1
|
Hoang T, Tsang ES. Advances in Novel Targeted Therapies for Pancreatic Adenocarcinoma. J Gastrointest Cancer 2025; 56:38. [PMID: 39762686 DOI: 10.1007/s12029-024-01149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with limited therapeutic options and poor prognosis. Recent advances in targeted therapies have opened new avenues for intervention in PDAC, focusing on key genetic and molecular pathways that drive tumor progression. METHODS In this review, we provide an overview on advances in novel targeted therapies in pancreatic adenocarcinoma. RESULTS Here, we explore the latest development in targeting the KRAS pathway, a historically "undruggable" target crucial to PDAC pathogenesis. Strategies to inhibit KRAS include direct KRAS-targeted therapies, modulation of upstream and downstream signaling, KRAS-specific siRNA, and novel combination therapies integrating KRAS inhibitors with immune checkpoint blockade, PARP inhibitors, chemotherapy, CDK4/6 inhibitors, and autophagy modulators. Beyond KRAS, emerging targets such as NRG1 fusions, NTRK/ROS1 fusions, RET alterations, and the PRMT5/CDKN2A/MAT2A axis, along with EGFR and Claudin18.2 inhibitors, are also discussed as promising therapeutic strategies. Additionally, the review highlights novel approaches for microsatellite instability-high (MSIH) PDAC and emerging therapies, including adoptive cell therapies (CAR-T, TCR, TIL), cancer vaccines, and strategies to modify the tumor microenvironment. CONCLUSION Overall, the rapid evolution of targeted therapies offers renewed optimism in the fight against pancreatic cancer, a malignancy with historically poor outcomes.
Collapse
Affiliation(s)
- Tuan Hoang
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Erica S Tsang
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
2
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Li Y, Liu L, Li B. Role of ENO1 and its targeted therapy in tumors. J Transl Med 2024; 22:1025. [PMID: 39543641 PMCID: PMC11566422 DOI: 10.1186/s12967-024-05847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
ENO1, also called 2-phospho-D-glycerate hydrolase in cellular glycolysis, is an enzyme that converts 2-phosphoglycerate to phosphoenolpyruvate and plays an important role in the Warburg effect. In various tumors, ENO1 overexpression correlates with poor prognosis. ENO1 is a multifunctional oncoprotein that, when located on the cell surface, acts as a "moonlighting protein" to promote tumor invasion and metastasis. When located intracellularly, ENO1 facilitates glycolysis to dysregulate cellular energy and sustain tumor proliferation. Additionally, it promotes tumor progression by activating oncogenic signaling pathways. ENO1 is a tumor biomarker and represents a promising target for tumor therapy. This review summarizes recent advances from 2020 to 2024 in understanding the relationship between ENO1 and tumors and explores the latest targeted therapeutic strategies involving ENO1.
Collapse
Affiliation(s)
- Yafei Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lu Liu
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Giannoudis A, Heath A, Sharma V. ENO1 as a Biomarker of Breast Cancer Progression and Metastasis: A Bioinformatic Approach Using Available Databases. Breast Cancer (Auckl) 2024; 18:11782234241285648. [PMID: 39483155 PMCID: PMC11526306 DOI: 10.1177/11782234241285648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 11/03/2024] Open
Abstract
Background Metabolic reprogramming is one of the hallmarks of cancer, and in breast cancer (BC), several metabolic enzymes are overexpressed and overactivated. One of these, Enolase 1 (ENO1), catalyses glycolysis and is involved in the regulation of multiple signalling pathways. Objectives This study aimed to evaluate in silico the prognostic and predictive effects of ENO1 expression in BC. Design This is a bioinformatic in silico analysis. Methods Using available online platforms (Kaplan-Meier [KM] plotter, receiver operating characteristic curve [ROC] plotter, cBioPortal, Genotype-2-Outcome [G-2-O], MethSurv, and Tumour-Immune System Interaction Database [TISIDB]), we performed a bioinformatic in silico analysis to establish the prognostic and predictive effects related to ENO1 expression in BC. A network analysis was performed using the Oncomine platform, and signalling, epigenetic, and immune regulation pathways were explored. Results ENO1 was overexpressed in all the analysed Oncomine, epigenetic, and immune pathways in triple-negative, but not in hormone receptor-positive BCs. In human epidermal growth factor receptor 2 (HER2)-positive BCs, ENO1 expression showed a mixed profile. Analysis on disease progression and histological types showed ENO1 overexpression in ductal in situ and invasive carcinoma, in high-grade tumours followed by advanced or metastasis and was linked to worse survival. High ENO1 expression was also associated with relapse-free, distant metastasis-free and overall survival, irrespectively of treatment and was mainly related to basal subtype. Conclusion ENO1 overexpression recruits a range of signalling pathways during disease progression conferring a worse prognosis and can be potentially used as a biomarker of disease progression and therapeutic target, particularly in triple-negative and in ductal invasive carcinoma.
Collapse
Affiliation(s)
- Athina Giannoudis
- School of Dentistry, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Alistair Heath
- Department of Cellular Pathology, Liverpool Clinical Laboratories, Royal Liverpool Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UKK
| | - Vijay Sharma
- Department of Cellular Pathology, Liverpool Clinical Laboratories, Royal Liverpool Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UKK
- Institute of Systems, Molecular and Integrative Biology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Liu J, Bai S, Sun Y, Hu L, Ge R, Xue F. Chemotherapy combined with regorafenib and immune checkpoint inhibitors as a first-line treatment for patients with advanced biliary tract cancer: a single arm phase II trial. Front Immunol 2024; 15:1449211. [PMID: 39359732 PMCID: PMC11445073 DOI: 10.3389/fimmu.2024.1449211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Objective This study aimed to investigate the efficacy, long-term prognosis and safety of combining chemotherapy with regorafenib and immune checkpoint inhibitors as first-line treatment for patients with advanced biliary tract carcinoma (BTC). Methods In this single arm phase II trial, twenty-nine patients with advanced BTC were included, all of whom received gemcitabine-based chemotherapy combined with regorafenib and immune checkpoint inhibitors as the first-line treatment. And the study analyzed anti-tumor efficacy, long-term prognosis, and adverse reactions. Results Among the patients, 0 patient achieved complete response, 18 patients (62.1%) achieved partial response, 8 patients (27.6%) had stable disease, and 3 patients (10.3%) experienced progressive disease. The corresponding objective response rate (ORR) was 18/29 (62.1%), and the disease control rate (DCR) was 26/29 (89.7%). The median overall survival (OS) was 16.9 months (95% confidence interval [CI]: 12.0 -21.8) and the median progress free survival (PFS) was 10.2 months (95% CI: 7.8- 12.6). The 1-year OS and PFS were 65% (95% CI: 0.479-0.864) and 41% (95% CI: 0.234-0.656), respectively. The incidence of adverse reactions was 27/29 (93.1%), and the incidence of grade III/IV adverse reactions was 5/29 (17.2%). Conclusion The combination of chemotherapy, regorafenib, and immune checkpoint inhibitors as a first-line treatment for patients with advanced BTC may has good anti-tumor efficacy without causing serious adverse reactions, and can significantly improve the long-term prognosis.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Shilei Bai
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Yanfu Sun
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Lei Hu
- Department of Hepatic Surgery I, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Ruiliang Ge
- Department of Biliary Tract IV, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Feng Xue
- Department of Hepatic Surgery II, Third Affiliated Hospital of Naval Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| |
Collapse
|
6
|
Brugiapaglia S, Bulfamante S, Curcio C, Arigoni M, Calogero R, Bonello L, Genuardi E, Spadi R, Satolli MA, Campra D, Giordano D, Cappello P, Cordero F, Novelli F. In pancreatic cancer patients, chemotherapy reshapes the gene expression profile and antigen receptor repertoire of T lymphocytes and enhances their effector response to tumor-associated antigens. Front Immunol 2024; 15:1427424. [PMID: 39176093 PMCID: PMC11339620 DOI: 10.3389/fimmu.2024.1427424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Pancreatic Ductal Adenocarcinoma (PDA) is one of the most aggressive malignancies with a 5-year survival rate of 13%. Less than 20% of patients have a resectable tumor at diagnosis due to the lack of distinctive symptoms and reliable biomarkers. PDA is resistant to chemotherapy (CT) and understanding how to gain an anti-tumor effector response following stimulation is, therefore, critical for setting up an effective immunotherapy. Methods Proliferation, and cytokine release and TCRB repertoire of from PDA patient peripheral T lymphocytes, before and after CT, were analyzed in vitro in response to four tumor-associated antigens (TAA), namely ENO1, FUBP1, GAPDH and K2C8. Transcriptional state of PDA patient PBMC was investigated using RNA-Seq before and after CT. Results CT increased the number of TAA recognized by T lymphocytes, which positively correlated with patient survival, and high IFN-γ production TAA-induced responses were significantly increased after CT. We found that some ENO1-stimulated T cell clonotypes from CT-treated patients were expanded or de-novo induced, and that some clonotypes were reduced or even disappeared after CT. Patients that showed a higher number of effector responses to TAA (high IFN-γ/IL-10 ratio) after CT expressed increased fatty acid-related transcriptional signature. Conversely, patients that showed a higher number of regulatory responses to TAA (low IFN-γ/IL-10 ratio) after CT significantly expressed an increased IRAK1/IL1R axis-related transcriptional signature. Conclusion These data suggest that the expression of fatty acid or IRAK1/IL1Rrelated genes predicts T lymphocyte effector or regulatory responses to TAA in patients that undergo CT. These findings are a springboard to set up precision immunotherapies in PDA based on the TAA vaccination in combination with CT.
Collapse
MESH Headings
- Humans
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Male
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Carcinoma, Pancreatic Ductal/therapy
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/drug therapy
- Female
- Transcriptome
- Aged
- Middle Aged
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Expression Profiling
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Sara Bulfamante
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lisa Bonello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisa Genuardi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Rosella Spadi
- Centro Oncologico Ematologico Subalpino, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maria Antonietta Satolli
- Centro Oncologico Ematologico Subalpino, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Turin, Italy
| | - Donata Campra
- Struttura Complessa (SC) Chirurgia generale d’urgenza e pronto soccorso, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Turin, Italy
| | - Daniele Giordano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| | | | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Molecular Biotechnology Center “Guido Tarone”, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Zhang HW, Yu HB. Case report: Translational treatment of unresectable intrahepatic cholangiocarcinoma: Tislelizumab, Lenvatinib, and GEMOX in one case. Front Oncol 2024; 14:1428370. [PMID: 39077469 PMCID: PMC11284616 DOI: 10.3389/fonc.2024.1428370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background Intrahepatic cholangiocellular carcinoma (ICC) is one of the most common invasive malignancies. Currently, ICC is treated with radical surgical resection. However, the majority of patients are diagnosed at an advanced stage, making surgery ineligible for them. Case presentation We present a case of advanced ICC, which could not undergo radical surgery due to tumor invasion of liver blood vessels. The gemcitabine and oxaliplatin (GEMOX) regimen combined with Tislelizumab immunotherapy and Lenvatinib targeted therapy for 8 cycles resulted in significant tumor shrinkage significantly and the vascular invasion disappeared. CA19-9 levels were reduced to normal levels. Partial remission and successful tumor transformation were achieved. The patient underwent a successful radical surgical resection, including cholecystectomy, resection of liver segments IV, V, and VIII, as well as a regional lymphatic dissection procedure, resulting in complete pathological remission. Conclusion Tumor-free surgical margins (R0) resection of patients with advanced ICC after combination of immune, targeted and chemotherapy is rare, and there are almost no cases of complete postoperative remission. The GEMOX regimen in combination with Tislelizumab and Lenvatinib has a good antitumor efficacy and safety profile, and may be a feasible and safe translational treatment option for advanced ICC.
Collapse
Affiliation(s)
| | - Hai-bo Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Dingli Clinical Institute of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Curcio C, Mucciolo G, Roux C, Brugiapaglia S, Scagliotti A, Guadagnin G, Conti L, Longo D, Grosso D, Papotti MG, Hirsch E, Cappello P, Varner JA, Novelli F. PI3Kγ inhibition combined with DNA vaccination unleashes a B-cell-dependent antitumor immunity that hampers pancreatic cancer. J Exp Clin Cancer Res 2024; 43:157. [PMID: 38824552 PMCID: PMC11143614 DOI: 10.1186/s13046-024-03080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Gianluca Mucciolo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Cecilia Roux
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Alessandro Scagliotti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Giorgia Guadagnin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Dario Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Demis Grosso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Judith A Varner
- Moores Cancer Center, Department of Pathology, University of California, San Diego, CA, USA
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Piazza Nizza 44Bis, 10126, Turin, Italy.
- Molecular Biotechnology Center, University of Torino, Turin, Italy.
| |
Collapse
|
10
|
Curcio C, Rosso T, Brugiapaglia S, Guadagnin G, Giordano D, Castellino B, Satolli MA, Spadi R, Campra D, Moro F, Papotti MG, Bertero L, Cassoni P, De Angelis C, Langella S, Ferrero A, Armentano S, Bellotti G, Fenocchio E, Nuzzo A, Ciccone G, Novelli F. Circulating autoantibodies to alpha-enolase (ENO1) and far upstream element-binding protein 1 (FUBP1) are negative prognostic factors for pancreatic cancer patient survival. Clin Exp Med 2023; 23:5089-5100. [PMID: 37910256 PMCID: PMC10725354 DOI: 10.1007/s10238-023-01236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a dismal prognosis due to a lack of early diagnostic markers and effective therapy. In PDA patients, the glycolytic enzyme and plasminogen receptor alpha-enolase (ENO1) and the transcription factor far upstream element-binding protein 1 (FUBP1) are upregulated and elicit the production of autoantibodies (aAb) that discriminate healthy subjects from PDA patients, with the latter mostly directed to post-translational phosphorylated isoforms. Here, the correlation of prognosis with circulating ENO1 and FUBP1aAb, and their protein tissue expression was analyzed in PDA patients. Circulating ENO1 and FUBP1 aAb was analyzed in two cohorts of PDA patients by ELISA (n = 470), while tissues expression was observed by immunohistochemistry (n = 45). Overall survival (OS) was estimated using the Kaplan-Meier method, while the Cox model was used to estimate the hazard ratios (HR) adjusted for the main prognostic factors. Logistic models were applied to assess associations between death and its risk indicators. All statistical analyses were performed with Stata version 15. Unlike ENO1 aAb, there was a significant correlation between FUBP1 aAb and FUBP1 expression in tumors (p = 0.0268). In addition, we found that high ENO1 (p = 0.016) and intermediate FUBP1 aAb levels (p = 0.013) were unfavorable prognostic factors. Notably, it was found that high anti-FUBP1 aAb level is a good prognostic marker for tail-body PDA (p = 0.016). Our results suggest that different levels of circulating aAb to ENO1 and FUBP1 predict a poor outcome in PDA patients and can be used to improve therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Curcio
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Tiziana Rosso
- Unit of Clinical Epidemiology, AOU Città Della Salute E Della Scienza Di Torino and CPO Piemonte, Turin, Italy
| | - Silvia Brugiapaglia
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Giorgia Guadagnin
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Daniele Giordano
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Bruno Castellino
- Centro Oncologico Ematologico Subalpino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Maria Antonietta Satolli
- Centro Oncologico Ematologico Subalpino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Rosella Spadi
- Centro Oncologico Ematologico Subalpino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Donata Campra
- SC Chirurgia Generale d'urgenza E Pronto Soccorso, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Francesco Moro
- SC Chirurgia Generale U2, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Mauro Giulio Papotti
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Torino, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Claudio De Angelis
- SCDU Gastroenterology U, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Serena Langella
- General Surgery and Oncology, Ordine Mauriziano Di Torino, Turin, Italy
| | | | - Serena Armentano
- General Surgery and Oncology, Ordine Mauriziano Di Torino, Turin, Italy
| | - Giovanna Bellotti
- Oncology Department, SS. Antonio E Biagio C. Arrigo Di Alessandria, Alessandria, Italy
| | | | - Annamaria Nuzzo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Giovannino Ciccone
- Unit of Clinical Epidemiology, AOU Città Della Salute E Della Scienza Di Torino and CPO Piemonte, Turin, Italy
| | - Francesco Novelli
- Laboratory of Tumor Immunology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy.
- ENOAPA Biobank, SSD Banche Tessuti E Bioconservatorio, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy.
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Piazza Nizza 44B, Turin, Italy.
| |
Collapse
|
11
|
Kaczmarek M, Poznańska J, Fechner F, Michalska N, Paszkowska S, Napierała A, Mackiewicz A. Cancer Vaccine Therapeutics: Limitations and Effectiveness-A Literature Review. Cells 2023; 12:2159. [PMID: 37681891 PMCID: PMC10486481 DOI: 10.3390/cells12172159] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
In recent years, there has been a surge of interest in tumor microenvironment-associated cancer vaccine therapies. These innovative treatments aim to activate and enhance the body's natural immune response against cancer cells by utilizing specific antigens present in the tumor microenvironment. The goal is to achieve a complete clinical response, where all measurable cancer cells are either eliminated or greatly reduced in size. With their potential to revolutionize cancer treatment, these therapies represent a promising avenue for researchers and clinicians alike. Despite over 100 years of research, the success of therapeutic cancer vaccines has been variable, particularly in advanced cancer patients, with various limitations, including the heterogeneity of the tumor microenvironment, the presence of immunosuppressive cells, and the potential for tumor escape mechanisms. Additionally, the effectiveness of these therapies may be limited by the variability of the patient's immune system response and the difficulty in identifying appropriate antigens for each patient. Despite these challenges, tumor microenvironment-targeted vaccine cancer therapies have shown promising results in preclinical and clinical studies and have the potential to become a valuable addition to current cancer treatment and "curative" options. While chemotherapeutic and monoclonal antibody treatments remain popular, ongoing research is needed to optimize the design and delivery of these therapies and to identify biomarkers that can predict response and guide patient selection. This comprehensive review explores the mechanisms of cancer vaccines, various delivery methods, and the role of adjuvants in improving treatment outcomes. It also discusses the historical background of cancer vaccine research and examines the current state of major cancer vaccination immunotherapies. Furthermore, the limitations and effectiveness of each vaccine type are analyzed, providing insights into the future of cancer vaccine development.
Collapse
Affiliation(s)
- Mariusz Kaczmarek
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| | - Justyna Poznańska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Filip Fechner
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Natasza Michalska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Sara Paszkowska
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Adrianna Napierała
- Scientific Society of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland; (J.P.)
| | - Andrzej Mackiewicz
- Department of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, 61-866 Poznań, Poland
| |
Collapse
|
12
|
Zhang Z, Wang X, Li H, Sun H, Chen J, Lin H. Case Report: Camrelizumab combined with gemcitabine and oxaliplatin in the treatment of advanced intrahepatic cholangiocarcinoma: a case report and literature review. Front Immunol 2023; 14:1230261. [PMID: 37671157 PMCID: PMC10475830 DOI: 10.3389/fimmu.2023.1230261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is one of the most common invasive malignant tumors, with a 5-year survival rate of less than 5%. Currently, radical surgical resection is the preferred treatment for ICC. However, most patients are only diagnosed at an advanced stage and are therefore not eligible for surgery. Herein, we present a case of advanced ICC in which radical surgery was not possible due to tumor invasion of the second porta hepatis and right hepatic artery. Six treatment cycles with a gemcitabine and oxaliplatin (GEMOX) regimen combined with camrelizumab immunotherapy achieved a partial response and successful tumor conversion, as tumor invasion of the second porta hepatis and right hepatic artery was no longer evident. The patient subsequently underwent successful radical surgical resection, including hepatectomy, caudate lobe resection, and cholecystectomy combined with lymph node dissection. Cases of patients with advanced ICC undergoing surgical resection after combined immunotherapy and chemotherapy are rare. The GEMOX regimen combined with camrelizumab demonstrated favorable antitumor efficacy and safety, suggesting that it might be a potential feasible and safe conversion therapy strategy for patients with advanced ICC.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Xin Wang
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Hehe Li
- Department of Geriatrics, Weifang People’s Hospital, Weifang, China
| | - Huimin Sun
- Department of Pathology, Weifang People’s Hospital, Weifang, China
| | - Jianhong Chen
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| | - Hongfeng Lin
- Department of Hepatobiliary Surgery, Weifang People’s Hospital, Weifang, China
| |
Collapse
|
13
|
Rohila D, Park IH, Pham TV, Weitz J, Hurtado de Mendoza T, Madheswaran S, Ishfaq M, Beaman C, Tapia E, Sun S, Patel J, Tamayo P, Lowy AM, Joshi S. Syk Inhibition Reprograms Tumor-Associated Macrophages and Overcomes Gemcitabine-Induced Immunosuppression in Pancreatic Ductal Adenocarcinoma. Cancer Res 2023; 83:2675-2689. [PMID: 37306759 PMCID: PMC10416758 DOI: 10.1158/0008-5472.can-22-3645] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an insidious disease with a low 5-year survival rate. PDAC is characterized by infiltration of abundant tumor-associated macrophages (TAM), which promote immune tolerance and immunotherapeutic resistance. Here we report that macrophage spleen tyrosine kinase (Syk) promotes PDAC growth and metastasis. In orthotopic PDAC mouse models, genetic deletion of myeloid Syk reprogrammed macrophages into immunostimulatory phenotype, increased the infiltration, proliferation, and cytotoxicity of CD8+ T cells, and repressed PDAC growth and metastasis. Furthermore, gemcitabine (Gem) treatment induced an immunosuppressive microenvironment in PDAC by promoting protumorigenic polarization of macrophages. In contrast, treatment with the FDA-approved Syk inhibitor R788 (fostamatinib) remodeled the tumor immune microenvironment, "re-educated" protumorigenic macrophages towards an immunostimulatory phenotype and boosted CD8+ T-cell responses in Gem-treated PDAC in orthotopic mouse models and an ex vivo human pancreatic slice culture model. These findings illustrate the potential of Syk inhibition for enhancing the antitumor immune responses in PDAC and support the clinical evaluation of R788 either alone or together with Gem as a potential treatment strategy for PDAC. SIGNIFICANCE Syk blockade induces macrophage polarization to an immunostimulatory phenotype, which enhances CD8+ T-cell responses and improves gemcitabine efficacy in pancreatic ductal adenocarcinoma, a clinically challenging malignancy.
Collapse
Affiliation(s)
- Deepak Rohila
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - In Hwan Park
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Timothy V. Pham
- Office of Cancer Genomics, Moores Cancer Center, University of California, San Diego, California
| | - Jonathan Weitz
- Department of Surgery, University of California, San Diego, California
| | | | - Suresh Madheswaran
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Mehreen Ishfaq
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Cooper Beaman
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Elisabette Tapia
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| | - Siming Sun
- Department of Surgery, University of California, San Diego, California
| | - Jay Patel
- Department of Surgery, University of California, San Diego, California
| | - Pablo Tamayo
- Office of Cancer Genomics, Moores Cancer Center, University of California, San Diego, California
| | - Andrew M. Lowy
- Department of Surgery, University of California, San Diego, California
| | - Shweta Joshi
- Division of Pediatric Hematology-Oncology, Moores Cancer Center, University of California, San Diego, California
| |
Collapse
|
14
|
Wang L, Zhang N, Wang Y, Zhang T, Zhu W, Mao A, Zhao Y, Wang L. Safety and efficacy of GEMOX plus donafenib and tislelizumab as first-line therapy for advanced epithelial malignant biliary tract cancer. Cancer Med 2023; 12:12263-12271. [PMID: 37039263 PMCID: PMC10278481 DOI: 10.1002/cam4.5924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
AIM This study was aimed to evaluate the safety and the efficacy of gemcitabine and oxaliplatin (GEMOX) combined with donafenib plus tislelizumab as the first-line treatment for patients with unresectable biliary tract cancer (BTC). METHODS This is a prospective single-center exploratory study. Eligible patients (Stage III/IV BTC, at least one measurable disease according to RECIST v1.1, etc.) received gemcitabine 1000 mg/m2 IV Q3W, oxaliplatin 100 mg/m2 IV Q3W, donafenib 200 mg PO BID, and tislelizumab 200 mg IV Q3W until disease progression, unacceptable toxicity, or withdrawal of consent whichever occurred first. The primary endpoint was safety and secondary endpoints included disease control rate (DCR), objective response rate (ORR), conversion rate, and overall survival (OS). RESULTS A total of 13 patients were enrolled. The median follow-up time was 420 days (range 345-487). The median duration of treatment was four cycles (range 1-15). The incidence of ≥Grade 3 treatment-related adverse events (TRAEs) was 53.8% and no Grade 5 TRAE. The most frequent Grade 3-4 TRAEs were rash (4/13, 30.8%), platelet count decreased (2/13, 15.4%), and fatigue (2/13, 15.4%). Tumor response was assessed in eight evaluable patients; ORR was 25.0% (95% CI, 3.2%-65.1%) and DCR 87.5% (95% CI, 47.3%-99.7%). The median PFS was 4.8 months (95% CI, 1.25-NE). Three Stage III patients underwent subsequent surgery with a conversion rate of 23.1%. The median OS was not estimable. CONCLUSIONS GEMOX combined with donafenib plus tislelizumab as the first-line therapy for unresectable BTC showed manageable toxicity and encouraging efficacy especially in terms of promising conversion rate in Stage III patients.
Collapse
Affiliation(s)
- Longrong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yixiu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Ti Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer CenterDepartment of Oncology, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
15
|
Huang CK, Lv L, Chen H, Sun Y, Ping Y. ENO1 promotes immunosuppression and tumor growth in pancreatic cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03114-8. [PMID: 36820953 DOI: 10.1007/s12094-023-03114-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a highly aggressive and malignant cancer type with the highest mortality rate of all major cancers. However, the molecular and tumor immune escape mechanism underlying pancreatic cancer remains largely unclear. α-enolase (ENO1) is a glycolytic enzyme reported to overexpress in a variety of cancer types. This study was undertaken to investigate the functional role and therapeutic potential of ENO1 in pancreatic cancer. METHODS We examined the expression levels of ENO1 across a broad spectrum of cancer types from the TCGA database. ENO1-knockout (ENO1-KO) through CRISPR/CAS9 technology in a mouse pancreatic cancer cell line (PAN02) was used to analyze the role of ENO1 on proliferation and colony formation. Flow cytometry and RT-PCR were also applied to analyze T lymphocytes and relevant cytokines. RESULTS In the present study, we identified that ENO1 promoted pancreatic cancer cell proliferation. Our bioinformatics data indicated that ENO1 was significantly overexpressed in pancreatic cancer cell lines and tissues. Survival analyses revealed that ENO1 overexpression implicated poor survival of PAAD patients. Knockout of ENO1 expression repressed the ability of proliferation and colony formation in PAN02. In addition, ENO1-KO significantly decreased tumor growth in mouse models. Further flow cytometry and RT-PCR analysis revealed that ENO1-KO modulates the tumor microenvironment (TME), especially in suppressed Treg cells and inducing anti-tumor cytokine responses. CONCLUSIONS Taken together, our data showed that ENO1 was an oncogenic biomarker and might serve as a promising target for immunotherapy of pancreatic cancer.
Collapse
Affiliation(s)
- Chen Kai Huang
- Department of Molecular and Cellular Biology, University of California, Berkeley, 110 Sproul Hall, Berkeley, CA, 94720, USA
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Huanliang Chen
- Department of Oncology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Ying Sun
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Shi YY, Chen XL, Chen QX, Yang YZ, Zhou M, Ren YX, Tang LY, Ren ZF. Association of Enolase-1 with Prognosis and Immune Infiltration in Breast Cancer by Clinical Stage. J Inflamm Res 2023; 16:493-503. [PMID: 36785715 PMCID: PMC9922065 DOI: 10.2147/jir.s396321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose Enolase-1 (ENO1) plays a key role in malignancies. Previous studies on the association between ENO1 expression and breast cancer prognosis had yielded inconsistent results. In the present study, we assessed the prognostic effect of ENO1 in breast cancer using Guangzhou Breast Cancer Study (GZBCS) cohort with full consideration of the potential confounders and the modification effects. The results were further validated in the TCGA-BRCA cohort and explained by tumor immunity. Methods ENO1 protein expressions were evaluated by immunohistochemistry in tissue microarrays from 961 patients with primary invasive breast cancer. Chi-square tests were used to assess the association of ENO1 levels with the patient's characteristics. Cox regression models were applied to assess the prognostic effects. The TCGA-BRCA cohort was utilized to validate the results and explore the potential mechanisms. The immune infiltration was determined using the CIBERSORT and ssGSEA algorithms; the correlation between ENO1 expression and the abundance of tumor-infiltrating immune cells (TIICs) and scores of immune-related functions was evaluated by Wilcoxon signed-rank tests and Spearman's rank test. Results ENO1 protein expression exerted a protective effect on OS in stage I/II patients (HR=0.58, 95% CI: 0.35-0.96) but not in stage III patients (HR=1.42, 95% CI: 0.81-2.49, P interaction=0.04) in GZBCS; consistent results were obtained at mRNA levels in TCGA cohort. Immune infiltration analyses revealed that ENO1 was positively correlated with multiple antitumor TIICs (including M1 macrophages, B cells, CD8 T cells, T helper 2 cells, and NK cells) only in stage I/II but not stage III patients. Conclusion A higher expression of ENO1 was associated with a better prognosis only in early-stage breast cancer, which may be related to the different effects of ENO1 on immune infiltration, suggesting that ENO1 may be a promising target for precision immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Yue-Yu Shi
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xing-Lei Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qian-Xin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuan-Zhong Yang
- The Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Meng Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yue-Xiang Ren
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China,Lu-Ying Tang, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, People’s Republic of China, Tel +86-20-85253000, Fax +86-20-85253336, Email
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China,Correspondence: Ze-Fang Ren, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, People’s Republic of China, Tel/Fax +86-20-87332577, Email
| |
Collapse
|
17
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
18
|
Zhang W, Luo C, Zhang ZY, Zhang BX, Chen XP. Conversion therapy for advanced intrahepatic cholangiocarcinoma with lenvatinib and pembrolizumab combined with gemcitabine plus cisplatin: A case report and literature review. Front Immunol 2023; 13:1079342. [PMID: 36700218 PMCID: PMC9868150 DOI: 10.3389/fimmu.2022.1079342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is a highly malignant biliary tumor. Patients with unresectable and advanced ICC have a poor prognosis with current gemcitabine-based chemotherapy. Combination therapy strategies based on immunotherapy have achieved promising results in various tumor types. Case presentation We reported a patient with unresectable ICC who received lenvatinib and pembrolizumab in combination with gemcitabine plus cisplatin (GP) chemotherapy and subsequently underwent radical liver resection. A 46-year-old male with a history of chronic hepatitis B and hypertension was diagnosed with ICC. Multiple liver tumors with ring-like enhancement were detected on abdominal contrast-enhanced CT and MRI. Enlarged lymph nodes were found in the hilar and retroperitoneal areas. The tumor was clinically staged as T2N1M0 (stage IIIB). Lenvatinib and pembrolizumab in combination with GP chemotherapy were adopted as first-line treatments for the patient. After six cycles of scheduled treatment, the diameter of the largest liver lesion and the number of liver lesions were markedly reduced. The level of the tumor marker CA19-9 decreased to a normal range. A partial response according to the mRECIST criteria was achieved without severe toxicities. Non-anatomical liver resection (segment 4b, 5,6 + segment 7 + segment 8), cholecystectomy and hilar lymph node dissection were performed one month after stopping combination therapy. Pathological examination confirmed a diagnosis of moderate-to-poorly differentiated ICC with lymph node metastasis. The patient has survived 15 months following resection of the tumors, with no evidence of local recurrence or distant metastasis. Conclusion Lenvatinib and anti-PD1 antibody pembrolizumab in combination with GP chemotherapy provided promising antitumor efficacy with reasonable tolerability, which may be a potentially feasible and safe conversion therapy strategy for patients with initially unresectable and advanced ICC.
Collapse
|
19
|
Wang K, Liu ZH, Yu HM, Cheng YQ, Xiang YJ, Zhong JY, Ni QZ, Zhou LP, Liang C, Zhou HK, Pan WW, Guo WX, Shi J, Cheng SQ. Efficacy and safety of a triple combination of atezolizumab, bevacizumab plus GEMOX for advanced biliary tract cancer: a multicenter, single-arm, retrospective study. Therap Adv Gastroenterol 2023; 16:17562848231160630. [PMID: 37007215 PMCID: PMC10052479 DOI: 10.1177/17562848231160630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 04/04/2023] Open
Abstract
Background Anti-programmed cell death ligand 1/vascular endothelial growth factor inhibition, coupled with chemotherapy, may potentiate antitumor immunity leading to enhanced clinical benefit, but it has not been investigated in advanced biliary tract cancer (BTC). Objectives We investigated the efficacy and safety of atezolizumab, bevacizumab, and gemcitabine plus oxaliplatin (GEMOX) in advanced BTC and explore the potential biomarkers related to the response. Design Multicenter, single-arm, retrospective study. Methods Advanced BTC patients, who received a triple combination therapy at three medical centers between 18 March 2020 and 1 September 2021, were included. Treatment response was evaluated via mRECIST and RECIST v1.1. Endpoints included the overall response rate (ORR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and safety. The whole exome sequencing of pathological tissues was conducted for bioinformatic analysis. Results In all, 30 patients were enrolled. The best ORR was 76.7% and the DCR was 90.0%. The median PFS was 12.0 months, and the median OS was not reached. During the treatment, 10.0% (3/30) of patients suffered from ⩾grade 3 treatment-related adverse events (TRAEs). Furthermore, fever (73.3%), neutropenia (63.3%), increased aspartate transaminase and alanine aminotransferase levels (50.0% and 43.3%, respectively) are the most common TRAEs. Bioinformatics analysis revealed patients with altered ALS2CL had a higher ORR. Conclusion The triple combination of atezolizumab, bevacizumab, and GEMOX may be efficacious and safe for patients with advanced BTC. ALS2CL may be a potential predictive biomarker for the efficacy of triple combination therapy.
Collapse
Affiliation(s)
| | | | | | | | - Yan-Jun Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing-Ya Zhong
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, China
| | - Qian-Zhi Ni
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Li-Ping Zhou
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Chao Liang
- Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Kun Zhou
- The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing University, Jiaxing, China
| | - Wei-Wei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, China
- G60 STI Valley Industry & Innovation Institute, Jiaxing University, Jiaxing, China
| | - Wei-Xing Guo
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | |
Collapse
|
20
|
Kamal MA, Siddiqui I, Belgiovine C, Barbagallo M, Paleari V, Pistillo D, Chiabrando C, Schiarea S, Bottazzi B, Leone R, Avigni R, Migliore R, Spaggiari P, Gavazzi F, Capretti G, Marchesi F, Mantovani A, Zerbi A, Allavena P. Oncogenic KRAS-Induced Protein Signature in the Tumor Secretome Identifies Laminin-C2 and Pentraxin-3 as Useful Biomarkers for the Early Diagnosis of Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14112653. [PMID: 35681634 PMCID: PMC9179463 DOI: 10.3390/cancers14112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations characterize pancreatic cell transformation from the earliest stages of carcinogenesis, and are present in >95% of pancreatic ductal adenocarcinoma (PDAC) cases. In search of novel biomarkers for the early diagnosis of PDAC, we identified the proteins secreted by the normal human pancreatic cell line (HPDE) recently transformed by inducing the overexpression of the KRASG12V oncogene. We report a proteomic signature of KRAS-induced secreted proteins, which was confirmed in surgical tumor samples from resected PDAC patients. The putative diagnostic performance of three candidates, Laminin-C2 (LAMC2), Tenascin-C (TNC) and Pentraxin-3 (PTX3), was investigated by ELISA quantification in two cohorts of PDAC patients (n = 200) eligible for surgery. Circulating levels of LAMC2, TNC and PTX3 were significantly higher in PDAC patients compared to the healthy individuals (p < 0.0001). The Receiver Operating Characteristics (ROC) curve showed good sensitivity (1) and specificity (0.63 and 0.85) for LAMC2 and PTX3, respectively, but not for TNC, and patients with high levels of LAMC2 had significantly shorter overall survival (p = 0.0007). High levels of LAMC2 and PTX3 were detected at early stages (I−IIB) and in CA19-9-low PDAC patients. In conclusion, pancreatic tumors release LAMC2 and PTX3, which can be quantified in the systemic circulation, and may be useful in selecting patients for further diagnostic imaging.
Collapse
Affiliation(s)
- Mohammad Azhar Kamal
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Imran Siddiqui
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Cristina Belgiovine
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Marialuisa Barbagallo
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Valentina Paleari
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Daniela Pistillo
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Chiara Chiabrando
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Silvia Schiarea
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Barbara Bottazzi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberto Leone
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Avigni
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Migliore
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Paola Spaggiari
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy;
| | - Francesca Gavazzi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
| | - Giovanni Capretti
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Federica Marchesi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Alberto Mantovani
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Paola Allavena
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Correspondence:
| |
Collapse
|
21
|
Zhang Z, Wang ZX, Chen YX, Wu HX, Yin L, Zhao Q, Luo HY, Zeng ZL, Qiu MZ, Xu RH. Integrated analysis of single-cell and bulk RNA sequencing data reveals a pan-cancer stemness signature predicting immunotherapy response. Genome Med 2022; 14:45. [PMID: 35488273 PMCID: PMC9052621 DOI: 10.1186/s13073-022-01050-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 04/19/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Although immune checkpoint inhibitor (ICI) is regarded as a breakthrough in cancer therapy, only a limited fraction of patients benefit from it. Cancer stemness can be the potential culprit in ICI resistance, but direct clinical evidence is lacking. METHODS Publicly available scRNA-Seq datasets derived from ICI-treated patients were collected and analyzed to elucidate the association between cancer stemness and ICI response. A novel stemness signature (Stem.Sig) was developed and validated using large-scale pan-cancer data, including 34 scRNA-Seq datasets, The Cancer Genome Atlas (TCGA) pan-cancer cohort, and 10 ICI transcriptomic cohorts. The therapeutic value of Stem.Sig genes was further explored using 17 CRISPR datasets that screened potential immunotherapy targets. RESULTS Cancer stemness, as evaluated by CytoTRACE, was found to be significantly associated with ICI resistance in melanoma and basal cell carcinoma (both P < 0.001). Significantly negative association was found between Stem.Sig and anti-tumor immunity, while positive correlations were detected between Stem.Sig and intra-tumoral heterogenicity (ITH) / total mutational burden (TMB). Based on this signature, machine learning model predicted ICI response with an AUC of 0.71 in both validation and testing set. Remarkably, compared with previous well-established signatures, Stem.Sig achieved better predictive performance across multiple cancers. Moreover, we generated a gene list ranked by the average effect of each gene to enhance tumor immune response after genetic knockout across different CRISPR datasets. Then we matched Stem.Sig to this gene list and found Stem.Sig significantly enriched 3% top-ranked genes from the list (P = 0.03), including EMC3, BECN1, VPS35, PCBP2, VPS29, PSMF1, GCLC, KXD1, SPRR1B, PTMA, YBX1, CYP27B1, NACA, PPP1CA, TCEB2, PIGC, NR0B2, PEX13, SERF2, and ZBTB43, which were potential therapeutic targets. CONCLUSIONS We revealed a robust link between cancer stemness and immunotherapy resistance and developed a promising signature, Stem.Sig, which showed increased performance in comparison to other signatures regarding ICI response prediction. This signature could serve as a competitive tool for patient selection of immunotherapy. Meanwhile, our study potentially paves the way for overcoming immune resistance by targeting stemness-associated genes.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
- Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Hao-Xiang Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Ling Yin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Qi Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Hui-Yan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
- Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhao-Lei Zeng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China
| | - Miao-Zhen Qiu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
- Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
22
|
Abstract
α-Enolase (ENO1), also known as 2-phospho-D-glycerate hydrolase, is a glycolytic enzyme that catalyzes the conversion of 2-phosphoglyceric acid to phosphoenolpyruvic acid during glycolysis. It is a multifunctional oncoprotein that is present both in cell surface and cytoplasm, contributing to hit seven out of ten “hallmarks of cancer.” ENO1's glycolytic function deregulates cellular energetic, sustains tumor proliferation, and inhibits cancer cell apoptosis. Moreover, ENO1 evades growth suppressors and helps tumors to avoid immune destruction. Besides, ENO1 “moonlights” on the cell surface and acts as a plasminogen receptor, promoting cancer invasion and metastasis by inducing angiogenesis. Overexpression of ENO1 on a myriad of cancer types together with its localization on the tumor surface makes it a great prognostic and diagnostic cancer biomarker as well as an accessible oncotherapeutic target. This review summarizes the up-to-date knowledge about the relationship between ENO1 and cancer, examines ENO1's potential as a cancer biomarker, and discusses ENO1's role in novel onco-immunotherapeutic strategies.
Collapse
|
23
|
Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022; 10:816517. [PMID: 35273962 PMCID: PMC8902310 DOI: 10.3389/fcell.2022.816517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of many cancer types. However, pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune checkpoint inhibitors with immunotherapy-based trials not generating convincing clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a highly immunosuppressive microenvironment. These features classify PDAC as immunologically "cold." However, the presence of tumor T cells is a favorable prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation burden, and/or defects in DNA damage repair are associated with responses to both immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation and/or chemotherapy can act as potent immune triggers and prime immune responses. Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I interferon (IFN-I) responses that activate innate immune cells and natural killer cells, promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC exhibits intrinsic features that have the potential to engage immune cells, particularly following chemotherapy, these immune-sensing mechanisms are ineffective. Understanding where defects in innate immune triggers render the PDAC tumor-immune interface less effective, or how T-cell function is suppressed will help develop more effective treatments and harness the immune system for durable outcomes. This review will focus on the pivotal role played by IFN-I in promoting tumor cell-immune cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling pathways and explore how these pathways can be co-opted or re-engaged to enhance the therapeutic outcome.
Collapse
Affiliation(s)
- Carlotta Cattolico
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
24
|
Song D, Yan F, Fu H, Li L, Hao J, Zhu Z, Ye L, Zhang Y, Jin M, Dai L, Fang H, Song Z, Wu D, Wang X. A cellular census of human peripheral immune cells identifies novel cell states in lung diseases. Clin Transl Med 2021; 11:e579. [PMID: 34841705 PMCID: PMC8611783 DOI: 10.1002/ctm2.579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports a central role of the immune system in lung diseases. Understanding how immunological alterations between lung diseases provide opportunities for immunotherapy. Exhausted T cells play a key role of immune suppression in lung cancer and chronic obstructive pulmonary disease was proved in our previous study. The present study aims to furthermore define molecular landscapes and heterogeneity of systemic immune cell target proteomic and transcriptomic profiles and interactions between circulating immune cells and lung residential cells in various lung diseases. We firstly measured target proteomic profiles of circulating immune cells from healthy volunteers and patients with stable pneumonia, stable asthma, acute asthma, acute exacerbation of chronic obstructive pulmonary disease, chronic obstructive pulmonary disease and lung cancer, using single-cell analysis by cytometry by time-of-flight with 42 antibodies. The nine immune cells landscape was mapped among those respiratory system diseases, including CD4+ T cells, CD8+ T cells, dendritic cells, B cells, eosinophil, γδT cells, monocytes, neutrophil and natural killer cells. The double-negative T cells and exhausted CD4+ central memory T cells subset were identified in patients with acute pneumonia. This T subset expressed higher levels of T-cell immunoglobulin and mucin domain-containing protein 3 (Tim3) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) in patients with acute pneumonia and stable pneumonia. Biological processes and pathways of immune cells including immune response activation, regulation of cell cycle and pathways in cancer in peripheral blood immune cells were defined by bulk RNA sequencing (RNA-seq). The heterogeneity among immune cells including CD4+ , CD8+ T cells and NK T cells by single immune cell RNA-seq with significant difference was found by single-cell sequencing. The effect of interstitial telocytes on the immune cell types and immune function was finally studied and the expressions of CD8a and chemokine C-C motif receptor 7 (CCR7) were increased significantly in co-cultured groups. Our data indicate that proteomic and transcriptomic profiles and heterogeneity of circulating immune cells provides new insights for understanding new molecular mechanisms of immune cell function, interaction and modulation as a source to identify and develop biomarkers and targets for lung diseases.
Collapse
Affiliation(s)
- Dongli Song
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Furong Yan
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Huirong Fu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Liyang Li
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Jie Hao
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Zhenhua Zhu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Ling Ye
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Yong Zhang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Meiling Jin
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Lihua Dai
- Department of EmergencyShidong Hospital of Yangpu DistrictShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Zhenju Song
- Department of EmergencyZhongshan HospitalShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Duojiao Wu
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumour Diagnosis and TherapyShanghai Medical UniversityFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Zhongshan HospitalDepartment of Pulmonary and Critical Care MedicineInstitute for Clinical ScienceShanghai Medical UniversityFudan UniversityShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumour Diagnosis and TherapyShanghai Medical UniversityFudan UniversityShanghaiChina
| |
Collapse
|
25
|
Ge P, Luo Y, Chen H, Liu J, Guo H, Xu C, Qu J, Zhang G, Chen H. Application of Mass Spectrometry in Pancreatic Cancer Translational Research. Front Oncol 2021; 11:667427. [PMID: 34707986 PMCID: PMC8544753 DOI: 10.3389/fonc.2021.667427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in the digestive tract worldwide, with increased morbidity and mortality. In recent years, with the development of surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and the change of the medical thinking model, remarkable progress has been made in researching comprehensive diagnosis and treatment of PC. However, the present situation of diagnostic and treatment of PC is still unsatisfactory. There is an urgent need for academia to fully integrate the basic research and clinical data from PC to form a research model conducive to clinical translation and promote the proper treatment of PC. This paper summarized the translation progress of mass spectrometry (MS) in the pathogenesis, diagnosis, prognosis, and PC treatment to promote the basic research results of PC into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jialin Qu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Qiao G, Wu A, Chen X, Tian Y, Lin X. Enolase 1, a Moonlighting Protein, as a Potential Target for Cancer Treatment. Int J Biol Sci 2021; 17:3981-3992. [PMID: 34671213 PMCID: PMC8495383 DOI: 10.7150/ijbs.63556] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enolase 1 (ENO1) is a moonlighting protein, function as a glycolysis enzyme, a plasminogen receptor and a DNA binding protein. ENO1 play an important role in the process of cancer development. The transcription, translation, post-translational modifying activities and the immunoregulatory role of ENO1 at the cancer development is receiving increasing attention. Some function model studies have shown that ENO1 is a potential target for cancer treatment. In this review, we provide a comprehensive overview of the characterization, function, related transduction cascades of ENO1 and its roles in the pathophysiology of cancers, which is a consequence of ENO1 signaling dysregulation. And the development of novels anticancer agents that targets ENO1 may provide a more attractive option for the treatment of cancers. The data of sarcoma and functional cancer models indicates that ENO1 may become a new potential target for anticancer therapy.
Collapse
Affiliation(s)
- Gan Qiao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China (Q.G, ).,School of Pharmacy, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoliang Chen
- Schools of Medicine; Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ye Tian
- The Eighth Affiliated Hospital Sun Yat-sen University,Shenzhen, Guangdong, China
| | - Xiukun Lin
- College of Life Sci., Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
27
|
Curcio C, Brugiapaglia S, Bulfamante S, Follia L, Cappello P, Novelli F. The Glycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer. Molecules 2021; 26:1642. [PMID: 33804240 PMCID: PMC7998946 DOI: 10.3390/molecules26061642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism-resulting in its increased uptake-and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Sara Bulfamante
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Laura Follia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Computer Science Department, University of Turin, 10126 Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
28
|
Almaguel FA, Sanchez TW, Ortiz-Hernandez GL, Casiano CA. Alpha-Enolase: Emerging Tumor-Associated Antigen, Cancer Biomarker, and Oncotherapeutic Target. Front Genet 2021; 11:614726. [PMID: 33584813 PMCID: PMC7876367 DOI: 10.3389/fgene.2020.614726] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alpha-enolase, also known as enolase-1 (ENO1), is a glycolytic enzyme that “moonlights” as a plasminogen receptor in the cell surface, particularly in tumors, contributing to cancer cell proliferation, migration, invasion, and metastasis. ENO1 also promotes other oncogenic events, including protein-protein interactions that regulate glycolysis, activation of signaling pathways, and resistance to chemotherapy. ENO1 overexpression has been established in a broad range of human cancers and is often associated with poor prognosis. This increased expression is usually accompanied by the generation of anti-ENO1 autoantibodies in some cancer patients, making this protein a tumor associated antigen. These autoantibodies are common in patients with cancer associated retinopathy, where they exert pathogenic effects, and may be triggered by immunodominant peptides within the ENO1 sequence or by posttranslational modifications. ENO1 overexpression in multiple cancer types, localization in the tumor cell surface, and demonstrated targetability make this protein a promising cancer biomarker and therapeutic target. This mini-review summarizes our current knowledge of ENO1 functions in cancer and its growing potential as a cancer biomarker and guide for the development of novel anti-tumor treatments.
Collapse
Affiliation(s)
- Frankis A Almaguel
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Tino W Sanchez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Medicine, Division of Rheumatology, Loma Linda University Health, Loma Linda, CA, United States
| |
Collapse
|
29
|
Abstract
Introduction: Cancers of the biliary tract (BTC) are aggressive malignancies with limited treatment options and an overall dismal prognosis. In recent years, two concepts, namely precision oncology and immune oncology (IO) have profoundly influenced and, in some cancers, even revolutionized tumor treatments. While positive data from randomized trials have led to the incorporation of targeted concepts for genetically select BTC patients, IO is not yet implemented in clinical practice.Areas covered: We discuss published results from completed, as well as from ongoing studies on IO in BTC, based on a literature search on Pubmed and information provided by clinicaltrials.gov in October 2020. Apart from monotherapy, we outline IO-based combination approaches and highlight pivotal studies whose results will likely influence the future development of relevant concepts in BTC.Expert opinion: Despite partially positive signals, IO thus far disappointed in unselected BTC populations and should currently not be considered as a preferred systemic treatment in patients with microsatellite stable disease outside of clinical trials. In the coming years, a better understanding of the molecular mechanisms underlying resistance to checkpoint inhibition, and the identification of positive predictive biomarkers will be important for the successful integration of IO into treatment concepts for BTC patients.
Collapse
|