overview and quantitative summary has been available. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing stomach cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Meta-analysis was also conducted for subgroups, which were defined by ethnicity (Asian vs Caucasian), tumour histology (intestinal vs diffuse), tumour site (cardia vs non-cardia) and Helicobacter pylori infection status (positive vs negative). RESULTS Literature search identified 824 eligible studies comprising 2 530 706 subjects (cases: 261 386 (10.3%)) and investigating 2841 polymorphisms involving 952 distinct genes. Overall, we performed 456 primary and subgroup meta-analyses on 156 variants involving 101 genes. We identified 11 variants significantly associated with disease risk and assessed to have a high level of summary evidence: MUC1 rs2070803 at 1q22 (diffuse carcinoma subgroup), MTX1 rs2075570 at 1q22 (diffuse), PSCA rs2294008 at 8q24.2 (non-cardia), PRKAA1 rs13361707 5p13 (non-cardia), PLCE1 rs2274223 10q23 (cardia), TGFBR2 rs3087465 3p22 (Asian), PKLR rs3762272 1q22 (diffuse), PSCA rs2976392 (intestinal), GSTP1 rs1695 11q13 (Asian), CASP8 rs3834129 2q33 (mixed) and TNF rs1799724 6p21.3 (mixed), with the first nine variants characterised by a low FPRP. We also identified polymorphisms with lower quality significant associations (n=110). CONCLUSIONS We have identified several high-quality biomarkers of gastric cancer susceptibility. These data will form the backbone of an annually updated online resource that will be integral to the study of gastric carcinoma genetics and may inform future screening programmes.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Daunia Verdi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Karen A Pooley
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Donato Nitti
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Krishan S, Richardson DR, Sahni S. Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Mol Pharmacol 2014; 87:363-77. [DOI: 10.1124/mol.114.095810] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
42
|
Bahrami-B F, Ataie-Kachoie P, Pourgholami MH, Morris DL. p70 Ribosomal protein S6 kinase (Rps6kb1): an update. J Clin Pathol 2014; 67:1019-25. [PMID: 25100792 DOI: 10.1136/jclinpath-2014-202560] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Rps6kb1 gene encodes the 70 kDa ribosomal protein S6 kinase (p70S6K), which is a serine/threonine kinase regulated by phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway. p70S6K plays a crucial role in controlling cell cycle, growth and survival. The PI3K/mTOR signalling pathway is one of the major mechanisms for controlling cell survival, proliferation and metabolism and is the central regulator of translation of some components of protein synthesis system. Upon activation, this kinase phosphorylates S6 protein of ribosomal subunit 40S resulting in selective translation of unique family of mRNAs that contain oligopyrimidine tract on 5' transcriptional site (5'TOP). 5'TOP mRNAs are coding the components of translational apparatus including ribosomal proteins and elongation factors. Due to the role of p70S6K in protein synthesis and also its involvement in a variety of human diseases ranging from diabetes and obesity to cancer, p70S6K is now being considered as a new therapeutic target for drug development. Furthermore, p70S6K acts as a biomarker for response to immunosuppressant as well as anticancer effects of inhibitors of the mTOR. Because of the narrow therapeutic index of mTOR inhibitors, drug monitoring is essential, and this is usually done by measuring blood drug levels, therapeutic response and drug-induced adverse effects. Recent studies have suggested that plasma p70S6K is a reliable index for the monitoring of patient response to mTOR inhibitors. Therefore, a better understanding of p70S6K and its role in various pathological conditions could enable the development of strategies to aid diagnosis, prognosis and treatment schedules.
Collapse
Affiliation(s)
- Farnaz Bahrami-B
- Cancer research laboratories, Department of Surgery, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | | | | | - David L Morris
- Cancer research laboratories, Department of Surgery, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|