1
|
Pace PE, Fu L, Hampton MB, Winterbourn CC. Redox proteomic analysis of H 2O 2 -treated Jurkat cells and effects of bicarbonate and knockout of peroxiredoxins 1 and 2. Free Radic Biol Med 2025; 227:221-232. [PMID: 39489196 DOI: 10.1016/j.freeradbiomed.2024.10.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Oxidation of thiol proteins and redox signaling occur in cells exposed to H2O2 but mechanisms are unclear. We used redox proteomics to seek evidence of oxidation of specific proteins either by a mechanism involving reaction of H2O2 with CO2/bicarbonate to give the more reactive peroxymonocarbonate, or via a relay involving peroxiredoxins (Prdxs). Changes in oxidation state of specific Cys-SH residues on treating Jurkat T lymphoma cells with H2O2 were measured by isotopically labeling reduced thiols and analysis by mass spectrometry. The effects of bicarbonate and of knocking out either Prdx1 or Prdx2 were examined. Approximately 14,000 Cys-peptides were detected, of which ∼1 % underwent 2-10 fold loss in thiol content with H2O2. Those showing the most oxidation were not affected by the presence of bicarbonate or knockout of either Prdx. Consistent with previous evidence that bicarbonate potentiates inactivation of glyceraldehyde-3-phosphate dehydrogenase, the GAPDH active site Cys residues were significantly more sensitive to H2O2 when bicarbonate was present. Several other proteins were identified as promising candidates for further investigation. Although we identified some potential protein candidates for Prdx-dependent oxidation, most of the significant differences between KO and WT cells were seen in proteins for which H2O2 unexpectedly increased their CysSH content over untreated cells. We conclude that facilitation of protein oxidation by bicarbonate or Prdx-mediated relays is restricted to a small number of proteins and is insufficient to explain the majority of the oxidation of the cell thiols that occured in response to H2O2.
Collapse
Affiliation(s)
- Paul E Pace
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Mark B Hampton
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Christine C Winterbourn
- Mātai Hāora - Centre for Redox Biology & Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
2
|
Chen W, Wang H, Zhu K, Wang T, Yu W, Wu Q. Generation of the TSHSUi002-A induced pluripotent stem cell line from a patient with Peutz-Jeghers syndrome carring STK11 gene mutation. Stem Cell Res 2024; 81:103618. [PMID: 39603093 DOI: 10.1016/j.scr.2024.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
We report the derivation of an induced pluripotent stem cell (iPSC) line, designated TSHSUi002-A, from a patient with Peutz-Jeghers syndrome carrying a heterozygous c.909C>G mutation in the STK11 gene. The iPSCs were generated through the reprogramming of peripheral blood mononuclear cells using a non-integrating method involving episomal vectors expressing OCT4, SOX2, KLF4, BCL-XL, and c-MYC. These iPSCs exhibit pluripotency markers, are capable of differentiating into cells of all three germ layers in vitro, and maintain a normal karyotype.
Collapse
Affiliation(s)
- Weibo Chen
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongjuan Wang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| | - Kongxi Zhu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| | - Teng Wang
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| | - Weihua Yu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China
| | - Qiong Wu
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Paranal RM, Wood LD, Klein AP, Roberts NJ. Understanding familial risk of pancreatic ductal adenocarcinoma. Fam Cancer 2024; 23:419-428. [PMID: 38609521 PMCID: PMC11660179 DOI: 10.1007/s10689-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is the result of an accumulation of sequential genetic alterations. These genetic alterations can either be inherited, such as pathogenic germline variants that are associated with an increased risk of cancer, or acquired, such as somatic mutations that occur during the lifetime of an individual. Understanding the genetic basis of inherited risk of PDAC is essential to advancing patient care and outcomes through improved clinical surveillance, early detection initiatives, and targeted therapies. In this review we discuss factors associated with an increased risk of PDAC, the prevalence of genetic variants associated with an increased risk in patients with PDAC, estimates of PDAC risk in carriers of pathogenic germline variants in genes associated with an increased risk of PDAC. The role of common variants in pancreatic cancer risk will also be discussed.
Collapse
Affiliation(s)
- Raymond M Paranal
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Human Genetics Predoctoral Training Program, the McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| | - Nicholas J Roberts
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wang Y, Le Y, Harris KL, Chen Y, Li X, Faske J, Wynne RA, Mittelstaedt RA, Cao X, Miranda-Colon J, Elkins L, Muskhelishvili L, Davis K, Mei N, Sun W, Robison TW, Heflich RH, Parsons BL. Repeat treatment of organotypic airway cultures with ethyl methanesulfonate causes accumulation of somatic cell mutations without expansion of bronchial-carcinoma-specific cancer driver mutations. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503786. [PMID: 39054009 DOI: 10.1016/j.mrgentox.2024.503786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The human in vitro organotypic air-liquid-interface (ALI) airway tissue model is structurally and functionally similar to the human large airway epithelium and, as a result, is being used increasingly for studying the toxicity of inhaled substances. Our previous research demonstrated that DNA damage and mutagenesis can be detected in human airway tissue models under conditions used to assess general and respiratory toxicity endpoints. Expanding upon our previous proof-of-principle study, human airway epithelial tissue models were treated with 6.25-100 µg/mL ethyl methanesulfonate (EMS) for 28 days, followed by a 28-day recovery period. Mutagenesis was evaluated by Duplex Sequencing (DS), and clonal expansion of bronchial-cancer-specific cancer-driver mutations (CDMs) was investigated by CarcSeq to determine if both mutation-based endpoints can be assessed in the same system. Additionally, DNA damage and tissue-specific responses were analyzed during the treatment and following the recovery period. EMS exposure led to time-dependent increases in mutagenesis over the 28-day treatment period, without expansion of clones containing CDMs; the mutation frequencies remained elevated following the recovery. EMS also produced an increase in DNA damage measured by the CometChip and MultiFlow assays and the elevated levels of DNA damage were reduced (but not eliminated) following the recovery period. Cytotoxicity and most tissue-function changes induced by EMS treatment recovered to control levels, the exception being reduced proliferating cell frequency. Our results indicate that general, respiratory-tissue-specific and genotoxicity endpoints increased with repeat EMS dosing; expansion of CDM clones, however, was not detected using this repeat treatment protocol. DISCLAIMER: This article reflects the views of its authors and does not necessarily reflect those of the U.S. Food and Drug Administration. Any mention of commercial products is for clarification only and is not intended as approval, endorsement, or recommendation.
Collapse
Affiliation(s)
- Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Kelly L Harris
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jennifer Faske
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Rebecca A Wynne
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Roberta A Mittelstaedt
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lana Elkins
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Wei Sun
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Timothy W Robison
- Division of Pharmacology/Toxicology for Immunology & Inflammation, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
5
|
Liu J, Zeng SC, Wang A, Cheng HY, Zhang QJ, Lu GX. Two missense STK11 gene variations impaired LKB1/adenosine monophosphate-activated protein kinase signaling in Peutz-Jeghers syndrome. World J Gastrointest Oncol 2024; 16:1532-1546. [PMID: 38660671 PMCID: PMC11037055 DOI: 10.4251/wjgo.v16.i4.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Peutz-Jeghers syndrome (PJS) is a rare hereditary neoplastic disorder mainly associated with serine/threonine kinase 11 (STK11/LKB1) gene mutations. Preimplantation genetic testing can protect a patient's offspring from mutated genes; however, some variations in this gene have been interpreted as variants of uncertain significance (VUS), which complicate reproductive decision-making in genetic counseling. AIM To identify the pathogenicity of two missense variants and provide clinical guidance. METHODS Whole exome gene sequencing and Sanger sequencing were performed on the peripheral blood of patients with PJS treated at the Reproductive and Genetic Hospital of Citic-Xiangya. Software was employed to predict the protein structure, conservation, and pathogenicity of the two missense variation sites in patients with PJS. Additionally, plasmids were constructed and transfected into HeLa cells to observe cell growth. The differences in signal pathway expression between the variant group and the wild-type group were compared using western blot and immunohistochemistry. Statistical analysis was performed using one-way analysis of variance. P < 0.05 was considered statistically significant. RESULTS We identified two missense STK11 gene VUS [c.889A>G (p.Arg297Gly) and c.733C>T (p.Leu245Phe)] in 9 unrelated PJS families who were seeking reproductive assistance. The two missense VUS were located in the catalytic domain of serine/threonine kinase, which is a key structure of the liver kinase B1 (LKB1) protein. In vitro experiments showed that the phosphorylation levels of adenosine monophosphate-activated protein kinase (AMPK) at Thr172 and LKB1 at Ser428 were significantly higher in transfected variation-type cells than in wild-type cells. In addition, the two missense STK11 variants promoted the proliferation of HeLa cells. Subsequent immunohistochemical analysis showed that phosphorylated-AMPK (Thr172) expression was significantly lower in gastric, colonic, and uterine polyps from PJS patients with missense variations than in non-PJS patients. Our findings indicate that these two missense STK11 variants are likely pathogenic and inactivate the STK11 gene, causing it to lose its function of regulating downstream phosphorylated-AMPK (Thr172), which may lead to the development of PJS. The identification of the pathogenic mutations in these two clinically characterized PJS patients has been helpful in guiding them toward the most appropriate mode of pregnancy assistance. CONCLUSION These two missense variants can be interpreted as likely pathogenic variants that mediated the onset of PJS in the two patients. These findings not only offer insights for clinical decision-making, but also serve as a foundation for further research and reanalysis of missense VUS in rare diseases.
Collapse
Affiliation(s)
- Jin Liu
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410000, Hunan Province, China
- Scientific Research Department, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410000, Hunan Province, China
| | - Si-Cong Zeng
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410000, Hunan Province, China
- Scientific Research Department, Reproductive and Genetic Hospital of Citic-Xiangya, Changsha 410000, Hunan Province, China
| | - An Wang
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Hai-Ying Cheng
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Qian-Jun Zhang
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410000, Hunan Province, China
| | - Guang-Xiu Lu
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410000, Hunan Province, China
| |
Collapse
|
6
|
Zhou M, Jin Y, Zhu S, Xu C, Li L, Liu B, Shen J. A phase II study to evaluate the safety and efficacy of anlotinib combined with toripalimab for advanced biliary tract cancer. Clin Transl Immunology 2024; 13:e1483. [PMID: 38223257 PMCID: PMC10786709 DOI: 10.1002/cti2.1483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/10/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Objectives To assess the safety and efficacy of anlotinib (a multi-targeted tyrosine kinase inhibitor) combined with toripalimab (a PD-1 monoclonal antibody) in the treatment of unresectable biliary tract cancer (BTC). Methods In this prospective, single-arm, single-centre exploratory clinical study, patients with locally progressed or metastatic BTC were included. Patients were treated with anlotinib (12 mg, PO, QD, for 2 weeks and then stopped for a week, 21 days for a cycle) and toripalimab (240 mg, IV, Q3W). The primary endpoint of the study was the objective response rate (ORR), as defined in RECIST version 1.1 criteria. Results In this study, 15 BTC patients who met the criteria were enrolled. The ORR was 26.7%, the median progression-free survival (mPFS) was 8.6 months (95% CI: 2.1-15.2), the median overall survival (mOS) was 14.53 months (95% CI: 0.8-28.2) and the disease control rate (DCR) was 87.6%. A patient with hilar cholangiocarcinoma was successfully converted after three cycles of treatment and underwent surgical resection. Furthermore, patient gene sequencing revealed that STK11 was mutated more frequently in patients with poor outcomes. In addition, patients with a CD8/Foxp3 ratio > 3 had a longer survival than those with a CD8/Foxp3 ratio ≤ 3 (P = 0.0397). Conclusions In patients with advanced BTC, the combination of anlotinib and toripalimab demonstrated remarkable anti-tumor potential, with increased objective response rates (ORR), longer overall survival (OS) and progression-free survival (PFS). Moreover, STK11 and CD8/Foxp3 may be as biomarkers that can predict the effectiveness of targeted therapy in combination with immunotherapy.
Collapse
Affiliation(s)
- Mingzhen Zhou
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yuncheng Jin
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Sihui Zhu
- International Hospital Affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Chen Xu
- International Hospital Affiliated to Medical School of Nanjing UniversityNanjingChina
| | - Lin Li
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Baorui Liu
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Jie Shen
- Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
- Department of Precision Medicine, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
7
|
Sharma AE, Slack JC, Parra-Herran CE, Quade BJ, Shusterman S, Church AJ, Kolin DL, Carreon CK. STK11 Adnexal Tumor in an Adolescent Female: Diagnostic Pitfalls of a Recently Described Entity. Pediatr Dev Pathol 2023; 26:486-493. [PMID: 37334562 DOI: 10.1177/10935266231176681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
STK11 adnexal tumor is a recently described entity with less than 25 cases reported to date. These aggressive tumors typically occur in paratubal/paraovarian soft tissues, have characteristically striking morphologic and immunohistochemical heterogeneity, and harbor pathognomonic alterations in STK11. These occur almost exclusively in adult patients, with only one reported in a pediatric patient (to our knowledge). A previously healthy 16-year-old female presented with acute abdominal pain. Imaging studies revealed large bilateral solid and cystic adnexal masses, ascites, and peritoneal nodules. Following frozen section evaluation of a left ovarian surface nodule, bilateral salpingo-oophorectomy and tumor debulking were performed. Histologically, the tumor demonstrated distinctively variable cytoarchitecture, myxoid stroma, and mixed immunophenotype. A next generation sequencing-based assay identified a pathogenic STK11 mutation. We report the youngest patient to date with an STK11 adnexal tumor, highlighting key clinicopathologic and molecular features in order to contrast them with those of other pediatric intra-abdominal malignancies. This rare and unfamiliar tumor poses a considerable diagnostic challenge and requires a multidisciplinary integrated approach to diagnosis.
Collapse
Affiliation(s)
- Aarti E Sharma
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Jonathan C Slack
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Carlos E Parra-Herran
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Bradley J Quade
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Suzanne Shusterman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Alanna J Church
- Department of Pathology, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - David L Kolin
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
8
|
Balinisteanu I, Panzaru MC, Caba L, Ungureanu MC, Florea A, Grigore AM, Gorduza EV. Cancer Predisposition Syndromes and Thyroid Cancer: Keys for a Short Two-Way Street. Biomedicines 2023; 11:2143. [PMID: 37626640 PMCID: PMC10452453 DOI: 10.3390/biomedicines11082143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer predisposition syndromes are entities determined especially by germinal pathogenic variants, with most of them autosomal dominantly inherited. The risk of a form of cancer is variable throughout life and affects various organs, including the thyroid. Knowing the heterogeneous clinical picture and the existing genotype-phenotype correlations in some forms of thyroid cancer associated with these syndromes is important for adequate and early management of patients and families. This review synthesizes the current knowledge on genes and proteins involved in cancer predisposition syndromes with thyroid cancer and the phenomena of heterogeneity (locus, allelic, mutational, and clinical).
Collapse
Affiliation(s)
- Ioana Balinisteanu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.B.); (M.-C.U.)
- Endocrinology Department, “Sf. Spiridon” Hospital, 700106 Iasi, Romania
| | - Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Maria-Christina Ungureanu
- Endocrinology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.B.); (M.-C.U.)
- Endocrinology Department, “Sf. Spiridon” Hospital, 700106 Iasi, Romania
| | - Andreea Florea
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Ana Maria Grigore
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.F.); (E.V.G.)
| |
Collapse
|
9
|
CAI X, CAO Z, PAN J, ZHENG H. Transcription factor NFIC activates STK11 transcription to repress the proliferation, migration, and invasion of lung adenocarcinoma cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
10
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|