1
|
High Incidence of Thyroid Cancer in Southern Tuscany (Grosseto Province, Italy): Potential Role of Environmental Heavy Metal Pollution. Biomedicines 2023; 11:biomedicines11020298. [PMID: 36830835 PMCID: PMC9953479 DOI: 10.3390/biomedicines11020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The incidence of thyroid cancer (TC) in Italy is one of the highest in Europe, and the reason for this is unclear. The intra-country heterogeneity of TC incidence suggests the possibility of an overdiagnosis phenomenon, although environmental factors cannot be excluded. The aim of our study is to evaluate the TC incidence trend in southern Tuscany, Italy, an area with particular geological characteristics, where the pollution and subsequent deterioration of various environmental matrices with potentially toxic elements (heavy metals) introduced from either geological or anthropogenic (human activities) sources are documented. The Tuscany cancer registry (ISPRO) provided us with the number of cases and EU standardized incidence rates (IR) of TC patients for all three provinces of southeast Tuscany (Siena, Grosseto, Arezzo) during the period of 2013-2016. In addition, we examined the histological records of 226 TC patients. We observed that the TC incidence rates for both sexes observed in Grosseto Province were significantly higher than those observed in the other two provinces. The increase was mostly due to the papillary (PTC) histotype (92% of cases), which presented aggressive variants in 37% of PTCs and tumor diameters more than 1 cm in 71.3% of cases. We demonstrated a high incidence of TC in Grosseto province, especially among male patients, that could be influenced by the presence of environmental heavy metal pollution.
Collapse
|
2
|
Cech R, Zaller JG, Lyssimachou A, Clausing P, Hertoge K, Linhart C. Pesticide drift mitigation measures appear to reduce contamination of non-agricultural areas, but hazards to humans and the environment remain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158814. [PMID: 36115411 DOI: 10.1016/j.scitotenv.2022.158814] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 05/12/2023]
Abstract
Pesticide drift onto non-agricultural land is a common problem in intensively farmed regions, and national action plans have been established across Europe to prevent it. Here, we analyzed official data on pesticide residues in grass samples collected over six years to determine whether implemented measures to reduce pesticide drift were effective. We used 306 samples collected between 2014 and 2020 on non-agricultural land in one of the most intensively managed apple and wine growing regions in Europe, the Autonomous Province of Bolzano-South Tyrol, Italy. Samples were analyzed for up to 314 substances by gas chromatography and mass spectrometry. Percentage of sites with multiple pesticides and number of pesticides decreased between 2014 and 2020. Fungicides were most often detected, with fluazinam found on 74 % and captan on 60 % of the contaminated sites (53 sites out of a total of 88 sites were contaminated). The most frequently found insecticide, phosmet, was detected in 49 % of the contaminated sites. Only one herbicide, oxadiazon, was detected in <1 % of the sites; glyphosate was not analyzed. The percentage of residues with human hazard properties increased significantly across years regarding reproductive toxicity (from 21 % of the detected substances in 2014 to 88 % in 2020) and specific target organ toxicity (0 % in 2014 to 21 % in 2020). Percentages of substances associated with endocrine-disruption (89 % of substances across years) or carcinogenic properties (45 % of substances across years) remained constant. The percentage of sites where concentrations in grass samples exceeded the surrogate maximum residue levels (MRLs) for lettuce also remained constant. Potential ecotoxicological hazards of detected residues regarding acute contact toxicity to honeybees remained high over the study years, while the acute and chronic toxicity to earthworms decreased. Our results suggest that while drift mitigation measures contributed some reduction in pesticide contamination, they were not sufficient to eliminate substantial risks to human health and the environment in nontarget areas.
Collapse
Affiliation(s)
- Ramona Cech
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria.
| | - Angeliki Lyssimachou
- Health and Environment Alliance (HEAL), Rue de la Charité 22, B-1210 Bruxelles, Belgium
| | - Peter Clausing
- Pesticide Action Network Germany, Nernstweg 32, 22765 Hamburg, Germany
| | - Koen Hertoge
- Pesticide Action Network Europe, 67 Rue de la Pacification, 1000 Brussels, Belgium
| | - Caroline Linhart
- Pesticide Action Network Europe, 67 Rue de la Pacification, 1000 Brussels, Belgium
| |
Collapse
|
3
|
Burtscher-Schaden H, Durstberger T, Zaller JG. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. TOXICS 2022; 10:toxics10120753. [PMID: 36548586 PMCID: PMC9783316 DOI: 10.3390/toxics10120753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 05/06/2023]
Abstract
There is much debate about whether the (mostly synthetic) pesticide active substances (AS) in conventional agriculture have different non-target effects than the natural AS in organic agriculture. We evaluated the official EU pesticide database to compare 256 AS that may only be used on conventional farmland with 134 AS that are permitted on organic farmland. As a benchmark, we used (i) the hazard classifications of the Globally Harmonized System (GHS), and (ii) the dietary and occupational health-based guidance values, which were established in the authorization procedure. Our comparison showed that 55% of the AS used only in conventional agriculture contained health or environmental hazard statements, but only 3% did of the AS authorized for organic agriculture. Warnings about possible harm to the unborn child, suspected carcinogenicity, or acute lethal effects were found in 16% of the AS used in conventional agriculture, but none were found in organic agriculture. Furthermore, the establishment of health-based guidance values for dietary and non-dietary exposures were relevant by the European authorities for 93% of conventional AS, but only for 7% of organic AS. We, therefore, encourage policies and strategies to reduce the use and risk of pesticides, and to strengthen organic farming in order to protect biodiversity and maintain food security.
Collapse
Affiliation(s)
- Helmut Burtscher-Schaden
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070 Vienna, Austria
- Correspondence:
| | - Thomas Durstberger
- Umweltforschungsinstitut & Umweltorganisation Global 2000 (Friends of the Earth Austria), Neustiftgasse 36, 1070 Vienna, Austria
| | - Johann G. Zaller
- Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor Mendel Straße 33, 1180 Vienna, Austria
| |
Collapse
|
4
|
Zaller JG, Kruse-Plaß M, Schlechtriemen U, Gruber E, Peer M, Nadeem I, Formayer H, Hutter HP, Landler L. Pesticides in ambient air, influenced by surrounding land use and weather, pose a potential threat to biodiversity and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156012. [PMID: 35597361 PMCID: PMC7614392 DOI: 10.1016/j.scitotenv.2022.156012] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
Little is known about (i) how numbers and concentrations of airborne pesticide residues are influenced by land use, interactions with meteorological parameters, or by substance-specific chemo-physical properties, and (ii) what potential toxicological hazards this could pose to non-target organisms including humans. We installed passive air samplers (polyurethane PUF and polyester PEF filter matrices) in 15 regions with different land uses in eastern Austria for up to 8 months. Samples were analyzed for 566 substances by gas-chromatography/mass-spectrometry. We analyzed relationships between frequency and concentrations of pesticides, land use, meteorological parameters, substance properties, and season. We found totally 67 pesticide active ingredients (24 herbicides, 30 fungicides, 13 insecticides) with 10-53 pesticides per site. Herbicides metolachlor, pendimethalin, prosulfocarb, terbuthylazine, and the fungicide HCB were found in all PUF samplers, and glyphosate in all PEF samplers; chlorpyrifos-ethyl was the most abundant insecticide found in 93% of the samplers. Highest concentrations showed the herbicide prosulfocarb (725 ± 1218 ng sample-1), the fungicide folpet (412 ± 465 ng sample-1), and the insecticide chlorpyrifos-ethyl (110 ± 98 ng sample-1). Pesticide numbers and concentrations increased with increasing proportions of arable land in the surroundings. However, pesticides were also found in two National Parks (10 and 33 pesticides) or a city center (17 pesticides). Pesticide numbers and concentrations changed between seasons and correlated with land use, temperature, radiation, and wind, but were unaffected by substance volatility. Potential ecotoxicological exposure of mammals, birds, earthworms, fish, and honeybees increased with increasing pesticide numbers and concentrations. Human toxicity potential of detected pesticides was high, with averaged 54% being acutely toxic, 39% reproduction toxic, 24% cancerogenic, and 10% endocrine disrupting. This widespread pesticide air pollution indicates that current environmental risk assessments, field application techniques, protective measures, and regulations are inadequate to protect the environment and humans from potentially harmful exposure.
Collapse
Affiliation(s)
- Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria.
| | - Maren Kruse-Plaß
- TIEM Integrated Environmental Monitoring, 95615 Marktredwitz, Germany
| | - Ulrich Schlechtriemen
- TIEM Integrated Environmental Monitoring, Hohenzollernstr. 20, 44135 Dortmund, Germany
| | - Edith Gruber
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Maria Peer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Imran Nadeem
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Herbert Formayer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Water, Atmosphere and Environment, Institute of Meteorology and Climatology, Peter-Jordan Straße 82, 1180 Vienna, Austria
| | - Hans-Peter Hutter
- Department of Environmental Health, Center for Public Health, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Lukas Landler
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| |
Collapse
|
5
|
Weisenburger DD. A Review and Update with Perspective of Evidence that the Herbicide Glyphosate (Roundup) is a Cause of Non-Hodgkin Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2021; 21:621-630. [PMID: 34052177 DOI: 10.1016/j.clml.2021.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/26/2023]
Abstract
Glyphosate-based formulations (GBFs), such as Roundup, are the most heavily used herbicides in the world. In 2015, the International Agency for Research on Cancer (IARC) concluded that glyphosate and GBFs are probably carcinogenic to humans (group 2A), mainly for non-Hodgkin lymphoma (NHL). However, this finding has been controversial, and most pesticide regulatory agencies have not followed their lead. The purpose of this review was to examine the scientific literature linking exposure to glyphosate and GBFs to the development of NHL, with emphasis on new findings since publication of the IARC report. The epidemiologic studies provide ample evidence for an association between exposure to GBFs and an increased risk of NHL. Animal studies have shown that glyphosate is carcinogenic in rodents and causes NHL in mice. Mechanistic studies have demonstrated that glyphosate and GBFs are genotoxic to human lymphocytes, the normal cell of origin of NHL, both in vitro and in vivo. Genotoxic and other biological effects have also been shown in various animal and cell models with these agents even at low doses. A novel mechanism underlying the specificity of glyphosate for NHL, that is upregulation of the B-cell genome mutator enzyme activation-induced cytidine deaminase, has recently been demonstrated. These findings were evaluated holistically using the guidelines for evaluation of general causation set forth by Bradford Hill. This evaluation provides coherent and compelling evidence that glyphosate and GBFs are a cause of NHL in humans exposed to these agents. These findings should prompt new reviews by pesticide regulatory agencies around the world.
Collapse
|
6
|
|
7
|
The EU endocrine disruptors' regulation and the glyphosate controversy. Toxicol Rep 2021; 8:1193-1199. [PMID: 34150528 PMCID: PMC8193069 DOI: 10.1016/j.toxrep.2021.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Endocrine disruptors are compounds that alter the functioning of the endocrine system of humans and wildlife. Regulation 2017/2100 and Regulation 2018/605. Glyphosate as Endocrine Disruptor. EU EDs Regulation and pesticide legislation.
Endocrine disruptors are compounds that alter the functioning of the endocrine system of humans and wildlife. A large number of chemicals have been identified as EDs and humans can be exposed to them through dietary and/or environmental exposure (air, water, soil). At international level, scientific discussion on the topic of EDs focuses on the issue of setting out the scientific criteria according to which the key properties of these substances that render them EDs are determined. Regulatory action in EU has been impacted by the aforementioned discussion and, in particular, Regulation 2017/2100 and Regulation 2018/605 have been issued. However, these scientific criteria do not constitute a complete framework for the detection of EDs and, therefore, their adoption does not entail a fully effective human health protection. Moreover, glyphosate-based herbicides (GBH), are the most widely used pesticides worldwide. The glyphosate controversy turned the spotlight on pesticide regulation in the EU. The disagreement between IARC and regulatory evaluations of EFSA/ECHA has received great attention of citizens, organizations and stakeholders, as a result of methodological differences in the evaluation of the available evidence have been identified. This paper outlines the glyphosate controversy, following an overview of the EU EDs Regulation and pesticide legislation.
Collapse
|
8
|
Sortino AL, Censabella M, Munzi G, Boninelli S, Privitera V, Ruffino F. Laser-Based Synthesis of Au Nanoparticles for Optical Sensing of Glyphosate: A Preliminary Study. MICROMACHINES 2020; 11:E989. [PMID: 33142922 PMCID: PMC7693313 DOI: 10.3390/mi11110989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
Nowadays, gold nanoparticles Au nanoparticles (AuNPs) capture great interest due to their chemical stability, optical properties and biocompatibility. The success of technologies based on the use of AuNPs implies the development of simple synthesis methods allowing, also, the fine control over their properties (shape, sizes, structure). Here, we present the AuNPs fabrication by nanosecond pulsed laser ablation in citrate-solution, that has the advantage of being a simple, economic and eco-sustainable method to fabricate colloidal solutions of NPs. We characterized the stability and the absorbance of the solutions by Ultraviolet-Visible (UV-Vis) spectroscopy and the morphology of the AuNPs by Transmission Electron Microscopy. In addition, we used the AuNPs solutions as colorimetric sensor to detect the amount of glyphosate in liquid. Indeed, glyphosate is one of the most widely used herbicides which intensive use represents a risk to human health. The glyphosate presence in the colloidal AuNPs solutions determines the aggregation of the AuNPs causing the change in the color of the solution. The variation of the optical properties of the colloidal solutions versus the concentration of glyphosate is studied.
Collapse
Affiliation(s)
- Antonella Laura Sortino
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
| | - Maria Censabella
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, via S. Sofia 64, 95123 Catania, Italy;
| | - Gabriella Munzi
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Simona Boninelli
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
| | - Vittorio Privitera
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
| | - Francesco Ruffino
- CNR-IMM (Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e i Microsistemi) via S. Sofia 64, 95123 Catania, Italy; (A.L.S.); (S.B.); (V.P.)
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, via S. Sofia 64, 95123 Catania, Italy;
| |
Collapse
|
9
|
Rettke D, Döring J, Martin S, Venus T, Estrela-Lopis I, Schmidt S, Ostermann K, Pompe T. Picomolar glyphosate sensitivity of an optical particle-based sensor utilizing biomimetic interaction principles. Biosens Bioelectron 2020; 165:112262. [PMID: 32510337 DOI: 10.1016/j.bios.2020.112262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023]
Abstract
The continually growing use of glyphosate and its critically discussed health and biodiversity risks ask for fast, low cost, on-site sensing technologies for food and water. To address this problem, we designed a highly sensitive sensor built on the remarkably specific recognition of glyphosate by its physiological target enzyme 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPs). This principle is implemented in an interferometric sensor by using the recently established soft colloidal probe (SCP) technique. EPSPs was site-specifically immobilized on a transparent surface utilizing the self-assembling properties of circadian clock gene 2 hydrophobin chimera and homogeneity of the layer was evidenced by atomic force microscopy. Exposure of the enzyme decorated biochip to glyphosate containing samples causes formation of enzyme-analyte complexes and a competitive loss of available binding sites for glyphosate-functionalized poly(ethylene glycol) SCPs. Functionalization of the SCPs with different types of linker molecules and glyphosate was assessed employing confocal laser scanning microscopy as well as confocal Raman microspectroscopy. Overall, reflection interference contrast microscopy analysis of SCP-biochip interactions revealed a strong influence of linker length and glyphosate coupling position on the sensitivity of the sensor. In employing a combination of pentaglycine linker and tethering glyphosate via its secondary amino group, concentrations in aqueous solutions down to 100 pM could be measured by the differential adhesion between SCP and biochip surface, supported by automated image analysis algorithms. This sensing concept could even prove its exceptional pM sensitivity in combination with a superior discrimination against structurally related compounds.
Collapse
Affiliation(s)
- David Rettke
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Julia Döring
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Steve Martin
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Tom Venus
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Kai Ostermann
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217, Dresden, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| |
Collapse
|
10
|
Caiati C, Pollice P, Favale S, Lepera ME. The Herbicide Glyphosate and Its Apparently Controversial Effect on Human Health: An Updated Clinical Perspective. Endocr Metab Immune Disord Drug Targets 2020; 20:489-505. [PMID: 31613732 DOI: 10.2174/1871530319666191015191614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Glyphosate (G) is the most common weed-killer in the world. Every year tons and tons of G are applied on crop fields. G was first introduced in the mid 1970s and since then its usage has gradually increased to reach a peak since 2005. Now G usage is approximately 100 -fold what it was in 1970. Its impact on human health was considered benign at the beginning. But over the years, evidence of a pervasive negative effect of this pesticide on humans has been mounting. Nonetheless, G usage is allowed by government health control agencies (both in the United States and Europe), that rely upon the evidence produced by the G producer. However, the IARC (International Agency for Research on Cancer) in 2015 has stated that G is probable carcinogenic (class 2A), the second highest class in terms of risk. OBJECTIVE In this review, we explore the effect of G on human health, focusing in particular on more recent knowledge. RESULTS We have attempted to untangle the controversy about the dangers of the product for human beings in view of a very recent development, when the so -called Monsanto Papers, consisting of Emails and memos from Monsanto came to light, revealing a coordinated strategy to manipulate the debate about the safety of glyphosate to the company's advantage. CONCLUSION The story of G is a recurrent one (see the tobacco story), that seriously jeopardizes the credibility of the scientific study in the modern era.
Collapse
Affiliation(s)
- Carlo Caiati
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| | - Paolo Pollice
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| | - Stefano Favale
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| | - Mario Erminio Lepera
- Department of Emergency and Organ Transplantation, Unit of Cardiovascular Diseases, University of Bari, Bari, Italy
| |
Collapse
|
11
|
Bhilwadikar T, Pounraj S, Manivannan S, Rastogi NK, Negi PS. Decontamination of Microorganisms and Pesticides from Fresh Fruits and Vegetables: A Comprehensive Review from Common Household Processes to Modern Techniques. Compr Rev Food Sci Food Saf 2019; 18:1003-1038. [DOI: 10.1111/1541-4337.12453] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Tanmayee Bhilwadikar
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - Saranya Pounraj
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - S. Manivannan
- Dept. of Food Protectant and Infestation ControlCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - N. K. Rastogi
- Dept. of Food EngineeringCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - P. S. Negi
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| |
Collapse
|