1
|
Figueroa L, Rosas M, Alvarez M, Aguilar E, Mateu V, Bonilla E. Interaction of Purine and its Derivatives with A1, A2-Adenosine Receptors and Vascular Endothelial Growth Factor Receptor-1 (Vegf-R1) as a Therapeutic Alternative to Treat Cancer. Drug Res (Stuttg) 2024; 74:379-393. [PMID: 39173673 DOI: 10.1055/a-2376-5771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND There are several studies that indicate that cancer development may be conditioned by the activation of some biological systems that involve the interaction of different biomolecules, such as adenosine and vascular endothelial growth factor. These biomolecules have been targeted of some drugs for treat of cancer; however, there is little information on the interaction of purine derivatives with adenosine and vascular endothelial growth factor receptor (VEGF-R1). OBJECTIVE The aim of this research was to determine the possible interaction of purine (1: ) and their derivatives (2-31: ) with A1, A2-adenosine receptors, and VEGF-R1. METHODS Theoretical interaction of purine and their derivatives with A1, A2-adenosine receptors and VEGF-R1 was carried out using the 5uen, 5mzj and 3hng proteins as theoretical tools. Besides, adenosine, cgs-15943, rolofylline, cvt-124, wrc-0571, luf-5834, cvt-6883, AZD-4635, cabozantinib, pazopanib, regorafenib, and sorafenib drugs were used as controls. RESULTS The results showed differences in the number of aminoacid residues involved in the interaction of purine and their derivatives with 5uen, 5mzj and 3hng proteins compared with the controls. Besides, the inhibition constants (Ki) values for purine and their derivatives 5: , 9: , 10: , 14: , 15: , 16: , and 20: were lower compared with the controls CONCLUSIONS: Theoretical data suggest that purine and their derivatives 5: , 9: , 10: , 14: , 15: , 16: , and 20: could produce changes in cancer cell growth through inhibition of A1, A2-adenosine receptors and VEGFR-1 inhibition. These data indicate that these purine derivatives could be a therapeutic alternative to treat some types of cancer.
Collapse
Affiliation(s)
- Lauro Figueroa
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Campeche, Camp., México
| | - Marcela Rosas
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Magdalena Alvarez
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Emilio Aguilar
- Facultad de Medicina, Universidad Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Virginia Mateu
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| | - Enrique Bonilla
- Faculty of Nutrition, University Veracruzana, Médicos y Odontologos, Unidad del Bosque Xalapa Veracruz, México
| |
Collapse
|
2
|
Van Kerkhove O, Verfaillie S, Maes B, Cuppens K. The Adenosinergic Pathway in Non-Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3142. [PMID: 39335114 PMCID: PMC11430550 DOI: 10.3390/cancers16183142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-(L)1 and CTLA-4 have revolutionized the systemic treatment of non-small cell lung cancer (NSCLC), achieving impressive results. However, long-term clinical benefits are only seen in a minority of patients. Extensive research is being conducted on novel potential immune checkpoints and the mechanisms underlying ICI resistance. The tumor microenvironment (TME) plays a critical role in modulating the immune response and influencing the efficacy of ICIs. The adenosinergic pathway and extracellular adenosine (eADO) are potential targets to improve the response to ICIs in NSCLC patients. First, this review delves into the adenosinergic pathway and the impact of adenosine within the TME. Second, we provide an overview of relevant preclinical and clinical data on molecules targeting this pathway, particularly focusing on NSCLC.
Collapse
Affiliation(s)
- Olivier Van Kerkhove
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
| | - Saartje Verfaillie
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
| | - Brigitte Maes
- Laboratory for Molecular Diagnostics, Department of Laboratory Medicine, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
- Faculty of Medicine and Life Sciences-LCRC, Hasselt University, 3590 Diepenbeek, Belgium
| | - Kristof Cuppens
- Department of Pulmonology and Thoracic Oncology and Jessa & Science, Jessa Hospital, Salvatorstraat, 3500 Hasselt, Belgium
- Faculty of Medicine and Life Sciences-LCRC, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
3
|
Deng XC, Liang JL, Zhang SM, Wang YZ, Lin YT, Meng R, Wang JW, Feng J, Chen WH, Zhang XZ. Interference of ATP-Adenosine Axis by Engineered Biohybrid for Amplifying Immunogenic Cell Death-Mediated Antitumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405673. [PMID: 39022876 DOI: 10.1002/adma.202405673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.
Collapse
Affiliation(s)
- Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Yan-Tong Lin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Ran Meng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
4
|
Szwabowski GL, Griffing M, Mugabe EJ, O’Malley D, Baker LN, Baker DL, Parrill AL. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Int J Mol Sci 2024; 25:6876. [PMID: 38999982 PMCID: PMC11241240 DOI: 10.3390/ijms25136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| |
Collapse
|
5
|
Wang L, Garg P, Chan KY, Yuan TZ, Lujan Hernandez AG, Han Z, Peterson SM, Tuscano E, Safavi C, Kwan E, Villalta M, Mathur M, Lai J, Axelrod F, Souders CA, Emery C, Sato AK. Discovery of a potent, selective, and tumor-suppressing antibody antagonist of adenosine A2A receptor. PLoS One 2024; 19:e0301223. [PMID: 38837964 PMCID: PMC11152298 DOI: 10.1371/journal.pone.0301223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/12/2024] [Indexed: 06/07/2024] Open
Abstract
New immune checkpoints are emerging in a bid to improve response rates to immunotherapeutic drugs. The adenosine A2A receptor (A2AR) has been proposed as a target for immunotherapeutic development due to its participation in immunosuppression of the tumor microenvironment. Blockade of A2AR could restore tumor immunity and, consequently, improve patient outcomes. Here, we describe the discovery of a potent, selective, and tumor-suppressing antibody antagonist of human A2AR (hA2AR) by phage display. We constructed and screened four single-chain variable fragment (scFv) libraries-two synthetic and two immunized-against hA2AR and antagonist-stabilized hA2AR. After biopanning and ELISA screening, scFv hits were reformatted to human IgG and triaged in a series of cellular binding and functional assays to identify a lead candidate. Lead candidate TB206-001 displayed nanomolar binding of hA2AR-overexpressing HEK293 cells; cross-reactivity with mouse and cynomolgus A2AR but not human A1, A2B, or A3 receptors; functional antagonism of hA2AR in hA2AR-overexpressing HEK293 cells and peripheral blood mononuclear cells (PBMCs); and tumor-suppressing activity in colon tumor-bearing HuCD34-NCG mice. Given its therapeutic properties, TB206-001 is a good candidate for incorporation into next-generation bispecific immunotherapeutics.
Collapse
Affiliation(s)
- Linya Wang
- Twist Bioscience, San Francisco, California, United States of America
| | - Pankaj Garg
- Gilead, Foster City, California, United States of America
| | - Kara Y. Chan
- Slingshot, Los Angeles, California, United States of America
| | - Tom Z. Yuan
- Twist Bioscience, San Francisco, California, United States of America
| | | | - Zhen Han
- Twist Bioscience, San Francisco, California, United States of America
| | - Sean M. Peterson
- Nurix Therapeutics, San Francisco, California, United States of America
| | - Emily Tuscano
- Sartorius, Fremont, California, United States of America
| | - Crystal Safavi
- Twist Bioscience, San Francisco, California, United States of America
| | - Eric Kwan
- Twist Bioscience, San Francisco, California, United States of America
| | - Mouna Villalta
- Twist Bioscience, San Francisco, California, United States of America
| | - Melina Mathur
- Twist Bioscience, San Francisco, California, United States of America
| | - Joyce Lai
- Twist Bioscience, San Francisco, California, United States of America
| | - Fumiko Axelrod
- Twist Bioscience, San Francisco, California, United States of America
| | - Colby A. Souders
- Twist Bioscience, San Francisco, California, United States of America
| | - Chloe Emery
- Twist Bioscience, San Francisco, California, United States of America
| | - Aaron K. Sato
- Twist Bioscience, San Francisco, California, United States of America
| |
Collapse
|
6
|
Luginina AP, Khnykin AN, Khorn PA, Moiseeva OV, Safronova NA, Pospelov VA, Dashevskii DE, Belousov AS, Borschevskiy VI, Mishin AV. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: Ligand Search and Screening. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:958-972. [PMID: 38880655 DOI: 10.1134/s0006297924050158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane proteins that participate in many physiological processes and represent major pharmacological targets. Recent advances in structural biology of GPCRs have enabled the development of drugs based on the receptor structure (structure-based drug design, SBDD). SBDD utilizes information about the receptor-ligand complex to search for suitable compounds, thus expanding the chemical space of possible receptor ligands without the need for experimental screening. The review describes the use of structure-based virtual screening (SBVS) for GPCR ligands and approaches for the functional testing of potential drug compounds, as well as discusses recent advances and successful examples in the application of SBDD for the identification of GPCR ligands.
Collapse
Affiliation(s)
- Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevskii
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Valentin I Borschevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| |
Collapse
|
7
|
Weng Y, Yang X, Zhang Q, Chen Y, Xu Y, Zhu C, Xie Q, Wang Y, Yang H, Liu M, Lu W, Song G. Structural insight into the dual-antagonistic mechanism of AB928 on adenosine A 2 receptors. SCIENCE CHINA. LIFE SCIENCES 2024; 67:986-995. [PMID: 38319473 DOI: 10.1007/s11427-023-2459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 02/07/2024]
Abstract
The adenosine subfamily G protein-coupled receptors A2AR and A2BR have been identified as promising cancer immunotherapy candidates. One of the A2AR/A2BR dual antagonists, AB928, has progressed to a phase II clinical trial to treat rectal cancer. However, the precise mechanism underlying its dual-antagonistic properties remains elusive. Herein, we report crystal structures of the A2AR complexed with AB928 and a selective A2AR antagonist 2-118. The structures revealed a common binding mode on A2AR, wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets. In contrast, the cAMP assay and A2AR and A2BR molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A2BR. Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A2BR pocket, while 2-118 did not due to intrinsic differences. This disparity potentially accounted for the difference in inhibitory efficacy between A2BR and A2AR. This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A2AR/A2BR for cancer therapy.
Collapse
Affiliation(s)
- Yuan Weng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Ying Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yueming Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chenyu Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
8
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
9
|
Ullas S, Sinclair C. Applications of Flow Cytometry in Drug Discovery and Translational Research. Int J Mol Sci 2024; 25:3851. [PMID: 38612661 PMCID: PMC11011675 DOI: 10.3390/ijms25073851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Flow cytometry is a mainstay technique in cell biology research, where it is used for phenotypic analysis of mixed cell populations. Quantitative approaches have unlocked a deeper value of flow cytometry in drug discovery research. As the number of drug modalities and druggable mechanisms increases, there is an increasing drive to identify meaningful biomarkers, evaluate the relationship between pharmacokinetics and pharmacodynamics (PK/PD), and translate these insights into the evaluation of patients enrolled in early clinical trials. In this review, we discuss emerging roles for flow cytometry in the translational setting that supports the transition and evaluation of novel compounds in the clinic.
Collapse
Affiliation(s)
| | - Charles Sinclair
- Flagship Pioneering, 140 First Street, Cambridge, MA 02141, USA;
| |
Collapse
|
10
|
Falchook GS, Reeves J, Gandhi S, Spigel DR, Arrowsmith E, George DJ, Karlix J, Pouliot G, Hattersley MM, Gangl ET, James GD, Thompson J, Russell DL, Patel B, Kumar R, Lim E. A phase 2 study of AZD4635 in combination with durvalumab or oleclumab in patients with metastatic castration-resistant prostate cancer. Cancer Immunol Immunother 2024; 73:72. [PMID: 38430405 PMCID: PMC10908633 DOI: 10.1007/s00262-024-03640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Inhibition of the adenosine 2A receptor (A2AR) diminishes the immunosuppressive effects of adenosine and may complement immune-targeting drugs. This phase 2 study evaluated the A2AR antagonist AZD4635 in combination with durvalumab or oleclumab in patients with metastatic castration-resistant prostate cancer. METHODS Patients with histologically/cytologically confirmed disease progressing within 6 months on ≥ 2 therapy lines were randomly assigned to either Module 1 (AZD4635 + durvalumab) or Module 2 (AZD4635 + oleclumab). Primary endpoints were objective response rate per RECIST v1.1 and prostate-specific antigen (PSA) response rate. Secondary endpoints included radiological progression-free survival (rPFS), overall survival, safety, and pharmacokinetics. RESULTS Fifty-nine patients were treated (Module 1, n = 29; Module 2, n = 30). Median number of prior therapies was 4. One confirmed complete response by RECIST (Module 1) and 2 confirmed PSA responses (1 per module) were observed. The most frequent adverse events (AEs) possibly related to AZD4635 were nausea (37.9%), fatigue (20.7%), and decreased appetite (17.2%) in Module 1; nausea (50%), fatigue (30%), and vomiting (23.3%) in Module 2. No dose-limiting toxicities or treatment-related serious AEs were observed. In Module 1, AZD4635 geometric mean trough concentration was 124.9 ng/mL (geometric CV% 69.84; n = 22); exposures were similar in Module 2. In Modules 1 and 2, median (95% CI) rPFS was 2.3 (1.6 -3.8) and 1.5 (1.3- 4.0) months, respectively. Median PFS was 1.7 versus 2.3 months for patients with high versus low blood-based adenosine signature. CONCLUSION In this heavily pretreated population, AZD4635 with durvalumab or oleclumab demonstrated minimal antitumor activity with a manageable safety profile. CLINICAL TRIAL gov identifier: NCT04089553.
Collapse
Affiliation(s)
- Gerald S Falchook
- Drug Development Unit, Sarah Cannon Research Institute at HealthONE, Denver, CO, USA.
| | - James Reeves
- Florida Cancer Specialists South, Sarah Cannon Research Institute, Fort Meyers, FL, USA
| | - Sunil Gandhi
- Florida Cancer Specialists South, Sarah Cannon Research Institute, St. Petersberg, FL, USA
| | - David R Spigel
- Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Edward Arrowsmith
- Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN, USA
| | | | - Janet Karlix
- Sarah Cannon Research Institute, Gainesville, FL, USA
| | | | | | | | | | | | | | | | - Rakesh Kumar
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Emerson Lim
- Medical Oncology & Hematology-LHCP, Corewell Health Medical Group, Grand Rapids, MI, USA
| |
Collapse
|
11
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
12
|
Gimenez LE, Martin C, Yu J, Hollanders C, Hernandez CC, Wu Y, Yao D, Han GW, Dahir NS, Wu L, Van der Poorten O, Lamouroux A, Mannes M, Zhao S, Tourwé D, Stevens RC, Cone RD, Ballet S. Novel Cocrystal Structures of Peptide Antagonists Bound to the Human Melanocortin Receptor 4 Unveil Unexplored Grounds for Structure-Based Drug Design. J Med Chem 2024; 67:2690-2711. [PMID: 38345933 DOI: 10.1021/acs.jmedchem.3c01822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Melanocortin 4 receptor (MC4-R) antagonists are actively sought for treating cancer cachexia. We determined the structures of complexes with PG-934 and SBL-MC-31. These peptides differ from SHU9119 by substituting His6 with Pro6 and inserting Gly10 or Arg10. The structures revealed two subpockets at the TM7-TM1-TM2 domains, separated by N2857.36. Two peptide series based on the complexed peptides led to an antagonist activity and selectivity SAR study. Most ligands retained the SHU9119 potency, but several SBL-MC-31-derived peptides significantly enhanced MC4-R selectivity over MC1-R by 60- to 132-fold. We also investigated MC4-R coupling to the K+ channel, Kir7.1. Some peptides activated the channel, whereas others induced channel closure independently of G protein coupling. In cell culture studies, channel activation correlated with increased feeding, while a peptide with Kir7.1 inhibitory activity reduced eating. These results highlight the potential for targeting the MC4-R:Kir7.1 complex for treating positive and restrictive eating disorders.
Collapse
Affiliation(s)
- Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Charlie Hollanders
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Naima S Dahir
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular and Integrative Physiology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
13
|
Huang R, Ning Q, Zhao J, Zhao X, Zeng L, Yi Y, Tang S. Targeting ENPP1 for cancer immunotherapy: Killing two birds with one stone. Biochem Pharmacol 2024; 220:116006. [PMID: 38142838 DOI: 10.1016/j.bcp.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Cancer immunotherapy, particularly with immune checkpoint inhibitors, has revolutionized the paradigm of cancer treatment. Nevertheless, the efficacy of cancer immunotherapy remains limited in most clinical settings due to the lack of a preexisting antitumor T-cell response in tumors. Therefore, the clinical outcomes of cancer immunotherapy must be improved crucially. With increased awareness of the importance of the innate immune response in the recruitment of T cells, as well as the onset and maintenance of the T cell response, great interest has been shown in activating the cGAS-STING signaling pathway to awaken the innate immune response, thereby orchestrating both innate and adaptive immune responses to induce tumor clearance. However, tumor cells have evolved to overexpress ectonucleotide pyrophosphate phosphodiesterase 1 (ENPP1), which degrades the immunotransmitter 2',3'-cGAMP and promotes the production of immune-suppressing adenosine, resulting in inhibition of the anticancer immune response in the tumor microenvironment. Clinically, ENPP1 overexpression is closely associated with poor prognosis in patients with cancer. Conversely, depleting or inhibiting ENPP1 has been verified to elevate extracellular 2',3'-cGAMP levels and inhibit the generation of adenosine, thereby reinvigorating the anticancer immune response for tumor elimination. A variety of ENPP1 inhibitors have recently been developed and have demonstrated significant promise for cancer immunotherapy. In this review, we provide an overview of ENPP1, dissect its immunosuppressive mechanisms, and discuss the development of ENPP1 inhibitors with the potential to further improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Ruilei Huang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jihui Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Xuhong Zhao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Luting Zeng
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yi Yi
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China.
| |
Collapse
|
14
|
Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer 2023; 1878:189005. [PMID: 37913941 DOI: 10.1016/j.bbcan.2023.189005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
As a new pillar of cancer therapy, tumor immunotherapy has brought irreplaceable durable responses in tumors. Considering its low response rate, additional immune regulatory mechanisms will be critical for the development of next-generation immune therapeutics. As a key regulatory mechanism, adenosine (ADO) protects tissues from excessive immune responses, but as a metabolite highly concentrated in tumor microenvironments, extracellular adenosine acts on adenosine receptors (mainly A2A receptors) expressed on MDSCs, Tregs, NK cells, effector T cells, DCs, and macrophages to promote tumor cell escape from immune surveillance by inhibiting the immune response. Amounting preclinical studies have demonstrated the adenosine pathway as a novel checkpoint for immunotherapy. Large number of adenosine pathway targeting clinical trials are now underway, including antibodies against CD39 and CD73 as well as A2A receptor inhibitors. There has been evidence of antitumor efficacy of these inhibitors in early clinical trials among a variety of tumors such as breast cancer, prostate cancer, non-small cell lung cancer, etc. As more clinical trial results are published, the combination of blockade of this pathway with immune checkpoint inhibitors, targeted drugs, traditional chemotherapy medications, radiotherapy and endocrine therapy will provide cancer patients with better clinical outcomes. We would elaborate on the role of CD39-CD73-A2AR pathway in the contribution of tumor microenvironment and the targeting of the adenosinergic pathway for cancer therapy in the review.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
15
|
Todd KL, Lai J, Sek K, Huang YK, Newman DM, Derrick EB, Koay HF, Nguyen D, Hoang TX, Petley EV, Chan CW, Munoz I, House IG, Lee JN, Kim JS, Li J, Tong J, N de Menezes M, Scheffler CM, Yap KM, Chen AXY, Dunbar PA, Haugen B, Parish IA, Johnstone RW, Darcy PK, Beavis PA. A 2AR eGFP reporter mouse enables elucidation of A 2AR expression dynamics during anti-tumor immune responses. Nat Commun 2023; 14:6990. [PMID: 37914685 PMCID: PMC10620403 DOI: 10.1038/s41467-023-42734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
There is significant clinical interest in targeting adenosine-mediated immunosuppression, with several small molecule inhibitors having been developed for targeting the A2AR receptor. Understanding of the mechanism by which A2AR is regulated has been hindered by difficulty in identifying the cell types that express A2AR due to a lack of robust antibodies for these receptors. To overcome this limitation, here an A2AR eGFP reporter mouse is developed, enabling the expression of A2AR during ongoing anti-tumor immune responses to be assessed. This reveals that A2AR is highly expressed on all tumor-infiltrating lymphocyte subsets including Natural Killer (NK) cells, NKT cells, γδ T cells, conventional CD4+ and CD8+ T lymphocytes and on a MHCIIhiCD86hi subset of type 2 conventional dendritic cells. In response to PD-L1 blockade, the emergence of PD-1+A2AR- cells correlates with successful therapeutic responses, whilst IL-18 is identified as a cytokine that potently upregulates A2AR and synergizes with A2AR deficiency to improve anti-tumor immunity. These studies provide insight into the biology of A2AR in the context of anti-tumor immunity and reveals potential combination immunotherapy approaches.
Collapse
Affiliation(s)
- Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia.
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Yu-Kuan Huang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Dane M Newman
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Emily B Derrick
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Hui-Fern Koay
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Dat Nguyen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Thang X Hoang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Cheok Weng Chan
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Isabelle Munoz
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Joel N Lee
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Joelle S Kim
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Jasmine Li
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Junming Tong
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Maria N de Menezes
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Christina M Scheffler
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Kah Min Yap
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Phoebe A Dunbar
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Brandon Haugen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Translational Hematology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Department of Immunology, Monash University, Clayton, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, 3000, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
16
|
Xing J, Zhang J, Wang J. The Immune Regulatory Role of Adenosine in the Tumor Microenvironment. Int J Mol Sci 2023; 24:14928. [PMID: 37834375 PMCID: PMC10573203 DOI: 10.3390/ijms241914928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Adenosine, an immunosuppressive metabolite, is produced by adenosine triphosphate (ATP) released from dying or stressed cells and is found at high levels in the tumor microenvironment of most solid tumors. It mediates pro-tumor activities by inducing tumor cell proliferation, migration or invasion, tumor tissue angiogenesis, and chemoresistance. In addition, adenosine plays an important role in regulating anti-tumor immune responses and facilitating tumor immune escape. Adenosine receptors are broadly expressed by tumor-infiltrated immune cells, including suppressive tumor-associated macrophages and CD4+ regulatory T cells, as well as effector CD4+ T cells and CD8+ cytotoxic T lymphocytes. Therefore, adenosine is indispensable in down-regulating anti-tumor immune responses in the tumor microenvironment and contributes to tumor progression. This review describes the current progress on the role of adenosine/adenosine receptor pathway in regulating the tumor-infiltrating immune cells that contribute to tumor immune evasion and aims to provide insights into adenosine-targeted tumor immunotherapy.
Collapse
Affiliation(s)
- Jianlei Xing
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinyan Wang
- Department of Immunology, School of Basic Medicine, China Medical University, Shenyang 100001, China
| |
Collapse
|
17
|
Singh S, Barik D, Arukha AP, Prasad S, Mohapatra I, Singh A, Singh G. Small Molecule Targeting Immune Cells: A Novel Approach for Cancer Treatment. Biomedicines 2023; 11:2621. [PMID: 37892995 PMCID: PMC10604364 DOI: 10.3390/biomedicines11102621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Conventional and cancer immunotherapies encompass diverse strategies to address various cancer types and stages. However, combining these approaches often encounters limitations such as non-specific targeting, resistance development, and high toxicity, leading to suboptimal outcomes in many cancers. The tumor microenvironment (TME) is orchestrated by intricate interactions between immune and non-immune cells dictating tumor progression. An innovative avenue in cancer therapy involves leveraging small molecules to influence a spectrum of resistant cell populations within the TME. Recent discoveries have unveiled a phenotypically diverse cohort of innate-like T (ILT) cells and tumor hybrid cells (HCs) exhibiting novel characteristics, including augmented proliferation, migration, resistance to exhaustion, evasion of immunosurveillance, reduced apoptosis, drug resistance, and heightened metastasis frequency. Leveraging small-molecule immunomodulators to target these immune players presents an exciting frontier in developing novel tumor immunotherapies. Moreover, combining small molecule modulators with immunotherapy can synergistically enhance the inhibitory impact on tumor progression by empowering the immune system to meticulously fine-tune responses within the TME, bolstering its capacity to recognize and eliminate cancer cells. This review outlines strategies involving small molecules that modify immune cells within the TME, potentially revolutionizing therapeutic interventions and enhancing the anti-tumor response.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Debashis Barik
- Center for Computational Natural Science and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, Telangana, India
| | | | | | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota—Twin Cities, Saint Paul, MN 55108, USA
| | - Amar Singh
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Vincenzi F, Pasquini S, Contri C, Cappello M, Nigro M, Travagli A, Merighi S, Gessi S, Borea PA, Varani K. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules 2023; 13:1387. [PMID: 37759787 PMCID: PMC10527030 DOI: 10.3390/biom13091387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Adenosine receptors (ARs) are widely acknowledged pharmacological targets yet are still underutilized in clinical practice. Their ubiquitous distribution in almost all cells and tissues of the body makes them, on the one hand, excellent candidates for numerous diseases, and on the other hand, intrinsically challenging to exploit selectively and in a site-specific manner. This review endeavors to comprehensively depict the substantial advancements witnessed in recent years concerning the development of drugs that modulate ARs. Through preclinical and clinical research, it has become evident that the modulation of ARs holds promise for the treatment of numerous diseases, including central nervous system disorders, cardiovascular and metabolic conditions, inflammatory and autoimmune diseases, and cancer. The latest studies discussed herein shed light on novel mechanisms through which ARs exert control over pathophysiological states. They also introduce new ligands and innovative strategies for receptor activation, presenting compelling evidence of efficacy along with the implicated signaling pathways. Collectively, these emerging insights underscore a promising trajectory toward harnessing the therapeutic potential of these multifaceted targets.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (M.C.); (M.N.); (A.T.); (S.M.); (S.G.); (K.V.)
| |
Collapse
|
19
|
Zohair B, Chraa D, Rezouki I, Benthami H, Razzouki I, Elkarroumi M, Olive D, Karkouri M, Badou A. The immune checkpoint adenosine 2A receptor is associated with aggressive clinical outcomes and reflects an immunosuppressive tumor microenvironment in human breast cancer. Front Immunol 2023; 14:1201632. [PMID: 37753093 PMCID: PMC10518422 DOI: 10.3389/fimmu.2023.1201632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Background The crosstalk between the immune system and cancer cells has aroused considerable interest over the past decades. To escape immune surveillance cancer cells evolve various strategies orchestrating tumor microenvironment. The discovery of the inhibitory immune checkpoints was a major breakthrough due to their crucial contribution to immune evasion. The A2AR receptor represents one of the most essential pathways within the TME. It is involved in several processes such as hypoxia, tumor progression, and chemoresistance. However, its clinical and immunological significance in human breast cancer remains elusive. Methods The mRNA expression and protein analysis were performed by RT-qPCR and immunohistochemistry. The log-rank (Mantel-Cox) test was used to estimate Kaplan-Meier analysis for overall survival. Using large-scale microarray data (METABRIC), digital cytometry was conducted to estimate cell abundance. Analysis was performed using RStudio software (7.8 + 2023.03.0) with EPIC, CIBERSORT, and ImmuneCellAI algorithms. Tumor purity, stromal and immune scores were calculated using the ESTIMATE computational method. Finally, analysis of gene set enrichment (GSEA) and the TISCH2 scRNA-seq database were carried out. Results Gene and protein analysis showed that A2AR was overexpressed in breast tumors and was significantly associated with high grade, elevated Ki-67, aggressive molecular and histological subtypes, as well as poor survival. On tumor infiltrating immune cells, A2AR was found to correlate positively with PD-1 and negatively with CTLA-4. On the other hand, our findings disclosed more profuse infiltration of protumoral cells such as M0 and M2 macrophages, Tregs, endothelial and exhausted CD8+ T cells within A2ARhigh tumors. According to the Single-Cell database, A2AR is expressed in malignant, stromal and immune cells. Moreover, it is related to tumor purity, stromal and immune scores. Our results also revealed that CD8+T cells from A2ARhigh patients exhibited an exhausted functional profile. Finally, GSEA analysis highlighted the association of A2AR with biological mechanisms involved in tumor escape and progression. Conclusion The present study is the first to elucidate the clinical and immunological relevance of A2AR in breast cancer patients. In light of these findings, A2AR could be deemed a promising therapeutic target to overcome immune evasion prevailing within the TME of breast cancer patients.
Collapse
Affiliation(s)
- Basma Zohair
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Dounia Chraa
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Ibtissam Rezouki
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Hamza Benthami
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtissam Razzouki
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Mohamed Elkarroumi
- Mohamed VI Oncology Center, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Daniel Olive
- Team Immunity and Cancer, The Cancer Research Center of Marseille (CRCM), Inserm, 41068, CNRS, UMR7258, Paoli-Calmettes Institute, Aix-Marseille University, UM 105, Marseille, France
| | - Mehdi Karkouri
- Department of Pathological Anatomy, Ibn Rochd University Hospital Center, Casablanca, Morocco
| | - Abdallah Badou
- Immuno-Genetics and Human Pathology Laboratory (LIGEP), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research & Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
20
|
Goßen J, Ribeiro RP, Bier D, Neumaier B, Carloni P, Giorgetti A, Rossetti G. AI-based identification of therapeutic agents targeting GPCRs: introducing ligand type classifiers and systems biology. Chem Sci 2023; 14:8651-8661. [PMID: 37592985 PMCID: PMC10430665 DOI: 10.1039/d3sc02352d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Identifying ligands targeting G protein coupled receptors (GPCRs) with novel chemotypes other than the physiological ligands is a challenge for in silico screening campaigns. Here we present an approach that identifies novel chemotype ligands by combining structural data with a random forest agonist/antagonist classifier and a signal-transduction kinetic model. As a test case, we apply this approach to identify novel antagonists of the human adenosine transmembrane receptor type 2A, an attractive target against Parkinson's disease and cancer. The identified antagonists were tested here in a radio ligand binding assay. Among those, we found a promising ligand whose chemotype differs significantly from all so-far reported antagonists, with a binding affinity of 310 ± 23.4 nM. Thus, our protocol emerges as a powerful approach to identify promising ligand candidates with novel chemotypes while preserving antagonistic potential and affinity in the nanomolar range.
Collapse
Affiliation(s)
- Jonas Goßen
- Institute for Computational Biomedicine (INM-9/IAS-5) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Germany
- Faculty of Mathematics, Computer Science and Natural Sciences RWTH Aachen University Aachen Germany
| | - Rui Pedro Ribeiro
- Institute for Computational Biomedicine (INM-9/IAS-5) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Dirk Bier
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52428 Jülich Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Faculty of Medicine and University Hospital Cologne Kerpener Straße 62 50937 Cologne Germany
| | - Paolo Carloni
- Institute for Computational Biomedicine (INM-9/IAS-5) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Germany
- Faculty of Mathematics, Computer Science and Natural Sciences RWTH Aachen University Aachen Germany
- JARA-Institut Molecular Neuroscience and Neuroimaging (INM-11) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Alejandro Giorgetti
- Institute for Computational Biomedicine (INM-9/IAS-5) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Germany
- Department of Biotechnology University of Verona Verona Italy
| | - Giulia Rossetti
- Institute for Computational Biomedicine (INM-9/IAS-5) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Germany
- Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany
- Department of Neurology University Hospital Aachen (UKA), RWTH Aachen University Aachen Germany
| |
Collapse
|
21
|
Graziano V, Dannhorn A, Hulme H, Williamson K, Buckley H, Karim SA, Wilson M, Lee SY, Kaistha BP, Islam S, Thaventhiran JED, Richards FM, Goodwin R, Brais R, Morton JP, Dovedi SJ, Schuller AG, Eyles J, Jodrell DI. Defining the spatial distribution of extracellular adenosine revealed a myeloid-dependent immunosuppressive microenvironment in pancreatic ductal adenocarcinoma. J Immunother Cancer 2023; 11:e006457. [PMID: 37553182 PMCID: PMC10414095 DOI: 10.1136/jitc-2022-006457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.
Collapse
Affiliation(s)
- Vincenzo Graziano
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Andreas Dannhorn
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca R&D, Cambridge, UK
| | - Heather Hulme
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca R&D, Cambridge, UK
| | - Kate Williamson
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Hannah Buckley
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Matthew Wilson
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Sheng Y Lee
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Brajesh P Kaistha
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Sabita Islam
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Richard Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences (CPSS), AstraZeneca R&D, Cambridge, UK
| | - Rebecca Brais
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Simon J Dovedi
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | | | - Jim Eyles
- Oncology R&D, Research and Early Development, AstraZeneca R&D, Cambridge, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Stagg J, Golden E, Wennerberg E, Demaria S. The interplay between the DNA damage response and ectonucleotidases modulates tumor response to therapy. Sci Immunol 2023; 8:eabq3015. [PMID: 37418547 PMCID: PMC10394739 DOI: 10.1126/sciimmunol.abq3015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
The extracellular nucleoside adenosine reduces tissue inflammation and is generated by irreversible dephosphorylation of adenosine monophosphate (AMP) mediated by the ectonucleotidase CD73. The pro-inflammatory nucleotides adenosine triphosphate, nicotinamide adenine dinucleotide, and cyclic guanosine -monophosphate-AMP (cGAMP), which are produced in the tumor microenvironment (TME) during therapy-induced immunogenic cell death and activation of innate immune signaling, can be converted into AMP by ectonucleotidases CD39, CD38, and CD203a/ENPP1. Thus, ectonucleotidases shape the TME by converting immune-activating signals into an immunosuppressive one. Ectonucleotidases also hinder the ability of therapies including radiation therapy, which enhance the release of pro-inflammatory nucleotides in the extracellular milieu, to induce immune-mediated tumor rejection. Here, we review the immunosuppressive effects of adenosine and the role of different ectonucleotidases in modulating antitumor immune responses. We discuss emerging opportunities to target adenosine generation and/or its ability to signal via adenosine receptors expressed by immune and cancer cells in the context of combination immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- John Stagg
- Centre de Recherche du Centre Hospitalier de
l’Université de Montréal, 900 St-Denis street, Montreal,
Quebec, Canada, H2X 0A9
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
| | - Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer
Research, London SM2 5NG, UK
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine,
New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill
Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
23
|
Yang K, Yu W, Liu H, Lou F, Cao S, Wang H, He Z. Mutational pattern off homologous recombination repair (HRR)-related genes in upper tract urothelial carcinoma. Cancer Med 2023; 12:15304-15316. [PMID: 37387466 PMCID: PMC10417099 DOI: 10.1002/cam4.6175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Homologous recombination (HR) repair (HRR) has been indicated to be a biomarker for immunotherapy, chemotherapy, and poly-ADP ribose polymerase inhibitors inhibitors (PARPis). Nonetheless, their molecular correlates in upper tract urothelial carcinoma (UTUC) have not been well studied. This study aimed to explore the molecular mechanism and tumor immune profile of HRR genes and the relevance of their prognostic value in patients with UTUC. MATERIALS AND METHODS One hundred and ninety-seven tumors and matched blood samples from Chinese UTUC were subjected to next-generation sequencing. A total of 186 patients from The Cancer Genome Atlas were included. Comprehensive analysis was performed. RESULTS In Chinese patients with UTUC, 5.01% harbored germline HRR gene mutations, and 1.01% had Lynch syndrome-related genes. A total of 37.6% (74/197) of patients carried somatic or germline HRR gene mutations. There was marked discrepancy in the mutation landscapes, genetic interactions, and driver genes between the HRR-mut cohorts and HRR-wt cohorts. Aristolochic acid signatures and defective DNA mismatch repair signatures only existed in individuals in the HRR-mut cohorts. Inversely, the unknown signature (signature A) and signature SBS55 only existed in patients in the HRR-wt cohorts. HRR gene mutations regulated immune activities by NKT cells, plasmacytoid dendritic cells, hematopoietic stem cell, and M1 macrophages. In patients with local recurrence, patients with HRR gene mutations had poorer DFS rates than patients with wild-type HRR genes. CONCLUSIONS Our results imply that the detection of HRR gene mutations can predict recurrence in patients with UC. In addition, this study provides a path to explore the role of HRR-directed therapies, including PARPis, chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Kaiwei Yang
- Department of urologyPeking University First HospitalBeijingChina
| | - Wei Yu
- Department of urologyPeking University First HospitalBeijingChina
| | | | - Feng Lou
- AcornMed Biotechnology Co., Ltd.BeijingChina
| | - Shanbo Cao
- AcornMed Biotechnology Co., Ltd.BeijingChina
| | - Huina Wang
- AcornMed Biotechnology Co., Ltd.BeijingChina
| | - Zhisong He
- Department of urologyPeking University First HospitalBeijingChina
| |
Collapse
|
24
|
Claff T, Schlegel JG, Voss JH, Vaaßen VJ, Weiße RH, Cheng RKY, Markovic-Mueller S, Bucher D, Sträter N, Müller CE. Crystal structure of adenosine A 2A receptor in complex with clinical candidate Etrumadenant reveals unprecedented antagonist interaction. Commun Chem 2023; 6:106. [PMID: 37264098 DOI: 10.1038/s42004-023-00894-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The Gs protein-coupled adenosine A2A receptor (A2AAR) represents an emerging drug target for cancer immunotherapy. The clinical candidate Etrumadenant was developed as an A2AAR antagonist with ancillary blockade of the A2BAR subtype. It constitutes a unique chemotype featuring a poly-substituted 2-amino-4-phenyl-6-triazolylpyrimidine core structure. Herein, we report two crystal structures of the A2AAR in complex with Etrumadenant, obtained with differently thermostabilized A2AAR constructs. This led to the discovery of an unprecedented interaction, a hydrogen bond of T883.36 with the cyano group of Etrumadenant. T883.36 is mutated in most A2AAR constructs used for crystallization, which has prevented the discovery of its interactions. In-vitro characterization of Etrumadenant indicated low selectivity versus the A1AR subtype, which can be rationalized by the structural data. These results will facilitate the future design of AR antagonists with desired selectivity. Moreover, they highlight the advantages of the employed A2AAR crystallization construct that is devoid of ligand binding site mutations.
Collapse
Affiliation(s)
- Tobias Claff
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53113, Bonn, Germany.
| | - Jonathan G Schlegel
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53113, Bonn, Germany
| | - Jan H Voss
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53113, Bonn, Germany
| | - Victoria J Vaaßen
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53113, Bonn, Germany
| | - Renato H Weiße
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | | | | | - Denis Bucher
- leadXpro AG, PARK InnovAARE, 5234, Villigen, Switzerland
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Christa E Müller
- PharmaCenter Bonn & Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53113, Bonn, Germany.
| |
Collapse
|
25
|
Ziogas DC, Theocharopoulos C, Lialios PP, Foteinou D, Koumprentziotis IA, Xynos G, Gogas H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers (Basel) 2023; 15:2718. [PMID: 37345056 PMCID: PMC10216291 DOI: 10.3390/cancers15102718] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.T.); (P.-P.L.); (D.F.); (I.-A.K.); (G.X.)
| |
Collapse
|
26
|
Matricon P, Nguyen AT, Vo DD, Baltos JA, Jaiteh M, Luttens A, Kampen S, Christopoulos A, Kihlberg J, May LT, Carlsson J. Structure-based virtual screening discovers potent and selective adenosine A 1 receptor antagonists. Eur J Med Chem 2023; 257:115419. [PMID: 37301076 DOI: 10.1016/j.ejmech.2023.115419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023]
Abstract
Development of subtype-selective leads is essential in drug discovery campaigns targeting G protein-coupled receptors (GPCRs). Herein, a structure-based virtual screening approach to rationally design subtype-selective ligands was applied to the A1 and A2A adenosine receptors (A1R and A2AR). Crystal structures of these closely related subtypes revealed a non-conserved subpocket in the binding sites that could be exploited to identify A1R selective ligands. A library of 4.6 million compounds was screened computationally against both receptors using molecular docking and 20 A1R selective ligands were predicted. Of these, seven antagonized the A1R with micromolar activities and several compounds displayed slight selectivity for this subtype. Twenty-seven analogs of two discovered scaffolds were designed, resulting in antagonists with nanomolar potency and up to 76-fold A1R-selectivity. Our results show the potential of structure-based virtual screening to guide discovery and optimization of subtype-selective ligands, which could facilitate the development of safer drugs.
Collapse
Affiliation(s)
- Pierre Matricon
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Anh Tn Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Mariama Jaiteh
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Stefanie Kampen
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, SE-751 23, Uppsala, Sweden
| | - Lauren Therese May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
27
|
Cui W, Dong J, Wang S, Vogel H, Zou R, Yuan S. Molecular basis of ligand selectivity for melatonin receptors. RSC Adv 2023; 13:4422-4430. [PMID: 36760312 PMCID: PMC9891099 DOI: 10.1039/d2ra06693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Sleep disorders in adults are related to adverse health effects such as reduced quality of life and increased mortality. About 30-40% of adults are suffering from different sleep disorders. The human melatonin receptors (MT1 and MT2) are family A G protein-coupled receptors that respond to the neurohormone melatonin MEL which regulates circadian rhythm and sleep. Many efforts have been made to develop drugs targeting melatonin receptors to treat insomnia, circadian rhythm disorders, and even cancer. However, designing subtype-selective melatonergic drugs remains challenging due to their high similarities in both sequences and structures. MEL (a function-selective compound with a bulky β-naphthyl group) behaves as an MT2-selective antagonist, whereas it is an agonist of MT1. Here, molecular dynamics simulations were used to investigate the ligand selectivity of MT receptors at the atomic level. We found that the binding conformation of MEL differs in different melatonin receptors. In MT1, the naphthalene ring of MEL forms a structure perpendicular to the membrane surface. In contrast, there is a 130° angle between the naphthalene ring of MEL and the membrane surface in MT2. Because of this conformational difference, the MEL leads to a constant water channel in MT1 which activates the receptor. However, MEL hinders the formation of continuous water channels, resulting in an inactive state of MT2. Furthermore, we found that A1173.29 in MT2 is a crucial amino acid capable of hindering the conformational flip of the MEL molecule. These results, coupled with previous functional data, reveal that although MT1 and MT2 share highly similar orthosteric ligand-binding pockets, they also display distinctive features that could be used to design selective compounds. Our findings provide new insights into functionally selective melatonergic drug development for sleep disorders.
Collapse
Affiliation(s)
- Wenqiang Cui
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Junlin Dong
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Shiyu Wang
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Horst Vogel
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Rongfeng Zou
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Institute of Biomedicine and Biotechnology, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
28
|
Han R, Yoon H, Yoo J, Lee Y. Systematic analyses of the sequence conservation and ligand interaction patterns of purinergic P1 and P2Y receptors provide a structural basis for receptor selectivity. Comput Struct Biotechnol J 2023; 21:889-898. [PMID: 36698973 PMCID: PMC9860165 DOI: 10.1016/j.csbj.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Purinergic receptors are membrane proteins that regulate numerous cellular functions by catalyzing reactions involving purine nucleotides or nucleosides. Among the three receptor families, i.e., P1, P2X, and P2Y, the P1 and P2Y receptors share common structural features of class A GPCR. Comprehensive sequence and structural analysis revealed that the P1 and P2Y receptors belong to two distinct groups. They exhibit different ligand-binding site features that can distinguish between specific activators. These specific amino acid residues in the binding cavity may be involved in the selectivity and unique pharmacological behavior of each subtype. In this study, we conducted a structure-based analysis of purinergic P1 and P2Y receptors to identify their evolutionary signature and obtain structural insights into ligand recognition and selectivity. The structural features of the P1 and P2Y receptor classes were compared based on sequence conservation and ligand interaction patterns. Orthologous protein sequences were collected for the P1 and P2Y receptors, and sequence conservation was calculated based on Shannon entropy to identify highly conserved residues. To analyze the ligand interaction patterns, we performed docking studies on the P1 and P2Y receptors using known ligand information extracted from the ChEMBL database. We analyzed how the conserved residues are related to ligand-binding sites and how the key interacting residues differ between P1 and P2Y receptors, or between agonists and antagonists. We extracted new similarities and differences between the receptor subtypes, and the results can be used for designing new ligands by predicting hotspot residues that are important for functional selectivity.
Collapse
|
29
|
Liu R, Duan W, Yan W, Zhang J, Cheng J. Design and synthesis of tri-substituted pyrimidine derivatives as bifunctional tumor immunotherapeutic agents targeting both A2A adenosine receptors and histone deacetylases. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Wu Y, Yang Z, Cheng K, Bi H, Chen J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12:4287-4308. [PMID: 36562003 PMCID: PMC9764074 DOI: 10.1016/j.apsb.2022.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
Collapse
Affiliation(s)
| | | | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
31
|
Lim EA, Bendell JC, Falchook GS, Bauer TM, Drake CG, Choe JH, George DJ, Karlix JL, Ulahannan S, Sachsenmeier KF, Russell DL, Moorthy G, Sidders BS, Pilling EA, Chen H, Hattersley MM, Das M, Kumar R, Pouliot GP, Patel MR. Phase Ia/b, Open-Label, Multicenter Study of AZD4635 (an Adenosine A2A Receptor Antagonist) as Monotherapy or Combined with Durvalumab, in Patients with Solid Tumors. Clin Cancer Res 2022; 28:4871-4884. [PMID: 36044531 PMCID: PMC9660540 DOI: 10.1158/1078-0432.ccr-22-0612] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate AZD4635, an adenosine A2A receptor antagonist, as monotherapy or in combination with durvalumab in patients with advanced solid tumors. PATIENTS AND METHODS In phase Ia (dose escalation), patients had relapsed/refractory solid tumors; in phase Ib (dose expansion), patients had checkpoint inhibitor-naïve metastatic castration-resistant prostate cancer (mCRPC) or colorectal carcinoma, non-small cell lung cancer with prior anti-PD-1/PD-L1 exposure, or other solid tumors (checkpoint-naïve or prior anti-PD-1/PD-L1 exposure). Patients received AZD4635 monotherapy (75-200 mg once daily or 125 mg twice daily) or in combination with durvalumab (AZD4635 75 or 100 mg once daily). The primary objective was safety; secondary objectives included antitumor activity and pharmacokinetics; exploratory objectives included evaluation of an adenosine gene signature in patients with mCRPC. RESULTS As of September 8, 2020, 250 patients were treated (AZD4635, n = 161; AZD4635+durvalumab, n = 89). In phase Ia, DLTs were observed with monotherapy (125 mg twice daily; n = 2) and with combination treatment (75 mg; n = 1) in patients receiving nanosuspension. The most common treatment-related adverse events included nausea, fatigue, vomiting, decreased appetite, dizziness, and diarrhea. The RP2D of the AZD4635 capsule formulation was 75 mg once daily, as monotherapy or in combination with durvalumab. The pharmacokinetic profile was dose-proportional, and exposure was adequate to cover target with 100 mg nanosuspension or 75 mg capsule once daily. In patients with mCRPC receiving monotherapy or combination treatment, tumor responses (2/39 and 6/37, respectively) and prostate-specific antigen responses (3/60 and 10/45, respectively) were observed. High versus low blood-based adenosine signature was associated with median progression-free survival of 21 weeks versus 8.7 weeks. CONCLUSIONS AZD4635 monotherapy or combination therapy was well tolerated. Objective responses support additional phase II combination studies in patients with mCRPC.
Collapse
Affiliation(s)
- Emerson A. Lim
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York.,Corresponding Author: Emerson A. Lim, Department of Medicine, Division of Hematology/Oncology, Columbia University Herbert Irving Comprehensive Cancer Center, 161 Fort Washington Avenue, 9th Floor, New York, NY 10032. Phone: 212-305-5098; Fax: 212-305-6762; E-mail:
| | - Johanna C. Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Gerald S. Falchook
- Drug Development Unit, Sarah Cannon Research Institute at HealthONE, Denver, Colorado
| | - Todd M. Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Charles G. Drake
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York
| | | | | | | | - Susanna Ulahannan
- Sarah Cannon Research Institute/Oklahoma University, Oklahoma City, Oklahoma
| | | | | | - Ganesh Moorthy
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, Massachusetts
| | - Ben S. Sidders
- Oncology Biometrics R&D, AstraZeneca, Cambridge, England, United Kingdom
| | | | - Huifang Chen
- Oncology R&D, AstraZeneca, Boston, Massachusetts
| | | | - Mayukh Das
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | - Rakesh Kumar
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | | - Manish R. Patel
- Sarah Cannon Research Institute/Florida Cancer Specialists, Sarasota, Florida
| |
Collapse
|
32
|
Wang Y, Wang Y, Ren Y, Zhang Q, Yi P, Cheng C. Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Semin Cancer Biol 2022; 86:542-565. [PMID: 35151845 DOI: 10.1016/j.semcancer.2022.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/08/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1)-based immune checkpoint inhibitors (ICIs) have led to significant improvements in the overall survival of patients with certain cancers and are expected to benefit patients by achieving complete, long-lasting remissions and cure. However, some patients who receive ICIs either fail treatment or eventually develop immunotherapy resistance. The existence of such patients necessitates a deeper understanding of cancer progression, specifically nutrient regulation in the tumor microenvironment (TME), which includes both metabolic cross-talk between metabolites and tumor cells, and intracellular metabolism in immune and cancer cells. Here we review the features and behaviors of the TME and discuss the recently identified major immune checkpoints. We comprehensively and systematically summarize the metabolic modulation of tumor immunity and immune checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways, and further discuss the potential metabolism-based therapeutic strategies tested in preclinical and clinical settings. These findings will help to determine the existence of a link or crosstalk between tumor metabolism and immunotherapy, which will provide an important insight into cancer treatment and cancer research.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical Center, Chongqing, 400038, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, 43221, United States.
| |
Collapse
|
33
|
Immunoregulatory signal networks and tumor immune evasion mechanisms: insights into therapeutic targets and agents in clinical development. Biochem J 2022; 479:2219-2260. [DOI: 10.1042/bcj20210233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Through activation of immune cells, the immune system is responsible for identifying and destroying infected or otherwise damaged cells including tumorigenic cells that can be recognized as foreign, thus maintaining homeostasis. However, tumor cells have evolved several mechanisms to avoid immune cell detection and killing, resulting in tumor growth and progression. In the tumor microenvironment, tumor infiltrating immune cells are inactivated by soluble factors or tumor promoting conditions and lose their effects on tumor cells. Analysis of signaling and crosstalk between immune cells and tumor cells have helped us to understand in more detail the mechanisms of tumor immune evasion and this forms basis for drug development strategies in the area of cancer immunotherapy. In this review, we will summarize the dominant signaling networks involved in immune escape and describe the status of development of therapeutic strategies to target tumor immune evasion mechanisms with focus on how the tumor microenvironment interacts with T cells.
Collapse
|
34
|
Bai Y, Zhang X, Zheng J, Liu Z, Yang Z, Zhang X. Overcoming high level adenosine-mediated immunosuppression by DZD2269, a potent and selective A2aR antagonist. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:302. [PMID: 36229853 PMCID: PMC9563815 DOI: 10.1186/s13046-022-02511-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Adenosine is a potent immunosuppressant whose levels in the tumor microenvironment (TME) are often much higher than those in normal tissues. Binding of adenosine to its receptor A2aR activates a cascade of genes and leads to immunosuppression. In addition, immune checkpoint blockage markedly increases A2aR expression in T cells, which could dampen their anti-tumor response. Several A2aR antagonists are under clinical development, but with limited clinical benefit reported so far. These A2aR antagonists showed much diminished activity at high adenosine levels found in TME, which may explain their clinical underperformance. We report the discovery and early clinical development of DZD2269, a novel A2aR antagonist which can fully block A2aR mediated immunosuppression commonly found in TME. Adenosine stimulates phosphorylation of cyclic AMP response element binding protein (CREB) in T cells and inhibits anti-tumor cytokine secretion in PBMCs in a dose-dependent manner. DZD2269 was able to reverse the immunosuppression induced by high concentrations of adenosine, as demonstrated by inhibiting CREB phosphorylation in T cells, restoring Th1 cytokine secretion in PBMCs, and stimulating dendritic cells (DCs) maturation. As a single agent, DZD2269 showed anti-tumor growth in multiple syngeneic mouse tumor models, and more profound anti-tumor effects were observed when DZD2269 was in combination with immune checkpoint inhibitors, radiotherapy, or chemotherapy. A good PK/PD relationship was observed in these animal models. In the phase 1 clinical study, downregulation of pCREB was detected in human T cells, consistent with preclinical prediction. Our data support further clinical development of DZD2269 in patients with cancer. METHODS The selectivity of DZD2269 for adenosine receptors was tested in engineered cell lines, and its efficacy in blocking A2aR signaling and reversing adenosine-mediated immunosuppression was assessed in human T cells and peripheral blood mononuclear cells (PBMCs). The anti-tumor effects of DZD2269 were evaluated in multiple syngeneic mouse models as a single agent as well as in combination with chemotherapy, radiotherapy, or immune checkpoint inhibitors. A phase 1 study in healthy volunteers (NCT04932005) has been initiated to assess safety, pharmacokinetics (PK) and pharmacodynamics (PD) of DZD2269. RESULTS Adenosine stimulates phosphorylation of cyclic AMP response element binding protein (CREB) in T cells and inhibits anti-tumor cytokine secretion in PBMCs in a dose-dependent manner. DZD2269 was able to reverse the immunosuppression induced by high concentrations of adenosine, as demonstrated by inhibiting CREB phosphorylation in T cells, restoring Th1 cytokine secretion in PBMCs, and stimulating dendritic cells (DCs) maturation. As a single agent, DZD2269 showed anti-tumor growth in multiple syngeneic mouse tumor models, and more profound anti-tumor effects were observed when DZD2269 was in combination with immune checkpoint inhibitors, radiotherapy, or chemotherapy. A good PK/PD relationship was observed in these animal models. In the phase 1 clinical study, downregulation of pCREB was detected in human T cells, consistent with preclinical prediction. CONCLUSION DZD2269 is a novel A2aR antagonist which can fully block A2aR mediated immunosuppression commonly found in TME. Clinical development of DZD2269 in patients with cancer is warranted (NCT04634344).
Collapse
Affiliation(s)
- Yu Bai
- grid.11135.370000 0001 2256 9319Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Xin Zhang
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Jie Zheng
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Ziyi Liu
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Zhenfan Yang
- Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| | - Xiaolin Zhang
- grid.11135.370000 0001 2256 9319Biomed-X Center, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,Dizal Pharmaceuticals, 199 Liangjing Rd, Zhangjiang Hi-Tech Park, Pudong District, 201203 Shanghai, China
| |
Collapse
|
35
|
Shiriaeva A, Park D, Kim G, Lee Y, Hou X, Jarhad DB, Kim G, Yu J, Hyun YE, Kim W, Gao ZG, Jacobson KA, Han GW, Stevens RC, Jeong LS, Choi S, Cherezov V. GPCR Agonist-to-Antagonist Conversion: Enabling the Design of Nucleoside Functional Switches for the A 2A Adenosine Receptor. J Med Chem 2022; 65:11648-11657. [PMID: 35977382 PMCID: PMC9469204 DOI: 10.1021/acs.jmedchem.2c00462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Indexed: 01/03/2023]
Abstract
Modulators of the G protein-coupled A2A adenosine receptor (A2AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an A2AAR agonist into an antagonist. We synthesized and characterized a novel A2AAR antagonist, 2 (LJ-4517), with Ki = 18.3 nM. X-ray crystallographic structures of 2 in complex with two thermostabilized A2AAR constructs were solved at 2.05 and 2.80 Å resolutions. In contrast to A2AAR agonists, which simultaneously interact with both Ser2777.42 and His2787.43, 2 only transiently contacts His2787.43, which can be direct or water-mediated. The n-hexynyl group of 2 extends into an A2AAR exosite. Structural analysis revealed that the introduced thiophene modification restricted receptor conformational rearrangements required for subsequent activation. This approach can expand the repertoire of adenosine receptor antagonists that can be designed based on available agonist scaffolds.
Collapse
Affiliation(s)
- Anna Shiriaeva
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| | - Daejin Park
- Department
of Pharmacology, Kosin University College
of Medicine, Busan 49267, Republic of Korea
| | - Gyudong Kim
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
- College
of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoonji Lee
- College
of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xiyan Hou
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Dnyandev B. Jarhad
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Gibae Kim
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jinha Yu
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Young Eum Hyun
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Woomi Kim
- Department
of Pharmacology, Kosin University College
of Medicine, Busan 49267, Republic of Korea
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes and Digestive and Kidney Disease, National Institutes
of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United
States
| | - Gye Won Han
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| | - Raymond C. Stevens
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
- Structure
Therapeutics, 701 Gateway
Blvd, South San Francisco, California 94080, United States
| | - Lak Shin Jeong
- Research
Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic
of Korea
| | - Sun Choi
- Global
AI Drug Discovery Center, College of Pharmacy and Graduate School
of Pharmaceutical Sciences, Ewha Womans
University, Seoul 03760, Republic of Korea
| | - Vadim Cherezov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Bridge
Institute, University
of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
36
|
Bova V, Filippone A, Casili G, Lanza M, Campolo M, Capra AP, Repici A, Crupi L, Motta G, Colarossi C, Chisari G, Cuzzocrea S, Esposito E, Paterniti I. Adenosine Targeting as a New Strategy to Decrease Glioblastoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14164032. [PMID: 36011024 PMCID: PMC9406358 DOI: 10.3390/cancers14164032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Given the rising mortality rate caused by GBM, current therapies do not appear to be effective in counteracting tumor progression. The role of adenosine and its interaction with specific receptor subtypes in various physiological functions has been studied for years. Only recently, adenosine has been defined as a tumor-protective target because of its accumulation in the tumor microenvironment. Current knowledge of the adenosine pathway and its involvement in brain tumors would support research in the development of adenosine receptor antagonists that could represent alternative treatments for glioblastoma, used either alone and/or in combination with chemotherapy, immunotherapy, or both. Abstract Glioblastoma is the most commonly malignant and aggressive brain tumor, with a high mortality rate. The role of the purine nucleotide adenosine and its interaction with its four subtypes receptors coupled to the different G proteins, A1, A2A, A2B, and A3, and its different physiological functions in different systems and organs, depending on the active receptor subtype, has been studied for years. Recently, several works have defined extracellular adenosine as a tumoral protector because of its accumulation in the tumor microenvironment. Its presence is due to both the interaction with the A2A receptor subtype and the increase in CD39 and CD73 gene expression induced by the hypoxic state. This fact has fueled preclinical and clinical research into the development of efficacious molecules acting on the adenosine pathway and blocking its accumulation. Given the success of anti-cancer immunotherapy, the new strategy is to develop selective A2A receptor antagonists that could competitively inhibit binding to its endogenous ligand, making them reliable candidates for the therapeutic management of brain tumors. Here, we focused on the efficacy of adenosine receptor antagonists and their enhancement in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Gianmarco Motta
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
37
|
Schäkel L, Mirza S, Winzer R, Lopez V, Idris R, Al-Hroub H, Pelletier J, Sévigny J, Tolosa E, Müller CE. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39 - a promising target for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004660. [PMID: 35981785 PMCID: PMC9394215 DOI: 10.1136/jitc-2022-004660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A2A and A2B receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis. Cancer cells upregulate ectonucleotidases, most importantly CD39 and CD73, which catalyze the hydrolysis of extracellular ATP to AMP (CD39) and further to adenosine (CD73). Inhibition of CD39 is thus expected to be an effective strategy for the (immuno)therapy of cancer. However, suitable small molecule inhibitors for CD39 are not available. Our aim was to identify drug-like CD39 inhibitors and evaluate them in vitro. Methods We pursued a repurposing approach by screening a self-compiled collection of approved, mostly ATP-competitive protein kinase inhibitors, on human CD39. The best hit compound was further characterized and evaluated in various orthogonal assays and enzyme preparations, and on human immune and cancer cells. Results The tyrosine kinase inhibitor ceritinib, a potent anticancer drug used for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer, was found to strongly inhibit CD39 showing selectivity versus other ectonucleotidases. The drug displays a non-competitive, allosteric mechanism of CD39 inhibition exhibiting potency in the low micromolar range, which is independent of substrate (ATP) concentration. We could show that ceritinib inhibits ATP dephosphorylation in peripheral blood mononuclear cells in a dose-dependent manner, resulting in a significant increase in ATP concentrations and preventing adenosine formation from ATP. Importantly, ceritinib (1–10 µM) substantially inhibited ATP hydrolysis in triple negative breast cancer and melanoma cells with high native expression of CD39. Conclusions CD39 inhibition might contribute to the effects of the powerful anticancer drug ceritinib. Ceritinib is a novel CD39 inhibitor with high metabolic stability and optimized physicochemical properties; according to our knowledge, it is the first brain-permeant CD39 inhibitor. Our discovery will provide the basis (i) to develop more potent and balanced dual CD39/ALK inhibitors, and (ii) to optimize the ceritinib scaffold towards interaction with CD39 to obtain potent and selective drug-like CD39 inhibitors for future in vivo studies.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riekje Winzer
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham Idris
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Eva Tolosa
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Guan S, Suman S, Amann JM, Wu R, Carbone DP, Wang J, Dikov MM. Metabolic reprogramming by adenosine antagonism and implications in non-small cell lung cancer therapy. Neoplasia 2022; 32:100824. [PMID: 35914370 PMCID: PMC9344351 DOI: 10.1016/j.neo.2022.100824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease with genetic and environmental parameters that influence cell metabolism. Because of the complex interplay of environmental factors within the tumor microenvironment (TME) and the profound impact of these factors on the metabolic activities of tumor and immune cells, there is an emerging interest to advance the understanding of these diverse metabolic phenotypes in the TME. High levels of adenosine are characteristic of the TME, and adenosine can have a significant impact on both tumor cell growth and the immune response. Consistent with this, we showed in NSCLC data from TCGA that high expression of the A2BR leads to worse outcome and that expression of A2BR may be different for different mutation backgrounds. We then investigated the metabolic reprogramming of tumor cells and immune cells (T and dendritic cells) by adenosine. We used A2AR and A2BR antagonism or agonism as well as receptor knockout animals to explore whether these treatments altered specific immune compartments or conferred specific therapeutic vulnerabilities. Using the seahorse assay, we found that an A2BR antagonist modulates oxidative stress homeostasis in NSCLC cell lines. In addition, we found distinct metabolic roles of A2AR and A2BR receptors in T cell activation and dendritic cell maturation. These data suggest potential mechanisms and therapeutic benefits of A2 receptor antagonist therapy in NSCLC.
Collapse
Affiliation(s)
- Shuxiao Guan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States.
| | - Shankar Suman
- The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Joseph M Amann
- The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Ruohan Wu
- The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - David P Carbone
- The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Mikhail M Dikov
- The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| |
Collapse
|
39
|
Wang X, Yuan S, Chan HCS. Translocation Mechanism of Allosteric Sodium Ions in β 2-Adrenoceptor. J Chem Inf Model 2022; 62:3090-3095. [PMID: 35695388 DOI: 10.1021/acs.jcim.2c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The allosteric modulation of G-protein-coupled receptors (GPCRs) by sodium ions has received significant attention as the crystal structures of several receptors show the binding of sodium ions (Na+) at the conserved D2.50. Theoretical studies have shown that extracellular Na+ would enter the allosteric D2.50 via the orthosteric site. However, it remains unclear how the bound allosteric Na+ would leave the GPCRs. In this study, we performed molecular dynamics (MD) simulations to illustrate the energy barriers of Na+ transfer through the transmembrane helix bundle of β2AR. In contrast to the postulations from other GPCRs, the translocation of this allosteric Na+ into the intracellular side is found to be significantly difficult. Hence, the translocation direction could be receptor-specific.
Collapse
Affiliation(s)
- Xueying Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Alpha Mol Science Ltd, Shenzhen 518055, China
| | - H C Stephen Chan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
40
|
Atif M, Alsrhani A, Naz F, Ullah MI, Alameen AAM, Imran M, Ejaz H. Adenosine A 2A receptor as a potential target for improving cancer immunotherapy. Mol Biol Rep 2022; 49:10677-10687. [PMID: 35752699 DOI: 10.1007/s11033-022-07685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
The adenosine nucleoside performs a wide range of actions on various human tissues by activating four cell surface receptors. Adenosine A2A receptors (A2ARs) are widely expressed in the striatum, olfactory bulb, platelets, leukocytes, spleen, and thymus. They promote vasodilatation, platelet antiaggregatory effect, protection from ischemic damage, and regulation of sensorimotor neurons in basal ganglia. Adenosine signaling plays a vital part in modulating in vivo pathophysiological responses. A2ARs are potent negative regulators of the antitumor and proinflammatory actions of activated T cells. This axis offers several therapeutic targets, the most important of which are A2ARs, HIF-1α, and CD39/CD73. Downregulation of this axis increases the effectiveness of modern immunotherapeutic approaches against cancer, such as αCTLA-4/αPD-1. These discoveries have led to a promising novel role of antagonists of A2AR in blocking angiogenesis in immunotherapy of cancer. A small molecule, AZD4635, strongly inhibits A2AR, lowering cancer volume and increasing anticancer immunity. Deletion of A2AR with CRISPR/Cas9 in both human and murine CAR T cells produces a substantial increase in the efficiency of these cells. This review asserts that inhibition of the adenosinergic pathway can boost antitumor immunity, and this axis should be a target for future immunotherapeutic strategies.
Collapse
Affiliation(s)
- Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Farrah Naz
- Department of Pathology, Institute of Public Health, Lahore, Pakistan
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Ayman Ali Mohammed Alameen
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia.
| |
Collapse
|
41
|
Luo HY, Shen HY, Perkins RS, Wang YX. Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy. Front Pharmacol 2022; 13:908882. [PMID: 35721189 PMCID: PMC9200284 DOI: 10.3389/fphar.2022.908882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.
Collapse
Affiliation(s)
- Hao-Yun Luo
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States.,Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Portland, OR, United States.,Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Ya-Xu Wang
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
42
|
Liu S, Ding W, Huang W, Zhang Z, Guo Y, Zhang Q, Wu L, Li Y, Qin R, Li J, Shi T, Zhang X, Lei J, Hu W. Discovery of Novel Benzo[4,5]imidazo[1,2- a]pyrazin-1-amine-3-amide-one Derivatives as Anticancer Human A 2A Adenosine Receptor Antagonists. J Med Chem 2022; 65:8933-8947. [PMID: 35714367 DOI: 10.1021/acs.jmedchem.2c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The blockade of A2A adenosine receptor (A2AAR) activates immunostimulatory response through regulating signaling in tumor microenvironment. Thus, A2AAR has been proposed as a promising target for cancer immunotherapy. In this work, we designed a new series of benzo[4,5]imidazo[1,2-a]pyrazin-1-amine derivatives bearing an amide substitution at 3-position to obtain potent antitumor antagonist in vivo. The structure-activity relationship studies were performed by molecular modeling and radioactive assay. The in vitro anticancer activities were evaluated by 3',5'-cyclic adenosine monophosphate (cAMP) functional and T cell activation assay. The most potent compound 12o·2HCl showed much higher affinity toward A2AAR (Ki = 0.08 nM) and exhibited more significant in vitro immunostimulatory anticancer activity than clinical antagonist AZD4635. More importantly, 12o·2HCl significantly inhibited the growth of triple-negative breast cancer by reversing immunosuppressive tumor microenvironment in the xenograft mouse model without severe toxicity at the testing dose. These results make 12o·2HCl a promising immunotherapy anticancer drug candidate.
Collapse
Affiliation(s)
- Shuhao Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Wen Ding
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Weifeng Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhijing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yinfeng Guo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qiyi Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.,National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Linna Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yukai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Rui Qin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jiahao Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Taoda Shi
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China.,National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
43
|
Claff T, Klapschinski TA, Tiruttani Subhramanyam UK, Vaaßen VJ, Schlegel JG, Vielmuth C, Voß JH, Labahn J, Müller CE. Single Stabilizing Point Mutation Enables High-Resolution Co-Crystal Structures of the Adenosine A 2A Receptor with Preladenant Conjugates. Angew Chem Int Ed Engl 2022; 61:e202115545. [PMID: 35174942 PMCID: PMC9310709 DOI: 10.1002/anie.202115545] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 01/08/2023]
Abstract
The G protein-coupled adenosine A2A receptor (A2A AR) is an important new (potential) drug target in immuno-oncology, and for neurodegenerative diseases. Preladenant and its derivatives belong to the most potent A2A AR antagonists displaying exceptional selectivity. While crystal structures of the human A2A AR have been solved, mostly using the A2A -StaR2 protein that bears 9 point mutations, co-crystallization with Preladenant derivatives has so far been elusive. We developed a new A2A AR construct harboring a single point mutation (S913.39 K) which renders it extremely thermostable. This allowed the co-crystallization of two novel Preladenant derivatives, the polyethylene glycol-conjugated (PEGylated) PSB-2113, and the fluorophore-labeled PSB-2115. The obtained crystal structures (2.25 Å and 2.6 Å resolution) provide explanations for the high potency and selectivity of Preladenant derivatives. They represent the first crystal structures of a GPCR in complex with PEG- and fluorophore-conjugated ligands. The applied strategy is predicted to be applicable to further class A GPCRs.
Collapse
Affiliation(s)
- Tobias Claff
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Tim A Klapschinski
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Udaya K Tiruttani Subhramanyam
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.,Research Centre Jülich, Institute of Complex Systems (IBI-7), Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Victoria J Vaaßen
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Jonathan G Schlegel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Christin Vielmuth
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Jan H Voß
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Jörg Labahn
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.,Research Centre Jülich, Institute of Complex Systems (IBI-7), Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
44
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
45
|
Liu Y, Liu Y, Xu D, Zang J, Zheng X, Zhao Y, Li Y, He R, Ruan S, Dong H, Gu J, Yang Y, Cheng Q, Li Y. Targeting the Negative Feedback of Adenosine-A2AR Metabolic Pathway by a Tailored Nanoinhibitor for Photothermal Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104182. [PMID: 35306759 PMCID: PMC9108638 DOI: 10.1002/advs.202104182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/21/2022] [Indexed: 05/10/2023]
Abstract
The metabolite adenosine plays an important immunosuppressive role in the tumor microenvironment (TME) through its ligation with the metabolic checkpoint adenosine 2A receptor (A2AR). Here, an adenosine-A2AR negative feedback pathway is highlighted during photothermal-induced immunogenic cell death (ICD). Adenosine, hydrolyzed from ATP, is amplified during the photothermal-induced ICD process. It is possible to achieve a robust ICD-based immunotherapy via targeting the adenosine-A2AR metabolic pathway. In this regard, an A2AR inhibitor-loaded polydopamine nanocarrier masked by an acid-sensitive PEG shell is designed to enable tumor-specific delivery and photothermal-induced ICD simultaneously. Upon reaching the acidic TME, the PEG shell selectively detaches and exposes the adhesive polydopamine layer, causing the inhibitors to accumulate at the tumor tissue. The accumulated inhibitors attenuate adenosine's metabolically suppressive effect and strengthen the ICD immune response. It occurs through promoting dendritic cell (DC) activation, increasing CD8+ T lymphocyte infiltration, and reducing the myeloid-derived suppressor cell (MDSC) population. Furthermore, this synergistic therapy significantly regresses the primary tumor, inhibits distal tumor growth, and prevents lung metastasis. The study highlights a strategy to enhance the immunotherapy efficacy of ICD by blocking the metabolic checkpoint A2AR using advanced nanomaterials.
Collapse
Affiliation(s)
- Yiqiong Liu
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Ying Liu
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Dailin Xu
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Jie Zang
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Zheng
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Yuge Zhao
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Li
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Ruiqing He
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Shuangrong Ruan
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Haiqing Dong
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Jingjing Gu
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Yan Yang
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| | - Qian Cheng
- Institute of acousticsSchool of Physics Science and EngineeringTongji UniversityShanghai200092China
| | - Yongyong Li
- Shanghai Skin Disease HospitalThe Institute for Biomedical Engineering & Nano ScienceSchool of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
46
|
Tay AHM, Prieto-Díaz R, Neo S, Tong L, Chen X, Carannante V, Önfelt B, Hartman J, Haglund F, Majellaro M, Azuaje J, Garcia-Mera X, Brea JM, Loza MI, Jespers W, Gutierrez-de-Teran H, Sotelo E, Lundqvist A. A 2B adenosine receptor antagonists rescue lymphocyte activity in adenosine-producing patient-derived cancer models. J Immunother Cancer 2022; 10:e004592. [PMID: 35580926 PMCID: PMC9115112 DOI: 10.1136/jitc-2022-004592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adenosine is a metabolite that suppresses antitumor immune response of T and NK cells via extracellular binding to the two subtypes of adenosine-2 receptors, A2ARs. While blockade of the A2AARs subtype effectively rescues lymphocyte activity, with four A2AAR antagonists currently in anticancer clinical trials, less is known for the therapeutic potential of the other A2BAR blockade within cancer immunotherapy. Recent studies suggest the formation of A2AAR/A2BAR dimers in tissues that coexpress the two receptor subtypes, where the A2BAR plays a dominant role, suggesting it as a promising target for cancer immunotherapy. METHODS We report the synthesis and functional evaluation of five potent A2BAR antagonists and a dual A2AAR/A2BAR antagonist. The compounds were designed using previous pharmacological data assisted by modeling studies. Synthesis was developed using multicomponent approaches. Flow cytometry was used to evaluate the phenotype of T and NK cells on A2BAR antagonist treatment. Functional activity of T and NK cells was tested in patient-derived tumor spheroid models. RESULTS We provide data for six novel small molecules: five A2BAR selective antagonists and a dual A2AAR/A2BAR antagonist. The growth of patient-derived breast cancer spheroids is prevented when treated with A2BAR antagonists. To elucidate if this depends on increased lymphocyte activity, immune cells proliferation, and cytokine production, lymphocyte infiltration was evaluated and compared with the potent A2AAR antagonist AZD-4635. We find that A2BAR antagonists rescue T and NK cell proliferation, IFNγ and perforin production, and increase tumor infiltrating lymphocytes infiltration into tumor spheroids without altering the expression of adhesion molecules. CONCLUSIONS Our results demonstrate that A2BAR is a promising target in immunotherapy, identifying ISAM-R56A as the most potent candidate for A2BAR blockade. Inhibition of A2BAR signaling restores T cell function and proliferation. Furthermore, A2BAR and dual A2AAR/A2BAR antagonists showed similar or better results than A2AAR antagonist AZD-4635 reinforcing the idea of dominant role of the A2BAR in the regulation of the immune system.
Collapse
Affiliation(s)
- Apple Hui Min Tay
- Department of Biological Science, Nanyang Technological University, Singapore
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Rubén Prieto-Díaz
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Shiyong Neo
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Singapore Immunology Network SIgN, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Valentina Carannante
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Majellaro
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Jhonny Azuaje
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Xerardo Garcia-Mera
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Jose M Brea
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Maria I Loza
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Hugo Gutierrez-de-Teran
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
47
|
IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol Rev 2022; 74:340-372. [PMID: 35302044 PMCID: PMC8973513 DOI: 10.1124/pharmrev.121.000445] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by small molecules. Since then, a wealth of new data and results has been added, allowing us to explore novel concepts such as target binding kinetics and biased signaling of adenosine receptors, to examine a multitude of receptor structures and novel ligands, to gauge new pharmacology, and to evaluate clinical trials with adenosine receptor ligands. This review should therefore be considered a further update of our previous reports from 2001 and 2011. SIGNIFICANCE STATEMENT: Adenosine receptors (ARs) are of continuing interest for future treatment of chronic and acute disease conditions, including inflammatory diseases, neurodegenerative afflictions, and cancer. The design of AR agonists ("biased" or not) and antagonists is largely structure based now, thanks to the tremendous progress in AR structural biology. The A2A- and A2BAR appear to modulate the immune response in tumor biology. Many clinical trials for this indication are ongoing, whereas an A2AAR antagonist (istradefylline) has been approved as an anti-Parkinson agent.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Kenneth A Jacobson
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Christa E Müller
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Bruce N Cronstein
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Rodrigo A Cunha
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| |
Collapse
|
48
|
Claff T, Klapschinski TA, Tiruttani Subhramanyam UK, Vaaßen VJ, Schlegel JG, Vielmuth C, Voß JH, Labahn J, Müller CE. Eine einzige stabilisierende Punktmutation ermöglicht hochaufgelöste Co‐Kristallstrukturen des Adenosin‐A
2A
‐Rezeptors mit Preladenant‐Konjugaten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tobias Claff
- Pharmaceutical Institute Pharmaceutical & Medicinal Chemistry University of Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Tim A. Klapschinski
- Pharmaceutical Institute Pharmaceutical & Medicinal Chemistry University of Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Udaya K. Tiruttani Subhramanyam
- Centre for Structural Systems Biology (CSSB) Notkestraße 85 22607 Hamburg Germany
- Research Centre Jülich Institute of Complex Systems (IBI-7) Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Victoria J. Vaaßen
- Pharmaceutical Institute Pharmaceutical & Medicinal Chemistry University of Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Jonathan G. Schlegel
- Pharmaceutical Institute Pharmaceutical & Medicinal Chemistry University of Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Christin Vielmuth
- Pharmaceutical Institute Pharmaceutical & Medicinal Chemistry University of Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Jan H. Voß
- Pharmaceutical Institute Pharmaceutical & Medicinal Chemistry University of Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Jörg Labahn
- Centre for Structural Systems Biology (CSSB) Notkestraße 85 22607 Hamburg Germany
- Research Centre Jülich Institute of Complex Systems (IBI-7) Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Christa E. Müller
- Pharmaceutical Institute Pharmaceutical & Medicinal Chemistry University of Bonn An der Immenburg 4 53121 Bonn Deutschland
| |
Collapse
|
49
|
Wang J, Bhattarai A, Do HN, Akhter S, Miao Y. Molecular Simulations and Drug Discovery of Adenosine Receptors. Molecules 2022; 27:2054. [PMID: 35408454 PMCID: PMC9000248 DOI: 10.3390/molecules27072054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins. Four subtypes of adenosine receptors (ARs), the A1AR, A2AAR, A2BAR and A3AR, each with a unique pharmacological profile and distribution within the tissues in the human body, mediate many physiological functions and serve as critical drug targets for treating numerous human diseases including cancer, neuropathic pain, cardiac ischemia, stroke and diabetes. The A1AR and A3AR preferentially couple to the Gi/o proteins, while the A2AAR and A2BAR prefer coupling to the Gs proteins. Adenosine receptors were the first subclass of GPCRs that had experimental structures determined in complex with distinct G proteins. Here, we will review recent studies in molecular simulations and computer-aided drug discovery of the adenosine receptors and also highlight their future research opportunities.
Collapse
Affiliation(s)
| | | | | | | | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA; (J.W.); (A.B.); (H.N.D.); (S.A.)
| |
Collapse
|
50
|
Wang Z, Yu L, Wang Y, Wang C, Mu Q, Liu X, Yu M, Wang K, Yao G, Yu Z. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104793. [PMID: 35064653 PMCID: PMC8922098 DOI: 10.1002/advs.202104793] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Indexed: 05/07/2023]
Abstract
Due to the aggregation-caused quenching effect and near-infrared I poor penetration capabilities of common fluorescent molecules, their applications in visualized imaging and photoactivated treatment are limited. Therefore, new near-infrared II (NIR-II) molecule (named TST), which had the abilities of aggregation-induced emission (AIE) and photothermal therapy are synthesized. Moreover, in order to further improve its fluorescent yield and therapeutic effect, camptothecin prodrug (CPT-S-PEG) and novel immune checkpoint inhibitor AZD4635 are used to co-assemble with TST into nanoparticles for drug delivery. On account of the strong interaction of camptothecin and TST, the intramolecular rotation of TST is limited, thereby inhibiting non-radiation attenuation and promoting fluorescence generation when the nanoparticles are intact. As nanoparticles uptake by cancer cells, redox sensitive CPT-S-PEG is degraded and the nanoparticles disintegrate. The released TST enhances non-radiative attenuation and expedites photothermal conversion because of the removal of the constraint of camptothecin. Furthermore, photothermal therapy induces immunogenic cell death of cancer cells and releases abundant ATP into the tumor microenvironment to recruit immune cells. However, superfluous ATP is converted into immunosuppressive adenosine through the CD39-CD73-A2AR pathway. The AZD4635 released by photothermal disintegration of the nanoparticles just blocks this pathway timely, achieving favorable synergistic effect of photothermal therapy, chemotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Zhenjie Wang
- The People's Hospital of GaozhouMaoming525200P. R. China
| | - Ling Yu
- Second Clinical CollegeGuangzhou University of Chinese MedicineGuangzhou510006P. R. China
- AMI Key laboratory of Chinese Medicine in GuangzhouGuangdong Provincial Hospital of Chinese MedicineGuangzhou510120P. R. China
| | - Yuehua Wang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510315P. R. China
| | - Chenlu Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Qingchun Mu
- The People's Hospital of GaozhouMaoming525200P. R. China
| | - Xiaojing Liu
- The People's Hospital of GaozhouMaoming525200P. R. China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityNo. 1023, South Shatai RoadGuangzhou510515P. R. China
| | - Kang‐Nan Wang
- Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528308P. R. China
| | - Guangyu Yao
- Breast CenterDepartment of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityNo. 1023, South Shatai RoadGuangzhou510515P. R. China
| |
Collapse
|