1
|
Moreno-Castaño AB, Fernández S, Ventosa H, Palomo M, Martinez-Sanchez J, Ramos A, Ortiz-Maldonado V, Delgado J, Fernández de Larrea C, Urbano-Ispizua A, Penack O, Nicolás JM, Téllez A, Escolar G, Carreras E, Fernández-Avilés F, Castro P, Diaz-Ricart M. Characterization of the endotheliopathy, innate-immune activation and hemostatic imbalance underlying CAR-T cell toxicities: laboratory tools for an early and differential diagnosis. J Immunother Cancer 2023; 11:jitc-2022-006365. [PMID: 37045474 PMCID: PMC10106034 DOI: 10.1136/jitc-2022-006365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell-based immunotherapy constitutes a revolutionary advance for treatment of relapsed/refractory hematological malignancies. Nevertheless, cytokine release and immune effector cell-associated neurotoxicity syndromes are life-threatening toxicities in which the endothelium could be a pathophysiological substrate. Furthermore, differential diagnosis from sepsis, highly incident in these patients, is challenging. Suitable laboratory tools could be determinant for their appropriate management. METHODS Sixty-two patients treated with CAR-T cell immunotherapy for hematological malignancies (n=46 with CD19-positive diseases, n=16 with multiple myeloma) were included. Plasma samples were obtained: before CAR-T cell infusion (baseline); after 24-48 hours; at suspicion of any toxicity onset and 24-48 hours after immunomodulatory treatment. Biomarkers of endothelial dysfunction (soluble vascular cell adhesion molecule 1 (sVCAM-1), soluble TNF receptor 1 (sTNFRI), thrombomodulin (TM), soluble suppression of tumorigenesis-2 factor (ST2), angiopoietin-2 (Ang-2)), innate immunity activation (neutrophil extracellular traps (NETs), soluble C5b-9 (sC5b-9)) and hemostasis/fibrinolysis (von Willebrand Factor antigen (VWF:Ag), ADAMTS-13 (A13), α2-antiplasmin (α2-AP), plasminogen activator inhibitor-1 antigen (PAI-1 Ag)) were measured and compared with those in cohorts of patients with sepsis and healthy donors. RESULTS Patients who developed CAR-T cell toxicities presented increased levels of sVCAM-1, sTNFRI and ST2 at the clinical onset versus postinfusion values. Twenty-four hours after infusion, ST2 levels were good predictors of any CAR-T cell toxicity, and combination of ST2, Ang-2 and NETs differentiated patients requiring intensive care unit admission from those with milder clinical presentations. Association of Ang-2, NETs, sC5b-9, VWF:Ag and PAI-1 Ag showed excellent discrimination between severe CAR-T cell toxicities and sepsis. CONCLUSIONS This study provides relevant contributions to the current knowledge of the CAR-T cell toxicities pathophysiology. Markers of endotheliopathy, innate immunity activation and hemostatic imbalance appear as potential laboratory tools for their prediction, severity and differential diagnosis.
Collapse
Affiliation(s)
- Ana Belen Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sara Fernández
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Helena Ventosa
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Marta Palomo
- Hematology External Quality Assessment Laboratory, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Alex Ramos
- Institut de Recerca Contra la Leucèmia Josep Carreras, Campus Clínic, Barcelona, Spain
| | - Valentín Ortiz-Maldonado
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Fernández de Larrea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Alvaro Urbano-Ispizua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Olaf Penack
- Hematology Department, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - J M Nicolás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Adrian Téllez
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Gines Escolar
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Enric Carreras
- Fundación Josep Carreras contra la Leucemia, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Hematology Department, Clinical Institute of Hematologic and Oncologic Diseases (ICMHO), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Castro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Intensive Care Unit, Clinical Institute of Medicine and Dermatology (ICMID), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Hematopathology, Pathology Department, Biomedical Diagnostic Center (CDB), Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Differences and similarities in endothelial and angiogenic profiles of preeclampsia and COVID-19 in pregnancy. Am J Obstet Gynecol 2022; 227:277.e1-277.e16. [PMID: 35351411 PMCID: PMC8957356 DOI: 10.1016/j.ajog.2022.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
Abstract
Background COVID-19 presents a spectrum of signs and symptoms in pregnant women that might resemble preeclampsia. Differentiation between severe COVID-19 and preeclampsia is difficult in some cases. Objective To study biomarkers of endothelial damage, coagulation, innate immune response, and angiogenesis in preeclampsia and COVID-19 in pregnancy in addition to in vitro alterations in endothelial cells exposed to sera from pregnant women with preeclampsia and COVID-19. Study Design Plasma and sera samples were obtained from pregnant women with COVID-19 infection classified into mild (n=10) or severe (n=9) and from women with normotensive pregnancies as controls (n=10) and patients with preeclampsia (n=13). A panel of plasmatic biomarkers was assessed, including vascular cell adhesion molecule-1, soluble tumor necrosis factor-receptor I, heparan sulfate, von Willebrand factor antigen (activity and multimeric pattern), α2-antiplasmin, C5b9, neutrophil extracellular traps, placental growth factor, soluble fms-like tyrosine kinase-1, and angiopoietin 2. In addition, microvascular endothelial cells were exposed to patients’ sera, and changes in the cell expression of intercellular adhesion molecule 1 on cell membranes and von Willebrand factor release to the extracellular matrix were evaluated through immunofluorescence. Changes in inflammation cell signaling pathways were also assessed by of p38 mitogen-activated protein kinase phosphorylation. Statistical analysis included univariate and multivariate methods. Results Biomarker profiles of patients with mild COVID-19 were similar to those of controls. Both preeclampsia and severe COVID-19 showed significant alterations in most circulating biomarkers with distinctive profiles. Whereas severe COVID-19 exhibited higher concentrations of vascular cell adhesion molecule-1, soluble tumor necrosis factor-α receptor I, heparan sulfate, von Willebrand factor antigen, and neutrophil extracellular traps, with a significant reduction of placental growth factor compared with controls, preeclampsia presented a marked increase in vascular cell adhesion molecule-1 and soluble tumor necrosis factor-α receptor I (significantly increased compared with controls and patients with severe COVID-19), with a striking reduction in von Willebrand factor antigen, von Willebrand factor activity, and α2-antiplasmin. As expected, reduced placental growth factor, increased soluble fms-like tyrosine kinase-1 and angiopoietin 2, and a very high soluble fms-like tyrosine kinase-1 to placental growth factor ratio were also observed in preeclampsia. In addition, a significant increase in C5b9 and neutrophil extracellular traps was also detected in preeclampsia compared with controls. Principal component analysis demonstrated a clear separation between patients with preeclampsia and the other groups (first and second components explained 42.2% and 13.5% of the variance), mainly differentiated by variables related to von Willebrand factor, soluble tumor necrosis factor-receptor I, heparan sulfate, and soluble fms-like tyrosine kinase-1. Von Willebrand factor multimeric analysis revealed the absence of von Willebrand factor high-molecular-weight multimers in preeclampsia (similar profile to von Willebrand disease type 2A), whereas in healthy pregnancies and COVID-19 patients, von Willebrand factor multimeric pattern was normal. Sera from both preeclampsia and severe COVID-19 patients induced an overexpression of intercellular adhesion molecule 1 and von Willebrand factor in endothelial cells in culture compared with controls. However, the effect of preeclampsia was less pronounced than the that of severe COVID-19. Immunoblots of lysates from endothelial cells exposed to mild and severe COVID-19 and preeclampsia sera showed an increase in p38 mitogen-activated protein kinase phosphorylation. Patients with severe COVID-19 and preeclampsia were statistically different from controls, suggesting that both severe COVID-19 and preeclampsia sera can activate inflammatory signaling pathways. Conclusion Although similar in in vitro endothelial dysfunction, preeclampsia and severe COVID-19 exhibit distinctive profiles of circulating biomarkers related to endothelial damage, coagulopathy, and angiogenic imbalance that could aid in the differential diagnosis of these entities.
Collapse
|
3
|
Bowyer AE, Goodfellow KJ, Seidel H, Westhofen P, Stufano F, Goodeve A, Kitchen S, Makris M. Evaluation of a semi-automated von Willebrand factor multimer assay, the Hydragel 5 von Willebrand multimer, by two European Centers. Res Pract Thromb Haemost 2018; 2:790-799. [PMID: 30349898 PMCID: PMC6178608 DOI: 10.1002/rth2.12141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/14/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The phenotypic diagnosis of von Willebrand disease (VWD) is a multistep process with classification dependent on the quantification of von Willebrand factor (VWF) multimeric structure. VWF multimer analysis is a technically challenging, lengthy and non-standardised assay, usually performed in specialist laboratories. Recently, a new semi-automated multimer assay, the Hydragel 5 von Willebrand multimers (H5VWM) has become available. OBJECTIVES This study, performed in two European centres, compared existing in-house multimer assays to the H5VWM in individuals with and without VWD. RESULTS Overall agreement of 91.1% was observed in 74 individuals with normal VWF levels, 57 patients grouped as type 1 VWD, 33 type 2A, 16 type 2B, 28 type 2M, 11 type 2N. Patients tested following Desmopressin or VWF concentrate, with thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome were also evaluated. Many of the discrepancies between methods were in patients with genetic mutations linked to more than one type of VWD including p.R1374C/H and p.R1315C. Quantifiable multimer results were available within one working day. Densitometry improved the interpretation of the multimers with slight structural variations that were not apparent by visual inspection of the in-house method. CONCLUSIONS 5VWM was a rapid, sensitive, standardised assay which used existing technology and could be included as an initial screen of VWF multimers in a VWD diagnostic algorithm in conjunction with traditional multimer analysis.
Collapse
Affiliation(s)
- Annette E. Bowyer
- Department of CoagulationSheffield Haemophilia and Thrombosis CentreSheffieldUK
| | - Karen J. Goodfellow
- Department of CoagulationSheffield Haemophilia and Thrombosis CentreSheffieldUK
| | - Holger Seidel
- Centrum für Blutgerinnungsstörungen und TransfusionsmedizinBonnGermany
| | - Philipp Westhofen
- Centrum für Blutgerinnungsstörungen und TransfusionsmedizinBonnGermany
| | - Francesca Stufano
- Angelo Bianchi Bonomi Hemophilia and Thrombosis CenterFondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico and Luigi Villa FoundationMilanItaly
| | - Anne Goodeve
- Department of Infection, Immunity and Cardiovascular DiseaseUniversity of Sheffield Medical SchoolSheffieldUK
| | - Stephen Kitchen
- Angelo Bianchi Bonomi Hemophilia and Thrombosis CenterFondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico and Luigi Villa FoundationMilanItaly
| | - Michael Makris
- Department of CoagulationSheffield Haemophilia and Thrombosis CentreSheffieldUK
| |
Collapse
|
5
|
Cid J, Caballo C, Pino M, Galan AM, Martínez N, Escolar G, Diaz-Ricart M. Quantitative and qualitative analysis of coagulation factors in cryoprecipitate prepared from fresh-frozen plasma inactivated with amotosalen and ultraviolet A light. Transfusion 2012; 53:600-5. [PMID: 22738354 DOI: 10.1111/j.1537-2995.2012.03763.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND There were no previous studies about the quality of cryoprecipitate prepared from fresh-frozen plasma (FFP) inactivated with amotosalen and ultraviolet A (UVA) light. The aim of this study was to analyze the quantity and quality of coagulation factors in cryoprecipitate prepared from FFP treated with amotosalen and UVA light. STUDY DESIGN AND METHODS FFP was obtained from whole blood donations and inactivated with amotosalen and UVA light according to the manufacturer's instructions. Fibrinogen, factor VIII (FVIII), von Willebrand factor antigen (VWF:Ag) and activity (VWF:RCo), the von Willebrand factor cleavage protease activity (ADAMTS-13), and the multimeric structure of VWF were analyzed. RESULTS The content of fibrinogen, FVIII, and ADAMTS-13 was lower in cryoprecipitates prepared from amotosalen-treated plasma when compared with cryoprecipitates prepared from nontreated plasma (35, 40, and 18% loss, respectively). The quantity and quality of VWF as well as VWF multimer patterns were not affected by the inactivation method. CONCLUSION Cryoprecipitates prepared from amotosalen-treated FFP contained significantly reduced levels of fibrinogen, FVIII, and ADAMTS-13. However, the VWF quantity and quality was well preserved.
Collapse
Affiliation(s)
- Joan Cid
- Hemotherapy-Hemostasis Department, CDB, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ott HW, Griesmacher A, Schnapka-Koepf M, Golderer G, Sieberer A, Spannagl M, Scheibe B, Perkhofer S, Will K, Budde U. Analysis of von Willebrand factor multimers by simultaneous high- and low-resolution vertical SDS-agarose gel electrophoresis and Cy5-labeled antibody high-sensitivity fluorescence detection. Am J Clin Pathol 2010; 133:322-30. [PMID: 20093243 DOI: 10.1309/ajcpzsbtd2bwomvl] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Analysis of von Willebrand factor (vWF) multimers allows classification of the subtypes of von Willebrand disease (vWD) in human serum and platelet lysates. A novel method for multimer analysis of vWF by 2-chamber, vertical (sodium dodecyl sulfate), agarose gel electrophoresis, designed for comparing discontinuous high- and low-resolving gels for plasma and platelets, followed by Western blotting and high-sensitivity fluorescence detection (HSFD) of cyanine (Cy)5-labeled vWF multimers is presented. HSFD shows that this method has high discriminatory power for visualization and densitometric analysis of platelets and plasma vWF multimers in various types of vWD and allows rapid classification of vWD types, to separate types 2A and 2B. The described procedures of vWF multimer analysis with high-sensitivity Cy5 fluorescence detection and direct comparison of high- and low-resolving gels for screening and detection of the complete range of high- and low-molecular vWF multimers is efficient and useful for screening, detecting, and classifying vWD subtypes and makes this method diagnostically and clinically relevant.
Collapse
|
9
|
Lea JP, Ertoy D, Hollis JL, Marrero MB, Sands JM. Immunolocalization of phospholipase C isoforms in rat kidney. Kidney Int 1998; 54:1484-90. [PMID: 9844124 DOI: 10.1046/j.1523-1755.1998.00141.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Phospholipase C (PLC) is an important factor in signal transduction because this enzyme is activated by several hormones and growth factors. Eight PLC isoforms have been described raising the possibility that different cells express a single isoform or activate specific isoforms in different cells. Therefore, the goal of this study was to determine which PLC isoforms are expressed in specific regions of rat kidney. METHODS Western blot analysis was performed in microdissected nephron segments of rat kidney, while immunohistochemical analysis was performed on whole rat kidney slices using PLC isoform-specific antibodies. RESULTS All three families of PLC isoforms (beta, gamma, and delta) were present throughout the cortical and medullary regions of the kidney. Only the PLC-beta1 isoform was observed in the brush border of the proximal tubule, but all isoforms were present in glomeruli and in the cytoplasm of tubular epithelial cells. In addition, only the PLC-gamma1 isoform was expressed in the internal elastic lamina of the renal artery, while vasa recta expressed PLC-beta1 most intensely. Medullary thick ascending limbs showed an intense level of expression of all three isoforms. CONCLUSION Multiple PLC isoforms are present in glomeruli, renal tubules, and renal vasculature in vivo, but with some segment-specific differences. These findings suggest that the response of a specific cell is not determined by expression of only one PLC isoform, with the exception of the brush border of the proximal tubule and the renal arteries. Instead, the presence of multiple PLC isoforms in specific regions of the kidney suggests that hormonal regulation in vivo involves mechanisms beyond cell-specific isoforms of PLC.
Collapse
Affiliation(s)
- J P Lea
- Renal Division, Department of Medicine, Department of Pathology, and The Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
11
|
Lea JP, Sands JM, McMahon SJ, Tumlin JA. Evidence that the inhibition of Na+/K(+)-ATPase activity by FK506 involves calcineurin. Kidney Int 1994; 46:647-52. [PMID: 7527873 DOI: 10.1038/ki.1994.317] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We reported that cyclosporin A (CsA) inhibits Na+/K(+)-ATPase activity in specific segments of the rat nephron. In this study, we tested the hypothesis that cyclosporin A reduces Na+/K(+)-ATPase activity through inhibition of calcineurin. In T cells, cyclosporin A and FK506 bind to immunophilins and inhibit the phosphatase activity of calcineurin; Rapamycin and SDZ 220-384 also bind to immunophilins but do not change calcineurin activity. Na+/K(+)-ATPase activity was measured in microdissected rat proximal tubule (S2 subsegment), medullary thick ascending limb (mTAL), and cortical collecting duct (CCD). First we found that two inhibitors of calcineurin, pentafluorophenol (PFP, 100 mM) and peptide 412 (1 mM), significantly reduced Na+/K(+)-ATPase activity in the CCD by 78% and 70%, respectively. In CCDs, FK506 inhibited Na+/K(+)-ATPase activity by 61 to 85% at concentrations of 1.5 to 6 ng/ml, but not at 0.5 ng/ml. FK506 (6 ng/ml) inhibited Na+/K(+)-ATPase activity in mTALs by 56% but did not inhibit it in S2s or glomeruli. In contrast, Rapamycin (12.5 ng/ml) did not change Na+/K(+)-ATPase activity in CCDs or mTALs, but at a concentration of 12.5 micrograms/ml did block the inhibitory effect of FK506 (6 ng/ml) in both segments. SDZ 220-384 (600 ng/ml) did not change Na+/K(+)-ATPase activity in CCDs. Thus, in CCDs and mTALs: (1) FK506, like cyclosporin A, inhibits Na+/K(+)-ATPase activity; (2) Rapamycin and SDZ 220-384 do not inhibit Na+/K(+)-ATPase activity; and (3) Rapamycin prevents FK506-induced inhibition of Na+/K(+)-ATPase activity. These responses may be explained by a direct inhibition of calcineurin activity yielding lower Na+/K(+)-ATPase activity in CCDs and mTALs.
Collapse
Affiliation(s)
- J P Lea
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | |
Collapse
|