1
|
Ma Q, Gao J, Hui Y, Zhang ZM, Qiao YJ, Yang BF, Gong T, Zhao DM, Huang BR. Single-cell RNA-sequencing and genome-wide Mendelian randomisation along with abundant machine learning methods identify a novel B cells signature in gastric cancer. Discov Oncol 2025; 16:11. [PMID: 39760915 PMCID: PMC11703799 DOI: 10.1007/s12672-025-01759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) has a poor prognosis, considerable cellular heterogeneity, and ranks fifth among malignant tumours. Understanding the tumour microenvironment (TME) and intra-tumor heterogeneity (ITH) may lead to the development of novel GC treatments. METHODS The single-cell RNA sequencing (scRNA-seq) dataset was obtained from the Gene Expression Omnibus (GEO) database, where diverse immune cells were isolated and re-annotated based on cell markers established in the original study to ascertain their individual characteristics. We conducted a weighted gene co-expression network analysis (WGCNA) to identify genes with a significant correlation to GC. Utilising bulk RNA sequencing data, we employed machine learning integration methods to train specific biomarkers for the development of novel diagnostic combinations. A two-sample Mendelian randomisation study was performed to investigate the causal effect of biomarkers on gastric cancer (GC). Ultimately, we utilised the DSigDB database to acquire associations between signature genes and pharmaceuticals. RESULTS The 18 genes that made up the signature were as follows: ZFAND2A, PBX4, RAMP2, NNMT, RNASE1, CD93, CDH5, NFKBIE, VWF, DAB2, FAAH2, VAT1, MRAS, TSPAN4, EPAS1, AFAP1L1, DNM3. Patients were categorised into high-risk and low-risk groups according to their risk scores. Individuals in the high-risk cohort exhibited a dismal outlook. The Mendelian randomisation study demonstrated that individuals with a genetic predisposition for elevated NFKBIE levels exhibited a heightened likelihood of acquiring GC. Molecular docking indicates that gemcitabine and chloropyramine may serve as effective therapeutics against NFKBIE. CONCLUSIONS We developed and validated a signature utilising scRNA-seq and bulk sequencing data from gastric cancer patients. NFKBIE may function as a novel biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Qi Ma
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Jie Gao
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuan Hui
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Zhi-Ming Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Yu-Jie Qiao
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Bin-Feng Yang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Ting Gong
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Duo-Ming Zhao
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China
| | - Bang-Rong Huang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, 730050, China.
| |
Collapse
|
2
|
Wang H, Zhang B. The Impact of Transcriptional Profiling Cadherin Family and Therapeutic Approaches of Gastric Cancer: A Translational Outlook on Multi-omics Data Analysis. Appl Biochem Biotechnol 2024; 196:7657-7674. [PMID: 38530538 DOI: 10.1007/s12010-024-04926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
The classical cadherin gene has been linked to a variety of human malignancies, including gastric cancer. However, the link between cadherin genes and gastric cancer outcome is still unclear. This study used multi-omics data to examine the cadherin genes that were differentially regulated in gastric cancer. Differential expression of genes, epigenetic, molecular alterations, and protein expression analyses was conducted. Male SD rats were given N-methyl-N-nitrosourea (MNU) to induce stomach carcinoma in order to verify the activation of cadherin genes. CDH5, CDH6, CDH11, and CDH24 levels were found to be considerably higher in gastric cancer and may serve as useful indicators of stomach adenocarcinoma (STAD). Cadherin genes with variable expression had considerably more promoter methylation in cancers than in normal tissues. In individuals with gastric cancer, high expression of these cadherin genes was related to lower total mortality and disease-free survival rates. Furthermore, compared to normal rats, gastric cancer-induced rats had significantly higher expression and distribution of CDH5, CDH6, CDH11, and CDH24. This study sheds new light on the diagnosis and prognosis of gastric cancer by identifying potential prognostic markers such as CDH5, CDH6, CDH11, and CDH24. The multi-omics approach provided a potential tool for target-based therapy by accurately predicting the outcome of stomach cancer. Researchers may gain more knowledge about the role of cadherin genes in the development and dissemination of tumors to the activated rat model of gastric cancer.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China
| | - Baomin Zhang
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, Shandong, China.
| |
Collapse
|
3
|
Zhou L, Yang Y, Ye Y, Qiao Q, Mi Y, Liu H, Zheng Y, Wang Y, Liu M, Zhou Y. Notch1 signaling pathway promotes growth and metastasis of gastric cancer via modulating CDH5. Aging (Albany NY) 2024; 16:11893-11903. [PMID: 39172098 PMCID: PMC11386911 DOI: 10.18632/aging.206061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE To explore the underlying molecular mechanism of Notch1/cadherin 5 (CDH5) pathway in modulating in cell malignant behaviors of gastric cancer (GC). METHODS We performed bioinformatic analyses to screen the potential target genes of Notch1 from cadherins in GC. Western blot and RT-PCR were conducted to detect CDH5 expression in GC tissues and cells. We utilized chromatin immunoprecipitation (CHIP) assays to assess the interaction of Notch1 with CDH5 gene. The effects of Notch1/CDH5 axis on the proliferation, invasion, migration and vasculogenic mimicry in GC cells were evaluated by EdU, wound healing, transwell, and tubule formation assays. RESULTS Significantly increased CDH5 expression was found in GC tissues compared with paracancerous tissues and associated to clinical stage and poor overall survival (OS) in patients with GC. Notch1 positively regulate the expression of CDH5 in GC cells. CHIP assays validated that CDH5 was a direct target of Notch1. In addition, Notch1 upregulation enhanced the proliferation, migration, invasion and vasculogenic mimicry capacity of GC cells, which could be attenuated by CDH5 silencing. CONCLUSIONS These results indicated Notch1 upregulation enhanced GC malignant behaviors by triggering CDH5, suggesting that targeting Notch1/CDH5 axis could be a potential therapeutic strategy for GC progression.
Collapse
Affiliation(s)
- Lingshan Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Department of Geriatrics Ward 2, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yuwei Ye
- Department of Gastroenterology Ward 2, Shanxi Provincial People’s Hospital, Xian 710000, China
| | - Qian Qiao
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yingying Mi
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Hongfang Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Wang J, Zhu L, Zhang Q, Xia T, Yao W, Wei L. LincRNA-P21 knockdown facilitates esophageal squamous cell carcinoma cell progression by upregulating cadherin 5 via YTH domain containing 1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1797-1805. [PMID: 37766459 PMCID: PMC10686791 DOI: 10.3724/abbs.2023154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/19/2023] [Indexed: 09/29/2023] Open
Abstract
LincRNA-P21 is a tumor suppressor in esophageal squamous cell carcinoma (ESCC). Cell adhesion modules play vital roles in cell-cell and cell-extracellular matrix (ECM) interactions and malignant cancer progression. In this study, we investigate whether lincRNA-P21 exerts its functions by regulating the cell adhesion molecule cadherin 5 (CDH5) in ESCC. Moreover, the RNA binding protein (RBP) mediators of lincRNA-P21 and CDH5 are further examined. Cell viability, growth and migratory ability are assessed by calcein-AM/PI double staining, CCK-8, EdU, Transwell, and wound healing assays. The expression of collagen I and fibronectin is examined by immunofluorescence (IF). LincRNA-P21 and CDH5 are quantified by RT-qPCR and western blot analysis. Potential lincRNA-P21 targets are identified by RNA sequencing. RBPs that can interact with lincRNA-P21 and CDH5 are identified by RNA immunoprecipitation (RIP) assay. LincRNA-P21 knockdown increases cell viability, growth, cell migration, and collagen I and fibronectin expression in ESCC cells. LincRNA-P21 depletion induces the dysregulation of 316 genes, including CDH5, in TE-1 cells. CDH5 is identified as a downstream molecule of lincRNA-P21 given its close correlation with cell adhesion, ECM reconstruction, and cancer progression. LincRNA-P21 exerts its functions by negatively regulating CDH5 expression. YTH domain containing 1 (YTHDC1) mediates the regulatory effect of lincRNA-P21 on CDH5. LincRNA-P21 knockdown elevates cell viability and growth, promotes cell migration, and induces ECM reorganization by upregulating CDH5 via RBP YTHDC1 in ESCC.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Li Zhu
- Department of Thoracic SurgeryZhengzhou University People’s HospitalHenan Provincial People’s HospitalZhengzhou450003China
| | - Quan Zhang
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Tian Xia
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Wenjian Yao
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| | - Li Wei
- Department of Thoracic SurgeryHenan Provincial People’s HospitalPeople’s Hospital of Zhengzhou UniversitySchool of Clinical MedicineHenan UniversityZhengzhou450003China
| |
Collapse
|
5
|
Min Y, Wu J, Hou W, Li X, Zhao X, Guan X, Qian X, Hao C, Ying W. Differential analysis of core-fucosylated glycoproteomics enabled by single-step truncation of N-glycans. Glycoconj J 2023; 40:541-549. [PMID: 37542637 DOI: 10.1007/s10719-023-10130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may introduce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycoproteome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prognostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.
Collapse
Affiliation(s)
- Yao Min
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 102206, China
| | - Wenhao Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Xiaoyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, 102206, China.
| | - Wantao Ying
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China.
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing, 102206, China.
| |
Collapse
|
6
|
Li Y, Wu Q, Lv J, Gu J. A comprehensive pan-cancer analysis of CDH5 in immunological response. Front Immunol 2023; 14:1239875. [PMID: 37809080 PMCID: PMC10551168 DOI: 10.3389/fimmu.2023.1239875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background Cadherin 5 (CDH5) functions critically in maintaining cell adhesion and integrity of endothelial and vascular cells. The expression of CDH5 is abnormal in tumor cells, which may have great potential to serve as a new immune checkpoint. The current pan-cancer analysis was performed to better understand the role of CDH5 in tumor. Methods The clinical significance and immunological function of CDH5 in pan-cancers were comprehensively analyzed based on the correlations between CDH5 and clinicopathologic features, prognosis values, tumor mutation burden (TMB), microsatellite instability (MSI), immune cells infiltration and immune response genes using 33 datasets from The Cancer Genome Atlas (TCGA). We further confirmed the expression of CDH5 in bladder cancer (BCa) tissues and cell lines. The CD8+ T cells were screened from peripheral blood of healthy controls and activated. BCa cell-CD8+ T cell co-culture assay and ELISA assay were carried out to verify the immunological function of CDH5. Results The expression of CDH5 was down-regulated in 8 types of tumors including in BCa but up-regulated in 4 types of tumors. CDH5 was significantly correlated with tumor stage in 6 types of tumors. In addition, CDH5 was positively or negatively correlated with tumor prognosis. Furthermore, CDH5 was closely associated with TMB in 15 types of tumors and with MSI in 9 types of tumors. KEGG-GSEA and Hallmarks-GSEA analyses results indicated that CDH5 was positively related to immune response in most tumor types. In many tumors, CDH5 showed a positive correlation with immune cell infiltration. Enrichment analyses demonstrated that CDH5 was significantly related to the expression of many immunomodulators and chemokines. Further experiments showed that CDH5 was low-expressed in BCa tissues and cell lines in comparison to adjacent normal tissues and normal urothelial cell line, but it was positively associated with a better prognosis of BCa patients. The results of in vitro co-culture assay and ELISA assay demonstrated that CDH5 could promote the function of CD8+ T cells in TME of BCa. Conclusion In summary, CDH5 was positively associated with a favorable prognosis and effective immune response in tumors, showing a great potential to serve as a novel tumor biomarker and immune checkpoint.
Collapse
Affiliation(s)
- Yuantao Li
- Department of Gastroenterology, Linyi County People’s Hospital, Dezhou, China
| | - Qikai Wu
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, China
| | - Jiancheng Lv
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing, China
| | - Junwei Gu
- Department of Urology, The First People's Hospital of Xiushui County, Jiujiang, Jiangxi, China
| |
Collapse
|
7
|
Liu Y, Yang R, Zhang Y, Zhu Y, Bao W. ANGPTL4 functions as an oncogene through regulation of the ETV5/CDH5/AKT/MMP9 axis to promote angiogenesis in ovarian cancer. J Ovarian Res 2022; 15:131. [PMID: 36517864 PMCID: PMC9749186 DOI: 10.1186/s13048-022-01060-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Angiopoietin-like 4 (ANGPTL4) is highly expressed in a variety of neoplasms and promotes cancer progression. Nevertheless, the mechanism of ANGPTL4 in ovarian cancer (OC) metastasis remains unclear. This study aimeds to explore whether ANGPTL4 regulates OC progression and elucidate the underlying mechanism. METHODS ANGPTL4 expression in clinical patient tumor samples was determined by immunohistochemistry (IHC) and high-throughput sequencing. ANGPTL4 knockdown (KD) and the addition of exogeneous cANGPTL4 protein were used to investigate its function. An in vivo xenograft tumor experiment was performed by intraperitoneal injection of SKOV3 cells transfected with short hairpin RNAs (shRNAs) targeting ANGPTL4 in nude mice. Western blotting and qRT-PCR were used to detect the levels of ANGPTL4, CDH5, p-AKT, AKT, ETV5, MMP2 and MMP9 in SKOV3 and HO8910 cells transfected with sh-ANGPTL4 or shRNAs targeting ETV5. RESULTS Increased levels of ANGPTL4 were associated with poor prognosis and metastasis in OC and induced the angiogenesis and metastasis of OC cells both in vivo and in vitro. This tumorigenic effect was dependent on CDH5, and the expression levels of ANGPTL4 and CDH5 in human OC werepositively correlated. In addition, CDH5 activated p-AKT, and upregulated the expression of MMP2 and MMP9. We also found that the expression of ETV5 was upregulated by ANGPTL4, which could bind the promoter region of CDH5, leading to increased CDH5 expression. CONCLUSION Our data indicated that an increase in the ANGPTL4 level results in increased ETV5 expression in OC, leading to metastasis via activation of the CDH5/AKT/MMP9 signaling pathway.
Collapse
Affiliation(s)
- Yinping Liu
- Qingpu Branch of Zhongshan Hospital, Fudan University, 1158 Gongyuandong Road, Qingpu District, 201700, Shanghai, P. R. China
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou, 200080, Shanghai, P. R. China
| | - Rui Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou, 200080, Shanghai, P. R. China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou, 200080, Shanghai, P. R. China
| | - Yaping Zhu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou, 200080, Shanghai, P. R. China.
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou, 200080, Shanghai, P. R. China.
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, No. 85 Wujin Road, Hongkou, 201620, Shanghai, P.R. China.
| |
Collapse
|
8
|
Sugimachi K, Araki H, Saito H, Masuda T, Miura F, Inoue K, Shimagaki T, Mano Y, Iguchi T, Morita M, Toh Y, Yoshizumi T, Ito T, Mimori K. Persistent epigenetic alterations in transcription factors after a sustained virological response in hepatocellular carcinoma. JGH Open 2022; 6:854-863. [PMID: 36514506 PMCID: PMC9730721 DOI: 10.1002/jgh3.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background and Aim The risk of hepatocellular carcinoma (HCC) persists in a condition of sustained virologic response (SVR) after hepatitis C virus (HCV) eradication. Comprehensive molecular analyses were performed to test the hypothesis that epigenetic abnormalities present after an SVR play a role in hepatocarcinogenesis. Methods Whole-genome methylome and RNA sequencing were performed on HCV, SVR, and healthy liver tissue. Integrated analysis of the sequencing data focused on expression changes in transcription factors and their target genes, commonly found in HCV and SVR. Identified expression changes were validated in demethylated cultured HCC cell lines and an independent validation cohort. Results The coincidence rates of the differentially methylated regions between the HCV and SVR groups were 91% in the hypomethylated and 71% in the hypermethylated regions in tumorous tissues, and 37% in the hypomethylated and 36% in the hypermethylated regions in non-tumorous tissues. These results indicate that many epigenomic abnormalities persist even after an SVR was achieved. Integrated analysis identified 61 transcription factors and 379 other genes that had methylation abnormalities and gene expression changes in both groups. Validation cohort specified gene expression changes for 14 genes, and gene ontology pathway analysis revealed apoptotic signaling and inflammatory response were associated with these genes. Conclusion This study demonstrates that DNA methylation abnormalities, retained after HCV eradication, affect the expression of transcription factors and their target genes. These findings suggest that DNA methylation in SVR patients may be functionally important in carcinogenesis, and could serve as biomarkers to predict HCC occurrence.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Hiromitsu Araki
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Business and Technology Management, Faculty of EconomicsKyushu UniversityFukuokaJapan
| | - Hideyuki Saito
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Takaaki Masuda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Fumihito Miura
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kentaro Inoue
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomonari Shimagaki
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yohei Mano
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomohiro Iguchi
- Department of Hepatobiliary‐Pancreatic SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Masaru Morita
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Yasushi Toh
- Department of Gastroenterological SurgeryNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| |
Collapse
|
9
|
Hernández-Nava E, Montaño LF, Rendón-Huerta EP. Transcriptional and Epigenetic Bioinformatic Analysis of Claudin-9 Regulation in Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5936905. [PMID: 39296813 PMCID: PMC11410435 DOI: 10.1155/2021/5936905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 09/21/2024]
Abstract
Gastric cancer is a heterogeneous disease that represents 5% to 10% of all new cancer cases worldwide. Advances in histological diagnosis and the discovery of new genes have admitted new genomic classifications. Nevertheless, the bioinformatic analysis of gastric cancer databases has favored the detection of specific differentially expressed genes with biological significance. Claudins, a family of proteins involved in tight junction physiology, have emerged as the key regulators of cellular processes, such as growth, proliferation, and migration, associated with cancer progression. The expression of Claudin-9 in the gastric cancer tissue has been linked to poor prognosis, however, its transcriptional and epigenetic regulations demand a more comprehensive analysis. Using the neural network promoter prediction, TransFact, Uniprot-KB, Expasy-SOPMA, protein data bank, proteomics DB, Interpro, BioGRID, String, and the FASTA protein sequence databases and software, we found the following: (1) the promoter sequence has an unconventional structure, including different transcriptional regulation elements distributed throughout it, (2) GATA 4, GATA 6, and KLF5 are the key regulators of Claudin-9 expression, (3) Oct1, NF-κB, AP-1, c-Ets-1, and HNF-3β have the higher binding affinity to the CLDN9 promoter, (4) Claudin-9 interacts with cell differentiation and development proteins, (5) CLDN9 is highly methylated, and (6) Claudin-9 expression is associated with poor survival. In conclusion, Claudin-9 is a protein that should be considered a diagnostic marker as its gene promoter region binds to the transcription factors associated with the deregulation of cell control, enhanced cell proliferation, and metastasis.
Collapse
Affiliation(s)
- Elizabeth Hernández-Nava
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Luis F Montaño
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Erika P Rendón-Huerta
- Laboratorio Inmunobiología, Departamento Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
10
|
Zheng T, Sun M, Liu L, Lan Y, Wang L, Lin F. GPR116 overexpression correlates with poor prognosis in gastric cancer. Medicine (Baltimore) 2021; 100:e28059. [PMID: 35049225 PMCID: PMC9191289 DOI: 10.1097/md.0000000000028059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT The G protein-coupled receptor 116 (GPR116) is an adhesion subtype of the G protein-coupled receptor family and has been reported to be involved in tumorigenesis and cancer progression. Moreover, it has been shown to predict poor prognosis in breast and colorectal cancers. However, little is known about the role of GPR116 in gastric cancer (GC). In this study, we aimed to investigate the expression and clinical prognostic significance of GPR116 in GC.The mRNA expression levels of GPR116 in GC were analyzed using Gene Expression Omnibus and UALCAN databases, and GPR116 protein expression in GC tissues was detected using immunohistochemistry. The relationship between GPR116 expression and prognosis in patients with GC was analyzed and further validated using the Kaplan-Meier Plotter database. The correlation between GPR116 and the differentially expressed genes identified was analyzed using the LinkedOmics database. Gene set enrichment analysis was performed using WebGestalt. The results revealed that GPR116 expression was significantly upregulated in GC tissues, which was positively correlated with tumor node metastasis (TNM) staging and tumor invasion. Prognostic analysis suggested that high GPR116 expression contributed to poor overall survival in GC patients. Multivariate Cox analysis indicated that GPR116 overexpression was an independent prognostic indicator in patients with GC (HR = 1.855, 95% CI 1.021-3.370, P = .043). Enrichment analysis showed that GPR116 co-expression genes were mainly involved in extracellular matrix-receptor interaction, focal adhesion, cell adhesion, PI3K-Akt signaling, DNA replication, and cell cycle pathways. In conclusion, GPR116 was highly expressed in GC tissues and associated with poor prognosis in patients with GC, Thus GPR116 may be a novel prognostic marker and a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Tian Zheng
- Shengli Clinical Medical College of Fujian Medical University, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fuzhou, Fujian, China
| | - Mingyao Sun
- Department of Clinical nutrition, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Lanzai Liu
- Gastrointestinal Endoscopy Center, Fujian Provincial Hospital South Branch, Fuzhou, Fujian, China
| | - Yanfen Lan
- Department of Radiology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Lihua Wang
- Shengli Clinical Medical College of Fujian Medical University, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fuzhou, Fujian, China
| | - Fan Lin
- Shengli Clinical Medical College of Fujian Medical University, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Wang Y, Zhou X, Han P, Lu Y, Zhong X, Yang Y, Li D, Liu D, Li Q, Pan N, Mo Y, Luo W, Li P, Zhou X, Liudmila M. Inverse correlation of miR-27a-3p and CDH5 expression serves as a diagnostic biomarker of proliferation and metastasis of clear cell renal carcinoma. Pathol Res Pract 2021; 220:153393. [PMID: 33740544 DOI: 10.1016/j.prp.2021.153393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cadherin-5 (CDH5) is aberrantly expressed in a variety of human cancers and plays an important role in angiogenesis. The present study provides further insight into the role of miR-27a-3p in the regulation of CDH5 expression in renal clear cell carcinoma (ccRCC). METHODS Thedysregulation of CDH5 expression in ccRCC and its association with clinicopathological characteristics were analyzed using the TCGA database. A meta-analysis was performed to verify the alteration of CDH5 expression in ccRCC using the GEO database. Quantitative RT-PCR and immunohistochemical staining were applied to assess the transcriptional and protein levels of CDH5. TargetScan and Tarbase were employed to predict the miRNAs with the potential to target mRNA of CDH5. RESULTS The mRNA level of CDH5 in ccRCCwas significantly higher than in normal tissue. CDH5 mRNA expression could therefore serve as a potential diagnostic biomarker for ccRCC (AUC = 0.844). However, the reduced CDH5 transcription levels were significantly correlated with patients in the T3-4 stage, lymph node, and distant metastasis, as well as with a worse clinical outcome. We further observed that CDH5, at the protein level, was almost absent in ccRCC samples. In addition, a few databases screen showed that mir-27a-3p is a highly conserved miRNA targeting CDH5. The expression of mir-27a-3p was significantly elevated in ccRCC tissues in contrast to normal tissues. Importantly, it was positively associated with the T3-4 stage and M stage, respectively, suggesting that the expression level of mir-27a-3p could serve as a diagnostic biomarker for ccRCC (AUC = 0.775). CONCLUSION Our data suggest that thereduced translational level of CDH5 in ccRCC was related to the overexpression of mir-27a-3p. The higher mir-27a-3p and lower CDH5 expression significantly correlated with advanced clinical stages for ccRCC patients.
Collapse
Affiliation(s)
- Yifang Wang
- Life Science Institute, Guangxi Medical University, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, China
| | - Peipei Han
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yunliang Lu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xuemin Zhong
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yanping Yang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Danping Li
- Life Science Institute, Guangxi Medical University, China
| | - Deling Liu
- Life Science Institute, Guangxi Medical University, China
| | - Qiuyun Li
- Life Science Institute, Guangxi Medical University, China
| | - Nenghui Pan
- Life Science Institute, Guangxi Medical University, China
| | - Yingxi Mo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Wenqi Luo
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, China.
| | - Matskova Liudmila
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
| |
Collapse
|
12
|
Interactive Verification Analysis of Multiple Sequencing Data for Identifying Potential Biomarker of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8931419. [PMID: 33062704 PMCID: PMC7547331 DOI: 10.1155/2020/8931419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
Background Lung adenocarcinoma (LUAD) comprises around 40% of all lung cancers, and in about 70% of patients, it has spread locally or systemically when first detected leading to a worse prognosis. Methods We filtered out differentially expressed genes (DEGs) based on the RNA sequencing data in the Gene Expression Omnibus database and verified and deeply analyzed screened DEGs using a combined bioinformatics approach. Results Expressions of 11,143 genes in 694 nontumor lung tissues and LUAD cases from 8 independent laboratories were analyzed; 188 mRNAs were identified as differentially expressed genes (DEGs). A PPI network constructed with 188 DEGs screened out 8 hub DEGs (CDH5, PECAM1, VWF, CLDN5, COL1A1, MMP9, SPP1, and IL6) which highly interconnected with other nodes. The expression levels of 8 hub genes in LUAD and control were assessed in the Oncomine database, and the results were consistent. The survival curves of 8 hub genes showed that their expressions are significantly related to the prognosis of lung cancer and LUAD patients except for IL6. Since the expression of IL6 is nonspecific and highly sensitive, we choose the other 7 hub genes we had verified to do the next analysis. Mutual exclusivity or cooccurrence analysis of 7 hub genes identified a tendency towards cooccurrence between CDH5, PECAM1, and VWF in LUAD. The coexpression profiles of CDH5 in LUAD were identified, and we found that PECAM1 and VWF coexpressed with CDH5. Immunohistochemistry and RT-PCR analysis showed that higher levels of CDH5, PECAM1, and VWF were expressed in normal lung tissues but a low or undetectable level was found in LUAD tissues. Conclusions Taken together, we speculate that CDH5, PECAM1, and VWF played an important role in LUAD.
Collapse
|
13
|
Yin X, Fang T, Zhang L, Lin X, Yang Y, Lou S, Li C, Yu X, Xue Y. Impact of CD144 gene expression on outcomes in stage III gastric cancer patients. Pathology 2020; 52:657-669. [PMID: 32859388 DOI: 10.1016/j.pathol.2020.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 10/23/2022]
Abstract
CD144 has been shown to promote tumour angiogenesis, invasion and metastasis in malignant tumours. The purpose of the present study was to investigate the clinical prognostic significance of CD144 in advanced gastric cancer (GC) to complement the American Joint Committee on Cancer (AJCC) 8th Edition convention. We established that CD144 was highly related to angiogenesis using The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) public databases. We randomly selected 173 stage III GC patients who received curative gastrectomy. The expression level of CD144 was assessed by immunohistochemistry and Image-Pro Plus software. After survival analysis, nomograms were created to predict the risk of stage III gastric cancer patients' 5-years survival. In this study, the median value of the CD144 positive area/total area under the microscope was 5.6%, and this was defined as the cut-off value. The expression of CD144 assisted further subgrouping of stage Ⅲa, Ⅲb, and Ⅲc GC patients. To evaluate the disease-free survival (DFS) and overall survival (OS) of patients, univariate and multivariate analysis was performed, which showed that the expression of CD144 was an independent predictor for DFS, and Borrmann type and expression of CD144 were independent predictors for OS (p<0.05). Nomograms were used to evaluate the risk of stage III GC by combining Borrmann type and the expression level of CD144. In advanced GC patients, the expression level of CD144 is a useful prognostic indicator in evaluating the risk of disease prognosis.
Collapse
Affiliation(s)
- Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, P.R. China
| | - Xuan Lin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | - Yongheng Yang
- Department of Pathology, Harbin Medical University, Harbin, P.R. China
| | - Shenghan Lou
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Chunfeng Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Xuefeng Yu
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, P.R. China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, P.R. China.
| |
Collapse
|
14
|
Chen S, Gao C, Wu Y, Huang Z. Identification of Prognostic miRNA Signature and Lymph Node Metastasis-Related Key Genes in Cervical Cancer. Front Pharmacol 2020; 11:544. [PMID: 32457603 PMCID: PMC7226536 DOI: 10.3389/fphar.2020.00544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background miRNAs and genes can serve as biomarkers for the prognosis and therapy of cervical tumors whose metastasis into lymph nodes is closely associated with disease progression and poor prognosis. Methods R software and Bioconductor packages were employed to identify differentially expressed miRNAs (DEMs) from The Cancer Genome Atlas (TCGA) database. GEO2R detected differentially expressed genes (DEGs) in the GSE7410 dataset originating from the Gene Expression Omnibus (GEO). A Cox proportional hazard regression model was established to select prognostic miRNA biomarkers. Online tools such as TargetScan and miRDB predicted target genes, and overlapping DEGs and target genes were defined as consensus genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) function annotations were performed to discern the potential functions of consensus genes. STRING and Cytoscape screened key genes and constructed a regulatory network. Results A combination of four miRNAs (down-regulated miR-502 and miR-145, up-regulated miR-142 and miR-33b) was identified as an independent prognostic signature of cervical cancer. A total of 94 consensus genes were significantly enriched in 7 KEGG pathways and 19 GO function annotations including the cAMP signaling pathway, the plasma membrane, integral components of the plasma membrane, cell adhesion, etc. The module analysis suggested that CXCL12, IGF1, PTPRC CDH5, RAD51B, REV3L, and WDHD1 are key genes that significantly correlate with cervical cancer lymph node metastasis. Conclusions This study demonstrates that a four-miRNA signature can be a prognostic biomarker, and seven key genes are significantly associated with lymph node metastasis in cervical cancer patients. These miRNAs and key genes have the potential to be therapeutic targets for cervical cancer. Among them, two miRNAs (miR-502 and miR-33b) and two key genes (PTPRC and CDH5) were first reported to be potential novel biomarkers for cervical cancer. The current study further characterizes the progression of lymph node metastasis and mechanism of cervical tumors; therefore, it provides a novel diagnostic indicator and therapeutic targets for future clinical treatments.
Collapse
Affiliation(s)
- Shuoling Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Chang Gao
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yangyuan Wu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, China.,Institute of Marine Biomedical Research, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Exosomes released upon mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of malignant breast cancer cells. Sci Rep 2020; 10:343. [PMID: 31941923 PMCID: PMC6962334 DOI: 10.1038/s41598-019-57018-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
During intercellular communication, cells release extracellular vesicles such as exosomes, which contain proteins, ncRNAs and mRNAs that can influence proliferation and/or trigger apoptosis in recipient cells, and have been proposed to play an essential role in promoting invasion of tumor cells and in the preparation of metastatic niches. Our group proposed the antisense non-coding mitochondrial RNA (ASncmtRNA) as a new target for cancer therapy. ASncmtRNA knockdown using an antisense oligonucleotide (ASO-1537S) causes massive death of tumor cells but not normal cells and strongly reduces metastasis in mice. In this work, we report that exosomes derived from ASO-1537S-treated MDA-MB-231 breast cancer cells (Exo-1537S) inhibits tumorigenesis of recipient cells, in contrast to exosomes derived from control-ASO-treated cells (Exo-C) which, in contrast, enhance these properties. Furthermore, an in vivo murine peritoneal carcinomatosis model showed that Exo-1537S injection reduced tumorigenicity compared to controls. Proteomic analysis revealed the presence of Lactadherin and VE-Cadherin in exosomes derived from untreated cells (Exo-WT) and Exo-C but not in Exo-1537S, and the latter displayed enrichment of proteasomal subunits. These results suggest a role for these proteins in modulation of tumorigenic properties of exosome-recipient cells. Our results shed light on the mechanisms through which ASncmtRNA knockdown affects the preparation of breast cancer metastatic niches in a peritoneal carcinomatosis model.
Collapse
|
16
|
Beyond N-Cadherin, Relevance of Cadherins 5, 6 and 17 in Cancer Progression and Metastasis. Int J Mol Sci 2019; 20:ijms20133373. [PMID: 31324051 PMCID: PMC6651558 DOI: 10.3390/ijms20133373] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-cell adhesion molecules (cadherins) and cell-extracellular matrix adhesion proteins (integrins) play a critical role in the regulation of cancer invasion and metastasis. Although significant progress has been made in the characterization of multiple members of the cadherin superfamily, most of the published work continues to focus in the switch E-/N-cadherin and its role in the epithelial-mesenchymal transition. Here, we will discuss the structural and functional properties of a subset of cadherins (cadherin 17, cadherin 5 and cadherin 6) that have an RGD motif in the extracellular domains. This RGD motif is critical for the interaction with α2β1 integrin and posterior integrin pathway activation in cancer metastatic cells. However, other signaling pathways seem to be affected by RGD cadherin interactions, as will be discussed. The range of solid tumors with overexpression or "de novo" expression of one or more of these three cadherins is very wide (gastrointestinal, gynaecological and melanoma, among others), underscoring the relevance of these cadherins in cancer metastasis. Finally, we will discuss different evidences that support the therapeutic use of these cadherins by blocking their capacity to work as integrin ligands in order to develop new cures for metastatic patients.
Collapse
|
17
|
Chen L, Shi Y, Zhu X, Guo W, Zhang M, Che Y, Tang L, Yang X, You Q, Liu Z. IL‑10 secreted by cancer‑associated macrophages regulates proliferation and invasion in gastric cancer cells via c‑Met/STAT3 signaling. Oncol Rep 2019; 42:595-604. [PMID: 31233202 PMCID: PMC6610037 DOI: 10.3892/or.2019.7206] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is one of the most common types of human cancer, and it is additionally one of the leading causes of cancer-associated mortality worldwide. Previous studies have suggested that interleukin (IL)-10 may contribute to the pathogenesis of gastric cancer. However, the underlying mechanisms remain unclear. In the present study, it was observed that the expression of IL-10 was significantly upregulated in gastric tumor tissues and serum samples of patients with gastric cancer. Furthermore, IL-10 was increased in the cell culture supernatant of cancer-associated macrophages (CAMs). Treatment with cell culture supernatant from CAMs induced a significant increase in proliferation and migration, while it suppressed apoptosis, in MGC-803 and BGC-823 gastric cancer cells. Notably, application of an inhibitory IL-10 antibody partially blocked the cell culture supernatant of CAM-induced oncogenic effects. RNA-sequencing analysis was then performed to identify the differentially expressed genes in MGC-803 cells treated with IL-10. Based on the sequencing results and in vitro analysis, it was demonstrated that IL-10-induced carcinogenic behaviors in MGC-803 cells were potentially mediated by activation of the c-Met/STAT3 signaling pathway. In conclusion, the present results demonstrated that IL-10 secreted by CAMs may be involved in the pathogenesis of gastric cancer, suggesting that IL-10 may serve as a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Ling Chen
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Yuntao Shi
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Xiaojuan Zhu
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Weiwei Guo
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Mingjiong Zhang
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Ying Che
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Lijuan Tang
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Xiaozhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Qiang You
- Department of Biotherapy, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Zheng Liu
- Institute of Digestive Endoscopy and Medical Center for Digestive Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
18
|
Wang Y, Wang G, Ma Y, Teng J, Wang Y, Cui Y, Dong Y, Shao S, Zhan Q, Liu X. FAT1, a direct transcriptional target of E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Chin J Cancer Res 2019; 31:609-619. [PMID: 31564804 PMCID: PMC6736659 DOI: 10.21147/j.issn.1000-9604.2019.04.05] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Growing evidence indicates that FAT atypical cadherin 1 (FAT1) has aberrant genetic alterations and exhibits potential tumor suppressive function in esophageal squamous cell carcinoma (ESCC). However, the role of FAT1 in ESCC tumorigenesis remains not well elucidated. The aim of this study was to further investigate genetic alterations and biological functions of FAT1, as well as to explore its transcriptional regulation and downstream targets in ESCC. Methods The mutations of FAT1 in ESCC were achieved by analyzing a combined study from seven published genomic data, while the copy number variants of FAT1 were obtained from an analysis of our previous data as well as of The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) databases using the cBioPortal. The transcriptional regulation of FAT1 expression was investigated by chromatin immunoprecipitation (ChIP) and the luciferase reporter assays. In-cell western, Western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to assess the indicated gene expression. In addition, colony formation and Transwell migration/invasion assays were employed to test cell proliferation, migration and invasion. Finally, RNA sequencing was used to study the transcriptomes. Results FAT1 was frequently mutated in ESCC and was deleted in multiple cancers. Furthermore, the transcription factor E2F1 occupied the promoter region of FAT1, and depletion of E2F1 led to a decrease in transcription activity and mRNA levels of FAT1. Moreover, we found that knockdown of FAT1 promoted KYSE30 and KYSE150 cell proliferation, migration and invasion; while overexpression of FAT1 inhibited KYSE30 and KYSE410 cell proliferation, migration and invasion. In addition, knockdown of FAT1 led to enrichment of the mitogen-activated protein kinase (MAPK) signaling pathway and cell adhesion process. Conclusions Our data provided evidence for the tumor suppressive function of FAT1 in ESCC cells and elucidated the transcriptional regulation of FAT1 by E2F1, which may facilitate the understanding of molecular mechanisms of the progression of ESCC.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Guangchao Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yunping Ma
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Jinglei Teng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongping Cui
- Shenzhen Peking University-The Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yan Dong
- College of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Shujuan Shao
- Key Laboratory of Proteomics, Dalian Medical University, Dalian 116044, China
| | - Qimin Zhan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xuefeng Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
19
|
Effects of VEGFR1 + hematopoietic progenitor cells on pre-metastatic niche formation and in vivo metastasis of breast cancer cells. J Cancer Res Clin Oncol 2018; 145:411-427. [PMID: 30483898 PMCID: PMC6373264 DOI: 10.1007/s00432-018-2802-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The pre-metastatic niche has been shown to play a critical role in tumor metastasis, and its formation is closely related to the tumor microenvironment. However, the underlying molecular mechanisms remain unclear. In the present study, we successfully established a mouse model of lung metastasis using luciferase-expressing MDA-MB-435s cells. In this model, recruitment of vascular endothelial growth factor receptor-1 (VEGFR1)+CD133+ hematopoietic progenitor cells (HPCs) was gradually increased in lung but gradually decreased after the formation of tumor colonies in lung. We also established a highly metastatic MDA-MB-435s (MDA-MB-435s-HM) cell line from the mouse model. Changes in protein profiles in different culture conditions were investigated by protein microarray analysis. The levels of CXC chemokine ligand 16, interleukin (IL)-2Rα, IL-2Rγ, matrix metalloproteinase (MMP)-1, MMP-9, platelet-derived growth factor receptor (PDGFR)-α, stromal cell-derived factor (SDF)-1α, transforming growth factor (TGF)-β, platelet endothelial cell adhesion molecule (PECAM)-1 and vascular endothelial (VE)-cadherin were significantly greater (> fivefold) in the culture medium from MDA-MB-435s-HM cells than in that from MDA-MB-435s cells. Moreover, the levels of MMP-9, PDGFR-α, and PECAM-1 were significantly greater in the co-culture medium of MDA-MB-435s-HM cells and CD133+ HPCs than in that from MDA-MB-435s-HM cells. Differentially expressed proteins were validated by enzyme-linked immunosorbent assay, and expression of their transcripts was confirmed by quantitative real-time polymerase chain reaction. Moreover, inhibition of MMP-9, PDGFR-α, and PECAM-1 by their specific inhibitors or antibodies significantly decreased cell migration, delayed lung metastasis, and decreased recruitment of VEGFR1+CD133+ HPCs into lung. Intra-hepatic growth of HPCs enhanced the invasive growth of MDA-MB-435s-HM cells in the liver. Our data indicate that VEGFR1+CD133+ HPCs contribute to lung metastasis.
Collapse
|
20
|
Ojalill M, Parikainen M, Rappu P, Aalto E, Jokinen J, Virtanen N, Siljamäki E, Heino J. Integrin α2β1 decelerates proliferation, but promotes survival and invasion of prostate cancer cells. Oncotarget 2018; 9:32435-32447. [PMID: 30197754 PMCID: PMC6126696 DOI: 10.18632/oncotarget.25945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/21/2018] [Indexed: 01/03/2023] Open
Abstract
High expression level of integrin α2β1 is a hallmark of prostate cancer stem cell like cells. The role of this collagen receptor is controversial since it is down regulated in poorly differentiated carcinomas, but concomitantly proposed to promote metastasis. Here, we show that docetaxel resistant DU145 prostate cancer cells express high levels of α2β1 and that α2β1High subpopulation of DU145 cells proliferates slower than the cells representing α2β1Low subpopulation. To further study this initial observation we used Crispr/Cas9 technology to create an α2β1 negative DU145 cell line. Furthermore, we performed rescue experiment by transfecting α2 knockout cells with vector carrying α2 cDNA or with an empty vector for appropriate control. When these two cell lines were compared, α2β1 positive cells proliferated slower, were more resistant to docetaxel and also migrated more effectively on collagen and invaded faster through matrigel or collagen. Integrin α2β1 was demonstrated to be a positive regulator of p38 MAPK phosphorylation and a selective p38 inhibitor (SB203580) promoted proliferation and inhibited invasion. Effects of α2β1 integrin on the global gene expression pattern of DU145 cells in spheroid cultures were studied by RNA sequencing. Integrin α2β1 was shown to regulate several cancer progression related genes, most notably matrix metalloproteinase-1 (MMP-1), a recognized invasion promoting protein. To conclude, the fact that α2β1 decelerates cell proliferation may explain the dominance of α2β1 negative/low cells in primary sites of poorly differentiated carcinomas, while the critical role of α2β1 integrin in invasion stresses the importance of this adhesion receptor in cancer dissemination.
Collapse
Affiliation(s)
| | | | - Pekka Rappu
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Elina Aalto
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Johanna Jokinen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Noora Virtanen
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
22
|
Piao J, Sun J, Yang Y, Jin T, Chen L, Lin Z. Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis. Gene 2018; 647:306-311. [PMID: 29305979 DOI: 10.1016/j.gene.2018.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/16/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the major leading cause of cancer-related deaths worldwide. This study aims to explore molecular mechanism of NSCLC. METHODS Microarray dataset was obtained from the Gene Expression Omnibus (GEO) database, and analyzed by using GEO2R. Functional and pathway enrichment analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, STRING, Cytoscape and MCODE were applied to construct the Protein-protein interaction (PPI) network and screen hub genes. Following, overall survival (OS) analysis of hub genes was performed by using the Kaplan-Meier plotter online tool. Moreover, miRecords was also applied to predict the targets of the differentially expressed microRNAs (DEMs). RESULTS A total of 228 DEGs were identified, and they were mainly enriched in the terms of cell adhesion molecules, leukocyte transendothelial migration and ECM-receptor interaction. A PPI network was constructed, and 16 hub genes were identified, including TEK, ANGPT1, MMP9, VWF, CDH5, EDN1, ESAM, CCNE1, CDC45, PRC1, CCNB2, AURKA, MELK, CDC20, TOP2A and PTTG1. Among the genes, expressions of 14 hub genes were associated with prognosis of NSCLC patients. Additionally, a total of 11 DEMs were also identified. CONCLUSION Our results provide some potential underlying biomarkers for NSCLC. Further studies are required to elucidate the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Jie Sun
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Yang Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Tiefeng Jin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Liyan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China; Key Laboratory Nature Resources of Changbai Mountain & Functional Molecules, Ministry Education, Yanbian University, Yanji, 133002, Jilin, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China.
| |
Collapse
|