1
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Lara-Vega I, Vega-López A. Combinational photodynamic and photothermal - based therapies for melanoma in mouse models. Photodiagnosis Photodyn Ther 2023; 43:103596. [PMID: 37148952 DOI: 10.1016/j.pdpdt.2023.103596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Melanoma is a highly metastatic skin cancer with limited response to current therapies in advanced patients. To overcome resistance, novel treatments based on photodynamic and photothermal therapies (PDT and PTT, respectively) have been developed to treat melanoma in preclinical murine models. Despite success inhibiting implanted tumors' growth, there has been limited evaluation of their long-term effectiveness in preventing metastasis, recurrence, or improving survival rates. METHODS Combined and multidrug therapies based on PDT and/or PTT to treat cutaneous malignant melanoma in the preclinical mouse model were reviewed from 2016 onwards. PubMed® was the database in which the search was performed using mesh search algorithms resulting in fifty-one studies that comply with strict inclusion rules of screening. RESULTS B16 melanoma-bearing C57BLACK6 mice model was the most used to evaluate immunotherapies, chemotherapies, and targeted therapies in combination with PDT and/or PTT. Combined therapies demonstrated a synergistic effect, resulting in intense antitumor activity. The most extensively studied protocol for developing metastatic models involved the intravenous administration of malignant cells, with some combined therapies being tested. Furthermore, the review presents the composition of the nanostructures utilized for delivering the drugs and light-responsive agents and the treatment plans for each combined approach. CONCLUSIONS The identified mechanisms to simulate metastatic melanoma models and the therapeutic combinations may aid in evaluating the systemic protection of combined PDT and PTT-based therapies, particularly in conducting short-term preclinical experiments. Such simulations could have relevance to clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City C. P. 07738, Mexico.
| |
Collapse
|
3
|
van Vliet AA, Peters E, Vodegel D, Steenmans D, Raimo M, Gibbs S, de Gruijl TD, Duru AD, Spanholtz J, Georgoudaki AM. Early TRAIL-engagement elicits potent multimodal targeting of melanoma by CD34 + progenitor cell-derived NK cells. iScience 2023; 26:107078. [PMID: 37426355 PMCID: PMC10329179 DOI: 10.1016/j.isci.2023.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/13/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Umbilical cord blood (UCB) CD34+ progenitor cell-derived natural killer (NK) cells exert efficient cytotoxicity against various melanoma cell lines. Of interest, the relative cytotoxic performance of individual UCB donors was consistent throughout the melanoma panel and correlated with IFNγ, TNF, perforin and granzyme B levels. Importantly, intrinsic perforin and Granzyme B load predicts NK cell cytotoxic capacity. Exploring the mode of action revealed involvement of the activating receptors NKG2D, DNAM-1, NKp30, NKp44, NKp46 and most importantly of TRAIL. Strikingly, combinatorial receptor blocking led to more pronounced inhibition of cytotoxicity (up to 95%) than individual receptor blocking, especially in combination with TRAIL-blocking, suggesting synergistic cytotoxic NK cell activity via engagement of multiple receptors which was also confirmed in a spheroid model. Importantly, lack of NK cell-related gene signature in metastatic melanomas correlates with poor survival highlighting the clinical significance of NK cell therapies as a promising treatment for high-risk melanoma patients.
Collapse
Affiliation(s)
- Amanda A. van Vliet
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Ella Peters
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Denise Vodegel
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | | | - Monica Raimo
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Adil D. Duru
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Jan Spanholtz
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | | |
Collapse
|
4
|
López-Borrego S, Campos-Silva C, Sandúa A, Camino T, Téllez-Pérez L, Alegre E, Beneitez A, Jara-Acevedo R, Paschen A, Pardo M, González Á, Valés-Gómez M. MAPK inhibitors dynamically affect melanoma release of immune NKG2D-ligands, as soluble protein and extracellular vesicle-associated. Front Cell Dev Biol 2023; 10:1055288. [PMID: 36726591 PMCID: PMC9884675 DOI: 10.3389/fcell.2022.1055288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
Metastatic melanoma presents, in many cases, oncogenic mutations in BRAF, a MAPK involved in proliferation of tumour cells. BRAF inhibitors, used as therapy in patients with these mutations, often lead to tumour resistance and, thus, the use of MEK inhibitors was introduced in clinics. BRAFi/MEKi, a combination that has modestly increased overall survival in patients, has been proven to differentially affect immune ligands, such as NKG2D-ligands, in drug-sensitive vs. drug-resistant cells. However, the fact that NKG2D-ligands can be released as soluble molecules or in extracellular vesicles represents an additional level of complexity that has not been explored. Here we demonstrate that inhibition of MAPK using MEKi, and the combination of BRAFi with MEKi in vitro, modulates NKG2D-ligands in BRAF-mutant and WT melanoma cells, together with other NK activating ligands. These observations reinforce a role of the immune system in the generation of resistance to directed therapies and support the potential benefit of MAPK inhibition in combination with immunotherapies. Both soluble and EV-associated NKG2D-ligands, generally decreased in BRAF-mutant melanoma cell supernatants after MAPKi in vitro, replicating cell surface expression. Because potential NKG2D-ligand fluctuation during MAPKi treatment could have different consequences for the immune response, a pilot study to measure NKG2D-ligand variation in plasma or serum from metastatic melanoma patients, at different time points during MAPKi treatment, was performed. Not all NKG2D-ligands were equally detected. Further, EV detection did not parallel soluble protein. Altogether, our data confirm the heterogeneity between melanoma lesions, and suggest testing several NKG2D-ligands and other melanoma antigens in serum, both as soluble or vesicle-released proteins, to help classifying immune competence of patients.
Collapse
Affiliation(s)
- Silvia López-Borrego
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | - Carmen Campos-Silva
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | | | - Tamara Camino
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | - Lucía Téllez-Pérez
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain
| | | | | | | | - Annette Paschen
- Clinic for Dermatology University Hospital of Essen, Essen, North RhineWestphalia, Germany
| | - María Pardo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
| | | | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Center for Biotechnology (CNB), Spanish National Research Council (CSIC), Cantoblanco, Madrid, Spain,*Correspondence: Mar Valés-Gómez,
| |
Collapse
|
5
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
6
|
Adams R, Coumbe JEM, Coumbe BGT, Thomas J, Willsmore Z, Dimitrievska M, Yasuzawa-Parker M, Hoyle M, Ingar S, Geh J, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. BRAF inhibitors and their immunological effects in malignant melanoma. Expert Rev Clin Immunol 2022; 18:347-362. [PMID: 35195495 DOI: 10.1080/1744666x.2022.2044796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The treatment of cutaneous melanoma has been revolutionised by the development of small molecule inhibitors targeting the MAPK pathway, including inhibitors of BRAF (BRAFi) and MEK (MEKi), and immune checkpoint blockade antibodies, occurring in tandem. Despite these advances, the 5-year survival rate for patients with advanced melanoma remains only around 50%. Although not designed to alter immune responses within the tumour microenvironment (TME), MAPK pathway inhibitors (MAPKi) exert a range of effects on the host immune compartment which may offer opportunities for therapeutic interventions. AREAS COVERED We review the effects of MAPKi especially BRAFi, on the TME, focussing on alterations in inflammatory cytokine secretion, the recruitment of immune cells and their functions, both during response to BRAFi treatment and as resistance develops. We outline potential combinations of MAPKi with established and experimental treatments. EXPERT OPINION MAPKi in combination or in sequence with established treatments such as checkpoint inhibitors, anti-angiogenic agents, or new therapies such as adoptive cell therapies, may augment their immunological effects, reverse tumour-associated immune suppression and offer the prospect of longer-lived clinical responses. Refining therapeutic tools at our disposal and embracing "old friends" in the melanoma treatment arsenal, alongside new target identification, may improve the chances of therapeutic success.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jack E M Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Ben G T Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jennifer Thomas
- The Royal Marsden, Downs Road, Sutton, Surrey, United Kingdom
| | - Zena Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Marija Dimitrievska
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Monica Yasuzawa-Parker
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Maximilian Hoyle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Suhaylah Ingar
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Jenny Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophie Papa
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom.,ImmunoEngineering, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London SE1 9RT, United Kingdom
| |
Collapse
|
7
|
Pharmacological inhibition of Ref-1 enhances the therapeutic sensitivity of papillary thyroid carcinoma to vemurafenib. Cell Death Dis 2022; 13:124. [PMID: 35136031 PMCID: PMC8825860 DOI: 10.1038/s41419-022-04550-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/18/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
The use of the BRAF inhibitor vemurafenib exhibits drug resistance in the treatment of thyroid cancer (TC), and finding more effective multitarget combination therapies may be an important solution. In the present study, we found strong correlations between Ref-1 high expression and BRAF mutation, lymph node metastasis, and TNM stage. The oxidative stress environment induced by structural activation of BRAF upregulates the expression of Ref-1, which caused intrinsic resistance of PTC to vemurafenib. Combination inhibition of the Ref-1 redox function and BRAF could enhance the antitumor effects of vemurafenib, which was achieved by blocking the action of Ref-1 on BRAF proteins. Furthermore, combination treatment could cause an overload of autophagic flux via excessive AMPK protein activation, causing cell senescence and cell death in vitro. And combined administration of Ref-1 and vemurafenib in vivo suppressed PTC cell growth and metastasis in a cell-based lung metastatic tumor model and xenogeneic subcutaneous tumor model. Collectively, our study provides evidence that Ref-1 upregulation via constitutive activation of BRAF in PTC contributes to intrinsic resistance to vemurafenib. Combined treatment with a Ref-1 redox inhibitor and a BRAF inhibitor could make PTC more sensitive to vemurafenib and enhance the antitumor effects of vemurafenib by further inhibiting the MAPK pathway and activating the excessive autophagy and related senescence process.
Collapse
|
8
|
Tello-Lafoz M, de Jesus MM, Huse M. Harder, better, faster, stronger: biochemistry and biophysics in the immunosurveillance concert. Trends Immunol 2022; 43:96-105. [PMID: 34973924 PMCID: PMC8810625 DOI: 10.1016/j.it.2021.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023]
Abstract
Antitumor immunosurveillance is triggered by immune cell recognition of characteristic biochemical signals on the surfaces of cancer cells. Recent data suggest that the mechanical properties of cancer cells influence the strength of these signals, with physically harder target cells (more rigid) eliciting better, faster, and stronger cytotoxic responses against metastasis. Using analogies to a certain electronic music duo, we argue that the biophysical properties of cancer cells and their environment can adjust the volume and tone of the antitumor immune response. We also consider the potential influence of biomechanics-based immunosurveillance in disease progression and posit that targeting the biophysical properties of cancer cells in concert with their biochemical features could increase the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Maria Tello-Lafoz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel M de Jesus
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Correspondence: (M.H.)
| |
Collapse
|
9
|
Li JH, O’Sullivan TE. Back to the Future: Spatiotemporal Determinants of NK Cell Antitumor Function. Front Immunol 2022; 12:816658. [PMID: 35082797 PMCID: PMC8785903 DOI: 10.3389/fimmu.2021.816658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.
Collapse
Affiliation(s)
- Joey H. Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Medical Scientist Training Program, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
10
|
Toffoli EC, Sheikhi A, Höppner YD, de Kok P, Yazdanpanah-Samani M, Spanholtz J, Verheul HMW, van der Vliet HJ, de Gruijl TD. Natural Killer Cells and Anti-Cancer Therapies: Reciprocal Effects on Immune Function and Therapeutic Response. Cancers (Basel) 2021; 13:cancers13040711. [PMID: 33572396 PMCID: PMC7916216 DOI: 10.3390/cancers13040711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells are innate lymphocytes that play an important role in the immune response against cancer. Their activity is controlled by a balance of inhibitory and activating receptors, which in cancer can be skewed to favor their suppression in support of immune escape. It is therefore imperative to find ways to optimize their antitumor functionality. In this review, we explore and discuss how their activity influences, or even mediates, the efficacy of various anti-cancer therapies and, vice versa, how their activity can be affected by these therapies. Knowledge of the mechanisms underlying these observations could provide rationales for combining anti-cancer treatments with strategies enhancing NK cell function in order to improve their therapeutic efficacy. Abstract Natural Killer (NK) cells are innate immune cells with the unique ability to recognize and kill virus-infected and cancer cells without prior immune sensitization. Due to their expression of the Fc receptor CD16, effector NK cells can kill tumor cells through antibody-dependent cytotoxicity, making them relevant players in antibody-based cancer therapies. The role of NK cells in other approved and experimental anti-cancer therapies is more elusive. Here, we review the possible role of NK cells in the efficacy of various anti-tumor therapies, including radiotherapy, chemotherapy, and immunotherapy, as well as the impact of these therapies on NK cell function.
Collapse
Affiliation(s)
- Elisa C. Toffoli
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Abdolkarim Sheikhi
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful 64616-43993, Iran
| | - Yannick D. Höppner
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Pita de Kok
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
| | - Mahsa Yazdanpanah-Samani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran;
| | - Jan Spanholtz
- Glycostem, Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands;
| | - Hans J. van der Vliet
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Lava Therapeutics, Yalelaan 60, 3584 CM Utrecht, The Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (E.C.T.); (A.S.); (Y.D.H.); (P.d.K.); (H.J.v.d.V.)
- Correspondence: ; Tel.: +31-20-4444063
| |
Collapse
|
11
|
Malapelle U, Rossi G, Pisapia P, Barberis M, Buttitta F, Castiglione F, Cecere FL, Grimaldi AM, Iaccarino A, Marchetti A, Massi D, Medicina D, Mele F, Minari R, Orlando E, Pagni F, Palmieri G, Righi L, Russo A, Tommasi S, Vermi W, Troncone G. BRAF as a positive predictive biomarker: Focus on lung cancer and melanoma patients. Crit Rev Oncol Hematol 2020; 156:103118. [PMID: 33038627 DOI: 10.1016/j.critrevonc.2020.103118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
In the era of personalized medicine, BRAF mutational assessment is mandatory in advanced-stage melanoma and non-small cell lung cancer (NSCLC) patients. The identification of actionable mutations is crucial for the adequate management of these patients. To date various drugs have been implemented in clinical practice. Similarly, various methods may be adopted for the identification of BRAF mutations. Here, we briefly review the current literature on BRAF in melanoma and NSCLC, focusing attention in particular on the different methods and drugs adopted in these patients. In addition, an overview of the real-world practice in different Italian laboratories with high expertise in molecular predictive pathology testing is provided.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda USL Romagna, St. Maria delle Croci Hospital, Ravenna, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Massimo Barberis
- Unit of Histopathology and Molecular Diagnostics, European Institute of Oncology IRCCS, Milano, Italy
| | - Fiamma Buttitta
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Francesca Castiglione
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Antonio Maria Grimaldi
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Marchetti
- Center for Advanced Studies and Technology (CAST) - Department of Medical, Oral and Biotechnological Sciences, University of Chieti, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Daniela Medicina
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Fabio Mele
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Elisabetta Orlando
- Department of Health Promotion, Mother and Child care, Internal Medicine and Medical Specialties (ProMISE), Unit of Anatomic Pathology, University of Palermo, Palermo, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University Milan Bicocca, Milan, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Luisella Righi
- Department of Oncology, San Luigi Hospital, University of Turin, Turin, Italy
| | | | - Stefania Tommasi
- Pathology Department, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - William Vermi
- Section of Pathology, Asst Spedali Civili di Brescia, Brescia, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|