1
|
Johnson FM, O’Hara MP, Yapindi L, Jiang P, Tran HT, Reuben A, Xiao W, Gillison M, Sun X, Khalaf A, Lee JJ, Sastry JK, Ghosh S. Phase I/II Study of the Aurora Kinase A Inhibitor Alisertib and Pembrolizumab in Refractory, Rb-Deficient Head and Neck Squamous Cell Carcinomas. Clin Cancer Res 2025; 31:479-490. [PMID: 39589337 PMCID: PMC11790391 DOI: 10.1158/1078-0432.ccr-24-2290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Effective therapy for recurrent head and neck squamous cell carcinoma (HNSCC) that is refractory to chemotherapy and immunotherapy is a considerable need. Aurora kinase A inhibition leads to apoptosis and immunogenic cell death in preclinical models of human papilloma virus (HPV)-driven cancers. PATIENTS AND METHODS Alisertib was administered orally twice daily on days 1-7 and pembrolizumab on day 1 of a 21-day cycle to adults with advanced solid tumors (phase I) or with immunotherapy- and platinum-resistant, HPV-positive HNSCC (phase II). RESULTS The recommended phase II alisertib dose was 40 mg, which had only the expected toxicity including cytopenia that led to dose reductions in two phase II patients at cycles 13 and 16. We saw no objective responses, but the combination led to prolonged stable disease (SD) in several patients, including two of 10 phase I patients (8 and 27 months). Eight of the 15 HPV-positive patients had SD, of which four (heavily pretreated) had ≥6 months, with median overall and progression-free survival durations of 16.8 and 1.4 months, respectively. In circulating immune cells and plasma, patients with SD had markedly higher levels of HLA de novo resistance-expressing NK cells than did progressive disease patients who demonstrated a more immunosuppressive and inflammatory profile. Pharmacokinetics did not indicate any significant drug-drug interactions between pembrolizumab and alisertib. CONCLUSIONS The combination of alisertib and pembrolizumab was well tolerated and led to prolonged SD in some immunotherapy-resistant patients, supporting our hypothesis that Aurora kinase A inhibition can reverse immunotherapy resistance of retinoblastoma protein-deficient HNSCC.
Collapse
Affiliation(s)
- Faye M. Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Madison P. O’Hara
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Lacin Yapindi
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Peixin Jiang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Hai T. Tran
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Weihong Xiao
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| | - Maura Gillison
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Xiaowen Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander Khalaf
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jagannadha K. Sastry
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Soma Ghosh
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD, Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Cesano A, Augustin R, Barrea L, Bedognetti D, Bruno TC, Carturan A, Hammer C, Ho WS, Kather JN, Kirchhoff T, Lu RO, McQuade J, Najjar YG, Pietrobon V, Ruella M, Shen R, Soldati L, Spencer C, Betof Warner A, Warren S, Ziv E, Marincola FM. Advances in the understanding and therapeutic manipulation of cancer immune responsiveness: a Society for Immunotherapy of Cancer (SITC) review. J Immunother Cancer 2025; 13:e008876. [PMID: 39824527 PMCID: PMC11749597 DOI: 10.1136/jitc-2024-008876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy-including immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT)-has become a standard, potentially curative treatment for a subset of advanced solid and liquid tumors. However, most patients with cancer do not benefit from the rapidly evolving improvements in the understanding of principal mechanisms determining cancer immune responsiveness (CIR); including patient-specific genetically determined and acquired factors, as well as intrinsic cancer cell biology. Though CIR is multifactorial, fundamental concepts are emerging that should be considered for the design of novel therapeutic strategies and related clinical studies. Recent advancements as well as novel approaches to address the limitations of current treatments are discussed here, with a specific focus on ICI and ACT.
Collapse
Affiliation(s)
| | - Ryan Augustin
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Tullia C Bruno
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Winson S Ho
- University of California San Francisco, San Francisco, California, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Rongze O Lu
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Jennifer McQuade
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Marco Ruella
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rhine Shen
- Kite Pharma Inc, Santa Monica, California, USA
| | | | - Christine Spencer
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | | | - Elad Ziv
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
3
|
Fang R, Chen Y, Huang B, Wang Z, Zhu X, Liu D, Sun W, Chen L, Zhang M, Lyu K, Lei W. Predicting response to PD-1 inhibitors in head and neck squamous cell carcinomas using peripheral blood inflammatory markers. Transl Oncol 2025; 51:102222. [PMID: 39616985 DOI: 10.1016/j.tranon.2024.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/15/2024] [Accepted: 11/23/2024] [Indexed: 12/11/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) treatment has the potential to induce durable disease remission. However, the current combined positive score (CPS) is insufficient accurate for predicting which patients will benefit from it. In the present study, a real-world retrospective study was conducted on 56 patients of HNSCC who received ICI treatment. Then the treatment that patient received and levels of pre-treatment blood inflammatory markers (NLR, MLR and PLR) were identified to develop a model for predicting immunotherapy response. Notably, the model achieved an area under the curve (AUC) of 0.877 (95 % CI 0.769-0.985) , providing a larger net benefit than the CPS marker (AUC=0.614, 95 % CI 0.466-0.762). Furthermore, the internal validation of the prediction model showed a C-index of 0.835. Patients with high score of the model would get improved PFS than those with low score. Therefore, the prediction model for patients with local advanced or R/M HNSCC receiving ICI treatment, which represented an better efficient prediction of immunotherapy response than CPS marker.
Collapse
Affiliation(s)
- Ruihua Fang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Yi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Bixue Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Zhangfeng Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Xiaolin Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Wei Sun
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Lin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Minjuan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China
| | - Kexing Lyu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China.
| | - Wenbin Lei
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, PR China.
| |
Collapse
|
4
|
Li J, Ma Y, Wu Q, Ping P, Li J, Xu X. The potential role of HPV oncoproteins in the PD-L1/PD-1 pathway in cervical cancer: new perspectives on cervical cancer immunotherapy. Front Oncol 2024; 14:1488730. [PMID: 39735605 PMCID: PMC11671370 DOI: 10.3389/fonc.2024.1488730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Cervical cancer (CC) is a common malignant tumour of the female reproductive system that is highly harmful to women's health. The efficacy of traditional surgery, radiotherapy and chemotherapy is limited, especially for recurrent and metastatic CC. With continuous progress in diagnostic and treatment technology, immunotherapy has become a new approach for treating CC and has become a new therapy for recurrent and metastatic CC. However, immunotherapy is not effective for all patients with CC. Therefore, factors related to immunotherapy efficacy in CC patients have become the focus of researchers. High-risk human papillomavirus (HPV) infection is an important factor that drives CC development and affects its progression and prognosis. Increasing attention has been given to the mechanism of the E5, E6 and E7 proteins, which are encoded by the HPV gene, in the occurrence and development of CC and their interaction with programmed cell death ligand-1/programmed cell death-1 (PD-L1/PD-1). Although some preliminary studies have been conducted on these topics, a comprehensive and systematic review of these topics is not available. This review comprehensively summarizes related articles from journals with impact factors greater than 3 and published in the past 5 years; it also reviews studies on the mechanism of HPV and CC, the mechanism of PD-L1/PD-1 axis regulation in CC, and the mechanism by which the interaction between HPV-related oncoproteins and the PD-L1/PD-1 pathway affects the development and prognosis of CC. This study provides theoretical support for the use of immunotherapies for CC, provides a basis for the selection of specific medications that target different HPV-related proteins, and provides a new perspective for the discovery of new immunotherapy targets for CC.
Collapse
Affiliation(s)
| | | | | | | | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, China
| | - Xiaoying Xu
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical
University, Dalian, China
| |
Collapse
|
5
|
Nadal A, Cardesa A, Agaimy A, Almangush A, Franchi A, Hellquist H, Leivo I, Zidar N, Ferlito A. Massive parallel sequencing of head and neck conventional squamous cell carcinomas: A comprehensive review. Virchows Arch 2024; 485:965-976. [PMID: 39613893 DOI: 10.1007/s00428-024-03987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is a cause of significant mortality and morbidity. The epidemiology of this cancer varies worldwide due to either genetic differences in populations or differences in carcinogen exposure. The application of massive parallel sequencing-based techniques in HNSCC should provide a helpful understanding of the genetic alterations that eventually lead to HNSCC development and progression, and ideally, could be used for personalized therapy. In this review, the reader will find an overview of the mutational profile of conventional HNSCC according to published results on massive parallel sequencing data that confirm the pivotal role of TP53 and the frequent involvement of CDKN2A and PIK3CA. The reader will also find a more detailed description of the genes, such as NOTCH1 and FBXW7, that were not identified in HNSCCs before the development of these techniques, the differences that can be site-specific, such as the different mutational signatures that indicate specific carcinogens for various subsites of the head and neck, and finally, the actionability of these findings that should allow more personalized therapy for patients.
Collapse
Affiliation(s)
- Alfons Nadal
- Pathology Department, Department of Clinical Fundamentals, Universitat de Barcelona, IDIBAPS, Clínic Barcelona, Barcelona, Spain.
| | | | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Alhadi Almangush
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Alessandro Franchi
- Section of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Henrik Hellquist
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku University Central Hospital, 20521, Turku, Finland
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
6
|
Zhang Z, Sehgal K, Shirai K, Butler RA, Wiencke JK, Koestler DC, Ramush G, Lee MK, Molinaro AM, Stolrow HG, Birnbaum A, Salas LA, Haddad RI, Kelsey KT, Christensen BC. Methylation cytometric pretreatment blood immune profiles with tumor mutation burden as prognostic indicators for survival outcomes in head and neck cancer patients on anti-PD-1 therapy. NPJ Precis Oncol 2024; 8:267. [PMID: 39558036 PMCID: PMC11573993 DOI: 10.1038/s41698-024-00759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Tissue biomarkers for immune checkpoint inhibitor (ICI) response are limited by tumor sample heterogeneity and availability. This study identifies clinically actionable pretreatment blood biomarkers that are associated with ICI treatment response and survival in recurrent/metastatic head and neck squamous cell carcinoma. A prospective multi-center study enrolled 100 patients before standard-of-care immunotherapy. Blood immune profiles, measured by methylation cytometry, were assessed alongside tumor mutational burden (TMB) and PD-L1 combined proportion score (CPS). TMB and PD-L1 CPS were available for 56 and 91 patients, respectively. High neutrophils, monocytes, and neutrophil-to-lymphocyte ratio were associated with worse survival, while high CD4T cells, especially naïve CD4T cells, and lymphocyte-to-monocyte ratio were associated with better survival. Significant interactions between TMB and peripheral immune profiles for both progression-free and overall survival were found. Clinically relevant pretreatment peripheral immune biomarkers were identified, demonstrating the potential of DNA-based immune profiling to predict ICI response before treatment.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Kartik Sehgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Keisuke Shirai
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Rondi A Butler
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Geat Ramush
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Min Kyung Lee
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Hannah G Stolrow
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Ariel Birnbaum
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Robert I Haddad
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Karl T Kelsey
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| |
Collapse
|
7
|
Sun M, Zhan N, Yang Z, Zhang X, Zhang J, Peng L, Luo Y, Lin L, Lou Y, You D, Qiu T, Liu Z, Wang Q, Liu Y, Sun P, Yu M, Wang H. Cuproptosis-related lncRNA JPX regulates malignant cell behavior and epithelial-immune interaction in head and neck squamous cell carcinoma via miR-193b-3p/PLAU axis. Int J Oral Sci 2024; 16:63. [PMID: 39511134 PMCID: PMC11543849 DOI: 10.1038/s41368-024-00314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 11/15/2024] Open
Abstract
The development, progression, and curative efficacy of head and neck squamous cell carcinoma (HNSCC) are influenced by complex interactions between epithelial and immune cells. Nevertheless, the specific changes in the nature of these interactions and their underlying molecular mechanisms in HNSCC are not yet fully understood. Cuproptosis, a form of programmed cell death that is dependent on copper, has been implicated in cancer pathogenesis. However, the understanding of cuproptosis in the context of HNSCC remains limited. In this study, we have discovered that cuproptosis-related long non-coding RNAs (CRLs) known as JPX play a role in promoting the expression of the oncogene urokinase-type plasminogen activator (PLAU) by competitively binding to miR-193b-3p in HNSCC. The increased activity of the JPX/miR-193b-3p/PLAU axis in malignant epithelial cells leads to enhanced cell proliferation, migration, and invasion in HNSCC. Moreover, the overexpression of PLAU in tumor epithelial cells facilitates its interaction with the receptor PLAUR, predominantly expressed on macrophages, thereby influencing the abnormal epithelial-immune interactome in HNSCC. Notably, the JPX inhibitor Axitinib and the PLAU inhibitor Palbociclib may not only exert their effects on the JPX/miR-193b-3p/PLAU axis that impacts the malignant tumor behaviors and the epithelial-immune cell interactions but also exhibit synergistic effects in terms of suppressing tumor cell growth and arresting cell cycle by targeting epidermal growth factor receptor (EGFR) and cyclin-dependent kinase (CDK4/6) for the treatment of HNSCC.
Collapse
Affiliation(s)
- Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Ning Zhan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiaoting Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Lianjie Peng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yaxian Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Lining Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yiting Lou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Dongqi You
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tao Qiu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhichao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yu Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Ping Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
8
|
Flanagan KC, Earls J, Hiken J, Wellinghoff RL, Ponder MM, McLeod HL, Westra WH, Vavinskaya V, Sutton L, Deichaite I, Macdonald OK, Welaya K, Wade III J, Azzi G, Pippas AW, Slim J, Bank B, Sui X, Kossman SE, Shenkenberg TD, Alexander WL, Price KA, Ley J, Messina DN, Glasscock JI, Colevas AD, Cohen EEW, Adkins D, Duncavage EJ. Multicenter validation of an RNA-based assay to predict anti-PD-1 disease control in patients with recurrent or metastatic head and neck squamous cell carcinoma: the PREDAPT study. J Immunother Cancer 2024; 12:e009573. [PMID: 39489541 PMCID: PMC11535711 DOI: 10.1136/jitc-2024-009573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Despite advances in cancer care and detection, >65% of patients with squamous cell cancer of the head and neck (HNSCC) will develop recurrent and/or metastatic disease. The prognosis for these patients is poor with a 5-year overall survival of 39%. Recent treatment advances in immunotherapy, including immune checkpoint inhibitors like pembrolizumab and nivolumab, have resulted in clinical benefit in a subset of patients. There is a critical clinical need to identify patients who benefit from these antiprogrammed cell death protein 1 (anti-PD-1) immune checkpoint inhibitors. METHODS Here, we report findings from a multicenter observational study, PREDicting immunotherapy efficacy from Analysis of Pre-treatment Tumor biopsies (PREDAPT), conducted across 17 US healthcare systems. PREDAPT aimed to validate OncoPrism-HNSCC, a clinical biomarker assay predictive of disease control in patients with recurrent or metastatic HNSCC treated with anti-PD-1 immune checkpoint inhibitors as a single agent (monotherapy) and in combination with chemotherapy (chemo-immunotherapy). The test used RNA-sequencing data and machine learning models to score each patient and place them into groups of low, medium, or high. RESULTS The OncoPrism-HNSCC prediction significantly correlated with disease control in both the monotherapy cohort (n=62, p=0.004) and the chemo-immunotherapy cohort (n=50, p=0.01). OncoPrism-HNSCC also significantly predicted progression-free survival in both cohorts (p=0.015 and p=0.037, respectively). OncoPrism-HNSCC had more than threefold higher specificity than programmed death-ligand 1 combined positive score and nearly fourfold higher sensitivity than tumor mutational burden for predicting disease control. CONCLUSIONS Here, we demonstrate the clinical validity of the OncoPrism-HNSCC assay in identifying patients with disease control in response to anti-PD-1 immune checkpoint inhibitors. TRIAL REGISTRATION NUMBER NCT04510129.
Collapse
Affiliation(s)
| | - Jon Earls
- Cofactor Genomics Inc, Saint Louis, Missouri, USA
| | | | | | | | | | - William H Westra
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vera Vavinskaya
- Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
| | - Leisa Sutton
- UCSD Moores Cancer Center, La Jolla, California, USA
| | - Ida Deichaite
- Radiation Medicine and Applied Sciences, UCSD Moores Cancer Center, La Jolla, California, USA
| | | | - Karim Welaya
- CoxHealth Medical Oncology, Springfield, Missouri, UK
| | | | - Georges Azzi
- Holy Cross Hospital Medical Group, Fort Lauderdale, Florida, USA
| | - Andrew W Pippas
- John B Amos Cancer Center, Columbus Regional Research Institute, Centricity Research, Columbus, Georgia, USA
| | - Jennifer Slim
- Multicare Institute for Research and Innovation, Tacoma, Washington, USA
| | - Bruce Bank
- Northwest Oncology & Hematology, Elk Grove Village, Illinois, USA
| | - Xingwei Sui
- Providence Regional Cancer System, Lacey, Washington, USA
| | | | | | - Warren L Alexander
- William Beaumont Army Medical Center and The Geneva Foundation, Fort Bliss, Texas, USA
| | | | - Jessica Ley
- Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | | | | | | | - Ezra E W Cohen
- Division of Hematology and Oncology, University of California San Diego, La Jolla, California, USA
| | - Douglas Adkins
- Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
9
|
Hong MH, Park S, Vo T, Cho J, Jung HA, Lee SH, Kim SH, Zhou H, Chirovsky D, Koh YW, Yoon SO, Webber AL, Gumuscu B, Cho BC, Ahn MJ. Expression of PD-L1, PD-L2, and inflammatory gene expression profile in locally advanced head and neck squamous cell carcinoma. ESMO Open 2024; 9:103961. [PMID: 39461260 PMCID: PMC11546268 DOI: 10.1016/j.esmoop.2024.103961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment in cancer treatment response and resistance is of increasing interest. This retrospective study characterized and investigated programmed death-ligand 1 (PD-L1), PD-L2, and the immune gene expression signature and their association with clinical outcomes in locoregionally advanced head and neck squamous cell carcinoma (LA HNSCC). PATIENTS AND METHODS PD-L1 and PD-L2 expression on tumor and immune-infiltrating cells (positivity defined as combined positive score or immunohistochemistry proportion score >1) and T-cell-inflamed gene expression profile (TcellinfGEP) were evaluated in patients with LA HNSCC treated in South Korea from 2000 to 2015. Correlations among the three biomarkers and their associations with overall survival and recurrence-free survival were assessed. RESULTS Among 366 patients, 38.8% had human papillomavirus-positive disease. PD-L1-positive, PD-L2-positive, and high TcellinfGEP (≤-0.162) status were observed in 83.6%, 85.4%, and 73.2% of patients, respectively; 4.1% were posttreatment samples. Correlation between PD-L1 and PD-L2 scores was moderate (rSpearman = 0.50), and each biomarker was slightly less correlated with TcellinfGEP (0.41-0.45). PD-L1 expression and high TcellinfGEP status were associated with human papillomavirus positivity. Higher levels of all biomarkers were observed in oral cavity and oropharyngeal cancers compared with other HNSCC sites. In a multivariable analysis that simultaneously adjusted for all three biomarkers, only high TcellinfGEP was significantly associated with longer overall survival (adjusted hazard ratio, 0.57; 95% confidence interval 0.33-0.98) and recurrence-free survival (adjusted hazard ratio, 0.41; 95% confidence interval 0.23-0.74). CONCLUSION High TcellinfGEP status, but not PD-L1 or PD-L2 expression, was independently associated with longer survival in patients with LA HNSCC. Results may have implications for evaluating therapies targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) in HNSCC.
Collapse
Affiliation(s)
- M H Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul
| | - S Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - T Vo
- Merck & Co., Inc., Rahway, USA
| | - J Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul
| | - H A Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - S-H Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - S-H Kim
- Department of Otorhinolaryngology
| | - H Zhou
- Merck & Co., Inc., Rahway, USA
| | | | - Y W Koh
- Department of Otorhinolaryngology
| | - S O Yoon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | - B C Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul.
| | - M-J Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Saini KS, Somara S, Ko HC, Thatai P, Quintana A, Wallen ZD, Green MF, Mehrotra R, McGuigan S, Pang L, Das S, Yadav K, Neric D, Cantini L, Joshi C, Iwamoto K, Dubbewar S, Vidal L, Chico I, Severson E, Lorini L, Badve S, Bossi P. Biomarkers in head and neck squamous cell carcinoma: unraveling the path to precision immunotherapy. Front Oncol 2024; 14:1473706. [PMID: 39439946 PMCID: PMC11493772 DOI: 10.3389/fonc.2024.1473706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recent strides in understanding the molecular underpinnings of head and neck cancers have sparked considerable interest in identifying precise biomarkers that can enhance prognostication and enable personalized treatment strategies. Immunotherapy has particularly revolutionized the therapeutic landscape for head and neck squamous cell carcinoma, offering new avenues for treatment. This review comprehensively examines the application and limitations of the established and emerging/novel biomarkers for head and neck squamous cell carcinoma. Established biomarkers, including well-characterized genetic mutations, protein expressions, and clinical factors, have been extensively studied and validated in clinical practice. Novel biomarkers identified through molecular analyses, including novel genetic alterations, immune-related markers, and molecular signatures, are currently being investigated and validated in preclinical and clinical settings. Biomarkers hold the potential to deepen our understanding of head and neck squamous cell carcinoma biology and guide therapeutic strategies. The evolving paradigm of predictive biomarkers facilitates the study of individual responses to specific treatments, including targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Kamal S. Saini
- Fortrea Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Soma Das
- Fortrea Inc., Durham, NC, United States
| | - Kavita Yadav
- George Institute for Global Health, New Delhi, India
| | | | | | | | | | | | | | | | | | - Luigi Lorini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
| | - Sunil Badve
- Emory University, Atlanta, GA, United States
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
- Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
11
|
Lao S, Chen Z, Wang W, Zheng Y, Xiong S, He P, Yi H, Li J, Li F, Li S, He M, Liu X, Qi C, He J, Liang W. Prognostic patterns in invasion lymph nodes of lung adenocarcinoma reveal distinct tumor microenvironments. NPJ Precis Oncol 2024; 8:164. [PMID: 39080406 PMCID: PMC11289302 DOI: 10.1038/s41698-024-00639-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are usually the first station of tumor metastasis in lung cancer. TDLNs+ have distinct pathomorphologic and tumor microenvironment (TME)-compositional patterns, which still need to be thoroughly investigated in lung adenocarcinoma (LUAD). Here, we enrolled 312 LUAD patients with TDLNs+ from our institution between 2015 and 2019. 3DHISTECH was used to scan all of the TDLNs+. Based on morphologic features, TDLNs+ patterns were classified as polarized-type or scattered-type, and TME-compositional patterns were classified as colloid-type, necrosis-type, specific-type, and common-type. Multivariate analysis revealed an increased risk of early recurrence associated with scattered-type (HR 2.37, 95% CI: 1.06-5.28), colloid-type (HR 1.95, 95% CI: 1.03-3.67), and necrosis-type (HR 2.21, 95% CI: 1.13-4.89). NanoString transcriptional analysis revealed an immunosuppression and vascular invasion hallmark in scattered and necrosis patterns and an immunoactivated hallmark in polarized and common patterns. According to imaging mass cytometry (IMC), the scattered and necrosis patterns revealed that germinal centers (GC) were compromised, GCB cell and T cell proliferation were deficient, tumor cells had the potential for proliferation, and the immune attack may be weaker. In this study, we present evidence that LUAD patients have distinct patterns and immune hallmarks of TDLNs+ related to their prognosis.
Collapse
Affiliation(s)
- Shen Lao
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Zisheng Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, the Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Yongmei Zheng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Ping He
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Yi
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Feng Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Shuting Li
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miao He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Xiaoyan Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China
| | - Chuang Qi
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Healthy, Guangzhou, China.
| |
Collapse
|
12
|
Tsujikawa T, Ohno K, Morita KI, Saburi S, Mitsuda J, Yoshimura K, Kimura A, Morimoto H, Ogi H, Shibata S, Akashi T, Kurata M, Imoto I, Shimizu Y, Kano S, Watanabe A, Yamazaki T, Asada Y, Hayashi R, Saito Y, Ozawa H, Tsukahara K, Oridate N, Sano D, Horii A, Ueki Y, Maruo T, Mukoyama N, Hanai N, Fukusumi T, Iwai H, Fujisawa T, Fujii T, Nibu KI, Iwae S, Ueda T, Chikuie N, Yasumatsu R, Matsuo M, Umeno H, Ono T, Masuda M, Toh S, Itoh K, Hirano S, Asakage T. Clinical, genomic and immune microenvironmental determinants of nivolumab response in head and neck squamous cell carcinoma. Front Immunol 2024; 15:1390873. [PMID: 39136017 PMCID: PMC11317249 DOI: 10.3389/fimmu.2024.1390873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Background In view of improving biomarkers predicting the efficacy of immunotherapy for head and neck squamous cell carcinoma (R/M HNSCC), this multicenter retrospective study aimed to identify clinical, tumor microenvironmental, and genomic factors that are related to therapeutic response to the anti- Programmed cell death protein 1 (PD-1) antibody, nivolumab, in patients with R/M HNSCC. Methods The study compared 53 responders and 47 non-responders, analyzing formalin-fixed paraffin-embedded samples using 14-marker multiplex immunohistochemistry and targeted gene sequencing. Results Of 100 patients included, responders had significantly lower smoking and alcohol index, higher incidence of immune related adverse events, and higher PD-1 ligand (PD-L1) expression in immune cells as well as PD-L1 combined positive score (CPS) than non-responders. The frequency of natural killer cells was associated with nivolumab response in patients with prior cetuximab use, but not in cetuximab-naïve status. Age-stratified analysis showed nivolumab response was linked to high CPS and lymphoid-inflamed profiles in patients aged ≥ 65. In contrast, lower NLR in peripheral blood counts was associated with response in patients aged < 65. Notably, TP53 mutation-positive group had lower CPS and T cell densities, suggesting an immune-excluded microenvironment. Patients with altered tumor suppressor gene pathways, including TP53, CDKN2A, and SMAD4 mutations, had lower CPS, higher smoking index, and were associated with poor responses. Conclusion Nivolumab treatment efficacy in HNSCC is influenced by a combination of clinical factors, age, prior treatment, immune environmental characteristics, and gene mutation profiles.
Collapse
Affiliation(s)
- Takahiro Tsujikawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Kazuchika Ohno
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sumiyo Saburi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junichi Mitsuda
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanako Yoshimura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Alisa Kimura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Morimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings, Kyoto, Japan
| | | | - Takumi Akashi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yasushi Shimizu
- Department of Medical Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihito Watanabe
- Department of Otolaryngology- Head and Neck Surgery, Keiyukai Sapporo Hospital, Sapporo, Japan
| | - Tomoko Yamazaki
- Department Head and Neck Oncology Division, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Japan
| | - Ryuichi Hayashi
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuki Saito
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Nobuhiko Oridate
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Arata Horii
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yushi Ueki
- Department of Otolaryngology Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Maruo
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Mukoyama
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, Osaka, Japan
| | - Takuo Fujisawa
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University Hospital, Osaka, Japan
| | - Takashi Fujii
- Department of Head and Neck Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Ken-ichi Nibu
- Department of Otolaryngology–Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigemichi Iwae
- Department of Head and Neck Surgery, Hyogo Cancer Center, Akashi, Japan
| | - Tsutomu Ueda
- Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuyuki Chikuie
- Department of Otolaryngology and Head and Neck Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Ryuji Yasumatsu
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Mioko Matsuo
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirohito Umeno
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Takeharu Ono
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, Kurume, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Toh
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Yang H, Zhou L, Shi M, Yu J, Xie Y, Sun Y. Ubiquitination-Related Gene Signature, Nomogram and Immune Features for Prognostic Prediction in Patients with Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2024; 15:880. [PMID: 39062659 PMCID: PMC11276148 DOI: 10.3390/genes15070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer Genome Atlas (TCGA) database, and weighted gene co-expression network analysis (WGCNA) was used to identify specific UbRGs within survival-related hub modules. A multi-gene signature was formulated using LASSO Cox regression analysis. Furthermore, various analyses, including time-related receiver operating characteristics (ROCs), Kaplan-Meier, Cox regression, nomogram prediction, gene set enrichment, co-expression, immune, tumor mutation burden (TMB), and drug sensitivity, were conducted. Ultimately, a prognostic signature consisting of 11 gene pairs for HNSCC was established. The Kaplan-Meier curves indicated significantly improved overall survival (OS) in the low-risk group compared to the high-risk group (p < 0.001), suggesting its potential as an independent and dependable prognostic factor. Additionally, a nomogram with AUC values of 0.744, 0.852, and 0.861 at 1-, 3-, and 5-year intervals was developed. Infiltration of M2 macrophages was higher in the high-risk group, and the TMB was notably elevated compared to the low-risk group. Several chemotherapy drugs targeting UbRGs were recommended for low-risk and high-risk patients, respectively. The prognostic signature derived from UbRGs can effectively predict prognosis and provide new personalized therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Huiwen Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Vitale P, De Falco V, Addeo R. Is the use of cetuximab in the first-line treatment of recurrent/metastatic head and neck cancer still important? Expert Rev Anticancer Ther 2024; 24:481-484. [PMID: 38733083 DOI: 10.1080/14737140.2024.2354772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/21/2023] [Indexed: 05/13/2024]
Affiliation(s)
- Pasquale Vitale
- Oncology Operative Unit, Hospital of Frattamaggiore, Frattamaggiore, Italy
| | - Vincenzo De Falco
- Oncology Operative Unit, Hospital of Frattamaggiore, Frattamaggiore, Italy
| | - Raffaele Addeo
- Oncology Operative Unit, Hospital of Frattamaggiore, Frattamaggiore, Italy
| |
Collapse
|
15
|
Xing Z, Xu Y, Xu X, Yang K, Qin S, Jiao Y, Wang L. Identification and validation of a novel risk model based on cuproptosis‑associated m6A for head and neck squamous cell carcinoma. BMC Med Genomics 2024; 17:137. [PMID: 38778403 PMCID: PMC11110395 DOI: 10.1186/s12920-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a prevalent cancer with a poor survival rate due to anatomical limitations of the head and a lack of reliable biomarkers. Cuproptosis represents a novel cellular regulated death pathway, and N6-methyladenosine (m6A) is the most common internal RNA modification in mRNA. They are intricately connected to tumor formation, progression, and prognosis. This study aimed to construct a risk model for HNSCC using a set of mRNAs associated with m6A regulators and cuproptosis genes (mcrmRNA). METHODS RNA-seq and clinical data of HNSCC patients from The Cancer Genome Atlas (TCGA) database were analyzed to develop a risk model through the least absolute shrinkage and selection operator (LASSO) analysis. Survival analysis and receiver operating characteristic (ROC) analysis were performed for the high- and low-risk groups. Additionally, the model was validated using the GSE41613 dataset from the Gene Expression Omnibus (GEO) database. GSEA and CIBERSORT were applied to investigate the immune microenvironment of HNSCC. RESULTS A risk model consisting of 32 mcrmRNA was developed using the LASSO analysis. The risk score of patients was confirmed to be an independent prognostic indicator by multivariate Cox analysis. The high-risk group exhibited a higher tumor mutation burden. Additionally, CIBERSORT analysis indicated varying levels of immune cell infiltration between the two groups. Significant disparities in drug sensitivity to common medications were also observed. Enrichment analysis further unveiled significant differences in metabolic pathways and RNA processing between the two groups. CONCLUSIONS Our risk model can predict outcomes for HNSCC patients and offers valuable insights for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Zhongxu Xing
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yijun Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Xiaoyan Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Kaiwen Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Lili Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 21500, China.
| |
Collapse
|
16
|
Wang L, Huang Y, Sun X. Sintilimab combined with anlotinib as first-line treatment for advanced sarcomatoid carcinoma of head and neck: a case report and literature review. Front Oncol 2024; 14:1362160. [PMID: 38725630 PMCID: PMC11080619 DOI: 10.3389/fonc.2024.1362160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Sarcomatoid carcinoma (SC) is a rare, complex, aggressive tumor that spreads rapidly, is highly malignant, and has metastasized. Surgical resection is the primary treatment, and it usually occurs in the lungs and kidneys but rarely in the neck. Patients with advanced sarcomatoid carcinoma (SC) of the head and neck (HN) have a poor progonsis. In recent years, immune checkpoint inhibitors (ICIs) have been established as treatments for many solid tumors; however, the effectiveness of ICIs in treating SC of HN is still little recognized. We report a case study of a middle-aged woman with primary sarcomatoid carcinoma of the neck. She developed sarcomatoid carcinoma of the contralateral neck 7 months after the first surgical treatment. Subsequently, disease recurrence and metastasis occurred 8 months after the second surgery. The patient did not receive any treatment after both surgeries. The tumor showed high programmed death-ligand 1 (PD-L1) expression, with a combined positive score (CPS): 95. The patient's response to treatment was assessed as partial remission (PR) after 2 cycles of anlotinib combined with sintilimab. The patient has survived for over 2 years and remains in PR status, despite experiencing grade 2 hypothyroidism as an adverse event during treatment. The case highlights the efficacy and safety of anlotinib and sintilimab as a first-line treatment.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yingyu Huang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Graduate School of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xin Sun
- Graduate School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Lechner A, Kumbrink J, Walz C, Jung A, Baumeister P, Flach S. Molecular characterization of the evolution of premalignant lesions in the upper aerodigestive tract. Front Oncol 2024; 14:1364958. [PMID: 38706595 PMCID: PMC11067708 DOI: 10.3389/fonc.2024.1364958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Early relapse and development of metastatic disease are some of the primary reasons for the poor prognosis of patients with head and neck squamous cell carcinoma (HNSCC). HNSCC is a heterogeneous disease which may develop in large premalignant fields of genetically altered cells. Yet knowing which individuals will progress and develop clinically significant cancers during their lifetimes remains one of the most important challenges of reducing HNSCC morbidity and mortality. To further elucidate the molecular mechanisms, we performed a focused analysis of the genome and immune microenvironment from multiple, matched normal squamous tissue, premalignant lesions, as well as primary and recurrent tumors from seven patients with p16-negative HNSCC. Methods We performed targeted panel Next Generation Sequencing (161 genes) to analyze somatic variants from sequentially collected, matched formalin-fixed paraffin-embedded tissue (normal, premalignant, HNSCC) from two patients. These samples plus samples from five additional patients were analyzed with the Nanostring PanCancer Immune Panel. In addition, we performed shallow whole genome sequencing (0.5x coverage on average) on samples from three of these patients. Patients were, apart from one case, primarily treated with curative-intent surgery, and received subsequent adjuvant treatment, if indicated. Results The most frequently mutated genes were TP53 and NOTCH1. Other mutated genes included NOTCH3 and CDKN2A, among others. A significant number of mutations were private to dysplasia and invasive carcinoma, respectively, however, almost 20% were shared between them. Increasing genomic instability was observed when comparing histologically normal squamous mucosa with higher levels of dysplasia. High-grade dysplasia showed similarly rearranged genomes as invasive carcinoma. Pathways related to interferon alpha and gamma response were upregulated even in moderate dysplastic lesions with increasing expression in higher grades of dysplasia and carcinoma. SPINK5, a known tumor suppressor gene in HNSCC, was already downregulated in low-grade dysplastic lesions, indicating an early deactivation in the evolution of the disease. Conclusion Genomic alterations as well as aberrant immune gene expression can be observed early in the evolution of tumors of the upper aerodigestive tract, highlighting the potential for targeting early mechanisms of disease progression.
Collapse
Affiliation(s)
- Axel Lechner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität (LMU) Munich University Hospital, Munich, Germany
| | - Jörg Kumbrink
- Department of Pathology, LMU Munich University Hospital, Munich, Germany
| | - Christoph Walz
- Department of Pathology, LMU Munich University Hospital, Munich, Germany
| | - Andreas Jung
- Department of Pathology, LMU Munich University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität (LMU) Munich University Hospital, Munich, Germany
| | - Susanne Flach
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-Universität (LMU) Munich University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
18
|
Zhang Y, Yang Y, Ma Y, Liu Y, Ye Z. Development and validation of an interpretable radiomic signature for preoperative estimation of tumor mutational burden in lung adenocarcinoma. Front Genet 2024; 15:1367434. [PMID: 38660677 PMCID: PMC11039798 DOI: 10.3389/fgene.2024.1367434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Background Tumor mutational burden (TMB) is a promising biomarker for immunotherapy. The challenge of spatial and temporal heterogeneity and high costs weaken its power in clinical routine. The aim of this study is to estimate TMB preoperatively using a volumetric CT-based radiomic signature (rMB). Methods Seventy-one patients with resectable lung adenocarcinoma (LUAD) who underwent whole-exome sequencing (WXS) from 2011 to 2014 were enrolled from the institutional biobank of Tianjin Medical University Cancer Institute and Hospital (TMUCIH). Forty-nine LUAD patients with WXS from the Cancer Genome Atlas Program (TCGA) served as the external validation cohort. Computed tomography (CT) volumes were resampled to 1-mm isotropic, semi-automatically segmented, and manually adjusted by two radiologists. A total of 3,108 radiomic features were extracted via PyRadiomics and then harmonized across cohorts by ComBat. Features with inter-segmentation intra-class correlation coefficient (ICC) > 0.8, low collinearity, and significant univariate power were passed to the least absolute shrinkage and selection operator (LASSO)-logistic classifier to discriminate TMB-high/TMB-low at a threshold of 10 mut/Mb. The receiver operating characteristic (ROC) curve analysis and calibration curve were used to determine its efficiency. Shapley values (SHAP) attributed individual predictions to feature contributions. Clinical variables and circulating biomarkers were collected to find potential associations with TMB and rMB. Results The top frequently mutated genes significantly differed between the Chinese and TCGA cohorts, with a median TMB of 2.20 and 3.46 mut/Mb and 15 (21.12%) and 9 (18.37%) cases of TMB-high, respectively. After dimensionality reduction, rMB comprised 21 features, which reached an AUC of 0.895 (sensitivity = 0.867, specificity = 0.875, and accuracy = 0.873) in the discovery cohort and 0.878 (sensitivity = 1.0, specificity = 0.825, and accuracy = 0.857 in a consist cutoff) in the validation cohort. rMB of TMB-high patients was significantly higher than rMB of TMB-low patients in both cohorts (p < 0.01). rMB was well-calibrated in the discovery cohort and validation cohort (p = 0.27 and 0.74, respectively). The square-filtered gray-level concurrence matrix (GLCM) correlation was of significant importance in prediction. The proportion of circulating monocytes and the monocyte-to-lymphocyte ratio were associated with TMB, whereas the circulating neutrophils and lymphocyte percentage, original and derived neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio were associated with rMB. Conclusion rMB, an intra-tumor radiomic signature, could predict lung adenocarcinoma patients with higher TMB. Insights from the Shapley values may enhance persuasiveness of the purposed signature for further clinical application. rMB could become a promising tool to triage patients who might benefit from a next-generation sequencing test.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin, China
| | - Yichen Yang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, China
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin, China
| | - Ying Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Cancer Immunology and Biotherapy of Tianjin, Tianjin, China
| |
Collapse
|
19
|
Alkhatib HH, Maroun CA, Guller M, Cooper DJ, Wu ES, Eisele DW, Fakhry C, Pardoll D, Seiwert TY, Zhu G, Mandal R. Allergy History and Immunotherapy Response in Patients With Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma. Otolaryngol Head Neck Surg 2024; 170:828-836. [PMID: 38123496 DOI: 10.1002/ohn.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE This study examines the association between patient-reported allergy history and immune checkpoint inhibition (ICI) response in patients with recurrent or metastatic head and neck squamous cell carcinoma (RMHNSCC). STUDY DESIGN Retrospective cohort study. SETTING Academic tertiary care hospital. METHODS Data were collected from the electronic medical records on baseline age, sex, allergy history, human papillomavirus status, T-stage, N-stage, smoking status, and survival for patients with and without an allergy history. The primary outcome was ICI response defined as complete or partial response by the RECIST criteria. Chi-square and logistic regression analyses were conducted to compare rates and odds of ICI response. Kaplan-Meier analyses were used to compare survival between groups. RESULTS Our study included 52 patients with an allergy history and 36 patients without an allergy history. The groups were similar in age, sex, HPV status, smoking status, and T- and N-stage. Patients with an allergy history (17/52, 32.1%) had a greater ICI response rate than patients without allergy history (4/36, 11.1%) (P = .02). After adjusting for HPV, patients with allergies had 3.93 (1.19-13.00) times increased odds of ICI response compared to patients without allergies. The median progression-free survival was 6.0 and 4.2 months for patients with and without an allergy history respectively (log-rank, P = .04). The median overall survival was 25.0 and 11.1 months for patients with and without an allergy history respectively (log-rank, P = .002). CONCLUSION Patient-reported allergy history was associated with ICI response in patients with RMHNSCC, underscoring the potential clinical utility of allergy history in estimating ICI response.
Collapse
Affiliation(s)
- Hosam H Alkhatib
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Christopher A Maroun
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Meytal Guller
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Dylan J Cooper
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
- Department of Otolaryngology-Head and Neck Surgery, Northwell Health Cancer Institute, Hempstead, USA
| | - Evan S Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David W Eisele
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carole Fakhry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Drew Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tanguy Y Seiwert
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Rajarsi Mandal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Otolaryngology-Head and Neck Surgery, Northwell Health Cancer Institute, Hempstead, USA
| |
Collapse
|
20
|
Mestiri S, El-Ella DMA, Fernandes Q, Bedhiafi T, Almoghrabi S, Akbar S, Inchakalody V, Assami L, Anwar S, Uddin S, Gul ARZ, Al-Muftah M, Merhi M, Raza A, Dermime S. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers. Biomed Pharmacother 2024; 171:116095. [PMID: 38183744 DOI: 10.1016/j.biopha.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shaheena Anwar
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Muftah
- Translational Cancer and Immunity Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
21
|
Stögbauer F, Otto R, Jöhrens K, Tinhofer I, Keilholz U, Poremba C, Keller U, Leser U, Weichert W, Boxberg M, Klinghammer K. Molecular subtyping of head and neck cancer - Clinical applicability and correlations with morphological characteristics. Oral Oncol 2024; 149:106678. [PMID: 38219707 DOI: 10.1016/j.oraloncology.2023.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
AIM We aimed to evaluate the applicability of a customized NanoString panel for molecular subtyping of recurrent or metastatic head and neck squamous cell carcinoma (R/M-HNSCC). Additionally, histological analyses were conducted, correlated with the molecular subtypes and tested for their prognostic value. MATERIAL AND METHODS We conducted molecular subtyping of R/M-HNSCC according to the molecular subtypes defined by Keck et al. For molecular analyses a 231 gene customized NanoString panel (the most accurately subtype defining genes, based on previous analyses) was applied to tumor samples from R/M-HNSCC patients that were treated in the CeFCiD trial (AIO/IAG-KHT trial 1108). A total of 130 samples from 95 patients were available for sequencing, of which 80 samples from 67 patients passed quality controls and were included in histological analyses. H&E stained slides were evaluated regarding distinct morphological patterns (e.g. tumor budding, nuclear size, stroma content). RESULTS Determination of molecular subtypes led to classification of tumor samples as basal (n = 46, 45 %), inflamed/mesenchymal (n = 31, 30 %) and classical (n = 26, 25 %). Expression levels of Amphiregulin (AREG) were significantly higher for the basal and classical subtypes compared to the mesenchymal subtype. While molecular subtypes did not have an impact on survival, high levels of tumor budding were associated with poor outcomes. No correlation was found between molecular subtypes and histological characteristics. CONCLUSIONS Utilizing the 231-gene NanoString panel we were able to determine the molecular subtype of R/M-HNSCC samples by the use of FFPE material. The value to stratify for different treatment options remains to be explored in the future. The prognostic value of tumor budding was underscored in this clinically well annotated cohort.
Collapse
Affiliation(s)
- Fabian Stögbauer
- Technical University of Munich, Germany; TUM School of Medicine and Health, Institute of General and Surgical Pathology, Germany
| | - Raik Otto
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Korinna Jöhrens
- Institute of Pathology, University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, TU, Germany
| | - Ingeborg Tinhofer
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany; Department of Radiooncology and Radiotherapy, Charité-Universitätsmedizin Berlin, Germany
| | - Ulrich Keilholz
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Charité Comprehensive Cancer Center, Berlin, Germany
| | | | - Ulrich Keller
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany; Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; German Center for Translational Cancer Research (DKTK), DKFZ, Heidelberg, Germany
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Wilko Weichert
- Technical University of Munich, Germany; TUM School of Medicine and Health, Institute of General and Surgical Pathology, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Institute of Pathology, Munich, Germany
| | - Melanie Boxberg
- Technical University of Munich, Germany; TUM School of Medicine and Health, Institute of General and Surgical Pathology, Germany; Charité Comprehensive Cancer Center, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Institute of Pathology, Munich, Germany
| | - Konrad Klinghammer
- German Cancer Consortium (DKTK), Partner Site Berlin, Germany; Charité Comprehensive Cancer Center, Berlin, Germany; Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Saito Y, Kobayashi K, Fukuoka O, Sakai T, Yamamura K, Ando M, Kondo K. Ultra-high combined positive score and high serum albumin are favorable prognostic biomarkers for immune checkpoint inhibitors in head and neck squamous cell carcinoma. Head Neck 2024; 46:367-377. [PMID: 38063247 DOI: 10.1002/hed.27576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Biomarkers that predict response to immune checkpoint inhibitor (ICI) in recurrent metastatic squamous cell carcinoma of the head and neck (RMHNSCC) are not well known. METHODS We prospectively measured the combined positive score (CPS) and administered ICI to patients with RMHNSCC. RESULTS Of 51 patients, 23 patients had a CPS <20 and 12 patients (23.5%) had a CPS ≥90. CPS showed a negative correlation with serum albumin. Survival analysis showed a 2-year survival rate of 24.1%. In multivariate analysis, CPS ≥90 (HR 0.3026, p = 0.02614) and albumin >3.5 (HR 0.3463, p = 0.01354) were the significant factors and plus chemotherapy (HR 0.4648, p = 0.07632) was not significant. Seven patients (14%) with CPS ≥90 and albumin >3.5 showed a 2-year survival rate of 66. 7%. CONCLUSIONS CPS ≥90 and albumin >3.5 cases are a subgroup of RMHNSCC that respond extremely well to ICI.
Collapse
Affiliation(s)
- Yuki Saito
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Kenya Kobayashi
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Osamu Fukuoka
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Toshihiko Sakai
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Koji Yamamura
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Mizuo Ando
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Okayama University, Graduate School of Medicine, Okayama, Japan
| | - Kenji Kondo
- Departments of Otolaryngology, Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Daste A, Larroquette M, Gibson N, Lasserre M, Domblides C. Immunotherapy for head and neck squamous cell carcinoma: current status and perspectives. Immunotherapy 2024; 16:187-197. [PMID: 38126161 DOI: 10.2217/imt-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of several solid cancers, including head and neck squamous cell carcinoma (HNSCC). First approved for second-line settings, ICIs are now used for the first-line treatment of HNSCCs, mainly in combination with standard chemotherapy. This review focuses on the results of the main phase III studies evaluating ICIs in recurrent or metastatic HNSCCs. The efficacy and indications according to the PD-L1 status, the main predictive biomarker, are discussed. The results of trials assessing ICI efficacy for locally advanced disease, including the neoadjuvant setting are also discussed. Finally, therapeutic combinations that are potential treatments for HNSCCs, including ICIs and targeted therapies such as anti-EGFR agents, are presented.
Collapse
Affiliation(s)
- Amaury Daste
- Department of Medical Oncology, Hôpital Saint-André, CHU, Bordeaux, France
| | - Mathieu Larroquette
- Department of Medical Oncology, Hôpital Saint-André, CHU, Bordeaux, France
- IBGC, CNRS, UMR5095, University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux, France
- Bordeaux University, 351 cours de la Libération CS10004 33405 Talence CEDEX, Bordeaux, France
| | - Nyere Gibson
- Department of Medical Oncology, Hôpital Saint-André, CHU, Bordeaux, France
- Bordeaux University, 351 cours de la Libération CS10004 33405 Talence CEDEX, Bordeaux, France
| | - Matthieu Lasserre
- Department of Medical Oncology, Hôpital Saint-André, CHU, Bordeaux, France
- Bordeaux University, 351 cours de la Libération CS10004 33405 Talence CEDEX, Bordeaux, France
| | - Charlotte Domblides
- Department of Medical Oncology, Hôpital Saint-André, CHU, Bordeaux, France
- Bordeaux University, 351 cours de la Libération CS10004 33405 Talence CEDEX, Bordeaux, France
- ImmunoConcEpt, CNRS UMR 5164, Bordeaux University, Bordeaux, 33076, France
| |
Collapse
|
24
|
Serafini MS, Cavalieri S, Licitra L, Pistore F, Lenoci D, Canevari S, Airoldi M, Cossu Rocca M, Strojan P, Kuhar CG, Merlano M, Perrone F, Vingiani A, Denaro N, Perri F, Argiris A, Gurizzan C, Ghi MG, Cassano A, Allegrini G, Bossi P, De Cecco L. Association of a gene-expression subtype to outcome and treatment response in patients with recurrent/metastatic head and neck squamous cell carcinoma treated with nivolumab. J Immunother Cancer 2024; 12:e007823. [PMID: 38290766 PMCID: PMC10828850 DOI: 10.1136/jitc-2023-007823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors have been approved and currently used in the clinical management of recurrent and metastatic head and neck squamous cell carcinoma (R/M HNSCC) patients. The reported benefit in clinical trials is variable and heterogeneous. Our study aims at exploring and comparing the predictive role of gene-expression signatures with classical biomarkers for immunotherapy-treated R/M HNSCC patients in a multicentric phase IIIb trial. METHODS Clinical data were prospectively collected in Nivactor tiral (single-arm, open-label, multicenter, phase IIIb clinical trial in platinum-refractory HNSCC treated with nivolumab). Findings were validated in an external independent cohort of immune-treated HNSCC patients, divided in long-term and short-term survivors (overall survival >18 and <6 months since the start of immunotherapy, respectively). Pretreatment tumor tissue specimen from immunotherapy-treated R/M HNSCC patients was used for PD-L1 (Tumor Proportion Score; Combined Positive Score (CPS)) and Tumor Mutational Burden (Oncopanel TSO500) evaluation and gene expression profiling; classical biomarkers and immune signatures (retrieved from literature) were challenged in the NIVACTOR dataset. RESULTS Cluster-6 (Cl6) stratification of NIVACTOR cases in high score (n=16, 20%) and low score (n=64, 80%) demonstrated a statistically significant and clinically meaningful improvement in overall survival in the high-score cases (p=0.00028; HR=4.34, 95% CI 1.84 to 10.22) and discriminative ability reached area under the curve (AUC)=0.785 (95% CI 0.603 to 0.967). The association of high-score Cl6 with better outcome was also confirmed in: (1) NIVACTOR progression-free survival (p=4.93E-05; HR=3.71, 95% CI 1.92 to 7.18) and objective-response-rate (AUC=0.785; 95% CI 0.603 to 0.967); (2) long survivors versus short survivors (p=0.00544). In multivariate Cox regression analysis, Cl6 was independent from Eastern Cooperative Oncology Group performance status, PDL1-CPS, and primary tumor site. CONCLUSIONS These data highlight the presence of underlying biological differences able to predict survival and response following treatment with immunotherapy in platinum-refractory R/M HNSCC that could have translational implications improving treatment selection. TRIAL REGISTRATION NUMBER EudraCT Number: 2017-000562-30.
Collapse
Affiliation(s)
- Mara Serena Serafini
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milano, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milano, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, Italy
| | - Deborah Lenoci
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Mario Airoldi
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | | | | | - Cvetka Grasic Kuhar
- University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology, Ljubljana, Slovenia
| | | | - Federica Perrone
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Vingiani
- Department of Oncology and Hemato-oncology, University of Milan, Milano, Italy
- Department of Diagnostic Pathology and Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Francesco Perri
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Athanassios Argiris
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cristina Gurizzan
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Maria Grazia Ghi
- Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padova, Italy
| | - Alessandra Cassano
- Policlinico Universitario Agostino Gemelli Dipartimento di scienze mediche e chirurgiche, Roma, Italy
| | | | - Paolo Bossi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Loris De Cecco
- Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
25
|
Morris LGT. Loss of Human Leukocyte Antigen and Immune Escape in Head and Neck Cancer. Laryngoscope 2024; 134:160-165. [PMID: 37249223 PMCID: PMC10687312 DOI: 10.1002/lary.30761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVES/HYPOTHESIS Cancer cells evade recognition by the immune system to survive. Head and neck squamous cell carcinoma (HNSCC) is characterized by high levels of immune infiltration and mutation-associated neoantigens; therefore, immune evasion is likely to be an important mechanism in HNSCC tumorigenesis and progression. A commonly employed mechanism of immune evasion is downregulation of human leukocyte antigen (HLA) or loss of heterozygosity (LOH) in tumor cells. The objective of this study was to integrate multi-dimensional genomic and transcriptomic data from HNSCC tumors to better understand the clinical and immunologic implications of HLA LOH. STUDY TYPE/DESIGN Cross-sectional integrated clinical and genomic analysis. METHODS Whole-exome sequencing and RNA-sequencing data from 522 tumors profiled in The Cancer Genome Atlas HNSCC cohort were analyzed and integrated with secondary analyses including immune cell deconvolution data. Associations were analyzed with categorical hypothesis testing and multivariable logistic and Cox regression. RESULTS HLA LOH was a prevalent event that was identified in 53% of HNSCC tumors; in many cases, more than one class I HLA gene was targeted for LOH. HLA LOH was more common in advanced-stage tumors. Tumors with somatic HLA LOH had tumor microenvironments defined by decreased lymphocyte and T cell infiltration. CONCLUSIONS HLA LOH is one of the most prevalent genetic alterations in HNSCC, and is associated with a cold immune microenvironment, suggesting that HLA LOH is a means of immune evasion. It may have value as a predictive biomarker or potential as a cancer cell-specific therapeutic target. LEVEL OF EVIDENCE 3 Laryngoscope, 134:160-165, 2024.
Collapse
Affiliation(s)
- Luc G T Morris
- Department of Surgery (Head and Neck Service), Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
26
|
Lee AS, Valero C, Yoo SK, Vos JL, Chowell D, Morris LGT. Validation of a Machine Learning Model to Predict Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2023; 16:175. [PMID: 38201602 PMCID: PMC10778506 DOI: 10.3390/cancers16010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Head and neck squamous-cell carcinoma (HNSCC) is a disease with a generally poor prognosis; half of treated patients eventually develop recurrent and/or metastatic (R/M) disease. Patients with R/M HNSCC generally have incurable disease with a median survival of 10 to 15 months. Although immune-checkpoint blockade (ICB) has improved outcomes in patients with R/M HNSCC, identifying patients who are likely to benefit from ICB remains a challenge. Biomarkers in current clinical use include tumor mutational burden and immunohistochemistry for programmed death-ligand 1, both of which have only modest predictive power. Machine learning (ML) has the potential to aid in clinical decision-making as an approach to estimate a tumor's likelihood of response or a patient's likelihood of experiencing clinical benefit from therapies such as ICB. Previously, we described a random forest ML model that had value in predicting ICB response using 11 or 16 clinical, laboratory, and genomic features in a pan-cancer development cohort. However, its applicability to certain cancer types, such as HNSCC, has been unknown, due to a lack of cancer-type-specific validation. Here, we present the first validation of a random forest ML tool to predict the likelihood of ICB response in patients with R/M HNSCC. The tool had adequate predictive power for tumor response (area under the receiver operating characteristic curve = 0.65) and was able to stratify patients by overall (HR = 0.53 [95% CI 0.29-0.99], p = 0.045) and progression-free (HR = 0.49 [95% CI 0.27-0.87], p = 0.016) survival. The overall accuracy was 0.72. Our study validates an ML predictor in HNSCC, demonstrating promising performance in a novel cohort of patients. Further studies are needed to validate the generalizability of this algorithm in larger patient samples from additional multi-institutional contexts.
Collapse
Affiliation(s)
- Andrew Sangho Lee
- Head and Neck Service and Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.S.L.); (C.V.); (J.L.V.)
| | - Cristina Valero
- Head and Neck Service and Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.S.L.); (C.V.); (J.L.V.)
| | - Seong-keun Yoo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.-k.Y.); (D.C.)
| | - Joris L. Vos
- Head and Neck Service and Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.S.L.); (C.V.); (J.L.V.)
| | - Diego Chowell
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.-k.Y.); (D.C.)
| | - Luc G. T. Morris
- Head and Neck Service and Immunogenomic Oncology Platform, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.S.L.); (C.V.); (J.L.V.)
| |
Collapse
|
27
|
Puttagunta P, Pamulapati SV, Bates JE, Gross JH, Stokes WA, Schmitt NC, Steuer C, Teng Y, Saba NF. Critical review of the current and future prospects of VEGF-TKIs in the management of squamous cell carcinoma of head and neck. Front Oncol 2023; 13:1310106. [PMID: 38192624 PMCID: PMC10773827 DOI: 10.3389/fonc.2023.1310106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
As the prognosis for squamous cell carcinoma of the head and neck remains unsatisfactory when compared to other malignancies, novel therapies targeting specific biomarkers are a critical emerging area of great promise. One particular class of drugs that has been developed to impede tumor angiogenesis is vascular endothelial growth factor-tyrosine kinase inhibitors. As current data is primarily limited to preclinical and phase I/II trials, this review summarizes the current and future prospects of these agents in squamous cell carcinoma of the head and neck. In particular, the combination of these agents with immunotherapy is an exciting area that may be a promising option for patients with recurrent or metastatic disease, evidenced in recent trials such as the combination immune checkpoint inhibitors with lenvatinib and cabozantinib. In addition, the use of such combination therapy preoperatively in locally advanced disease is another area of interest.
Collapse
Affiliation(s)
- Prashant Puttagunta
- Medical Education, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Saagar V. Pamulapati
- Internal Medicine Program, Mercyhealth Graduate Medical Education Consortium, Rockford, IL, United States
| | - James E. Bates
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer H. Gross
- Department of Otolaryngology – Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - William A. Stokes
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nicole C. Schmitt
- Department of Otolaryngology – Head and Neck Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Conor Steuer
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
28
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
29
|
Zheng Y, Feng B, Chen J, You L. Efficacy, safety, and survival of neoadjuvant immunochemotherapy in operable non-small cell lung cancer: a systematic review and meta-analysis. Front Immunol 2023; 14:1273220. [PMID: 38106421 PMCID: PMC10722296 DOI: 10.3389/fimmu.2023.1273220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Background Neoadjuvant immunochemotherapy may benefit patients with non-small cell lung cancer (NSCLC), but its impact requires further investigation. Methods A meta-analysis was conducted. PubMed, Embase, Web of Science, and the Cochrane Library were searched. The study was registered in PROSPERO (registration no. CRD42022360893). Results 60 studies of 3,632 patients were included. Comparing with neoadjuvant chemotherapy, neoadjuvant immunochemotherapy showed higher pCR (RR: 4.71, 95% CI: 3.69, 6.02), MPR (RR, 3.20, 95% CI: 2.75, 3.74), and ORR (RR, 1.46, 95% CI: 1.21, 1.77), fewer surgical complications (RR: 0.67, 95%CI: 0.48, 0.94), higher R0 resection rate (RR: 1.06, 95%CI: 1.03, 1.10, I2 = 52%), and longer 1-year and 2-year OS, without affecting TRAEs. For neoadjuvant immunochemotherapy in NSCLC, the pooled pCR rate was 0.35 (95% CI: 0.31, 0.39), MPR was 0.59 (95% CI: 0.54, 0.63), and ORR was 0.71 (95% CI: 0.66, 0.76). The pooled incidence of all grade TRAEs was 0.70 (95% CI: 0.60, 0.81), and that of >= grade 3 TRAEs was 0.24 (95% CI: 0.16, 0.32). The surgical complications rate was 0.13 (95% CI: 0.07, 0.18) and R0 resection rate was 0.98 (95% CI: 0.96, 0.99). The pooled 1-year OS was 0.97 (95%CI: 0.96, 0.99), and 2-year OS was 0.89 (95%CI: 0.83, 0.94). Patients with squamous cell carcinoma, stage III or higher PD-L1 performed better. Notably, no significant differences were observed in pCR, MPR, and ORR between 2 or more treatment cycles. Pembrolizumab-, or toripalimab-based neoadjuvant immunochemotherapy demonstrated superior efficacy and tolerable toxicity. Conclusion According to our analysis, reliable efficacy, safety, and survival of neoadjuvant immunochemotherapy for operable NSCLC were demonstrated. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022360893, identifier CRD42022360893.
Collapse
Affiliation(s)
- Yue Zheng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Baijie Feng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jingyao Chen
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Wamsley NT, Wilkerson EM, Guan L, LaPak KM, Schrank TP, Holmes BJ, Sprung RW, Gilmore PE, Gerndt SP, Jackson RS, Paniello RC, Pipkorn P, Puram SV, Rich JT, Townsend RR, Zevallos JP, Zolkind P, Le QT, Goldfarb D, Major MB. Targeted Proteomic Quantitation of NRF2 Signaling and Predictive Biomarkers in HNSCC. Mol Cell Proteomics 2023; 22:100647. [PMID: 37716475 PMCID: PMC10587640 DOI: 10.1016/j.mcpro.2023.100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.
Collapse
Affiliation(s)
- Nathan T Wamsley
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Emily M Wilkerson
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brittany J Holmes
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Robert W Sprung
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Petra Erdmann Gilmore
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sophie P Gerndt
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ryan S Jackson
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Randal C Paniello
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Patrik Pipkorn
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sidharth V Puram
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jason T Rich
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Reid R Townsend
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - José P Zevallos
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Paul Zolkind
- Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Institute for Informatics, Washington University in St Louis, St Louis, Missouri, USA.
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Department of Otolaryngology/Head and Neck Surgery, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
31
|
Ledermann JA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, Raspagliesi F, Sonke GS, Birrer M, Provencher DM, Sehouli J, Colombo N, González-Martín A, Oaknin A, Ottevanger PB, Rudaitis V, Kobie J, Nebozhyn M, Edmondson M, Sun Y, Cristescu R, Jelinic P, Keefe SM, Matulonis UA. Molecular determinants of clinical outcomes of pembrolizumab in recurrent ovarian cancer: Exploratory analysis of KEYNOTE-100. Gynecol Oncol 2023; 178:119-129. [PMID: 37862791 DOI: 10.1016/j.ygyno.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE This prespecified exploratory analysis evaluated the association of gene expression signatures, tumor mutational burden (TMB), and multiplex immunohistochemistry (mIHC) tumor microenvironment-associated cell phenotypes with clinical outcomes of pembrolizumab in advanced recurrent ovarian cancer (ROC) from the phase II KEYNOTE-100 study. METHODS Pembrolizumab-treated patients with evaluable RNA-sequencing (n = 317), whole exome sequencing (n = 293), or select mIHC (n = 125) data were evaluated. The association between outcomes (objective response rate [ORR], progression-free survival [PFS], and overall survival [OS]) and gene expression signatures (T-cell-inflamed gene expression profile [TcellinfGEP] and 10 non-TcellinfGEP signatures), TMB, and prespecified mIHC cell phenotype densities as continuous variables was evaluated using logistic (ORR) and Cox proportional hazards regression (PFS; OS). One-sided p-values were calculated at prespecified α = 0.05 for TcellinfGEP, TMB, and mIHC cell phenotypes and at α = 0.10 for non-TcellinfGEP signatures; all but TcellinfGEP and TMB were adjusted for multiplicity. RESULTS No evidence of associations between ORR and key axes of gene expression was observed. Negative associations were observed between outcomes and TcellinfGEP-adjusted glycolysis (PFS, adjusted-p = 0.019; OS, adjusted-p = 0.085) and hypoxia (PFS, adjusted-p = 0.064) signatures. TMB as a continuous variable was not associated with outcomes (p > 0.05). Positive associations were observed between densities of myeloid cell phenotypes CD11c+ and CD11c+/MHCII-/CD163-/CD68- in the tumor compartment and ORR (adjusted-p = 0.025 and 0.013, respectively). CONCLUSIONS This exploratory analysis in advanced ROC did not find evidence for associations between gene expression signatures and outcomes of pembrolizumab. mIHC analysis suggests CD11c+ and CD11c+/MHCII-/CD163-/CD68- phenotypes representing myeloid cell populations may be associated with improved outcomes with pembrolizumab in advanced ROC. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT02674061.
Collapse
Affiliation(s)
- Jonathan A Ledermann
- Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Ronnie Shapira-Frommer
- The Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel HaShomer Hospital, Ramat Gan, Israel
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, CT, United States
| | - Alla S Lisyanskaya
- Department of Oncogynecology, St. Petersburg City Clinical Oncology Dispensary, St. Petersburg, Russia
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, Division of Gynecologic Oncology, University Hospital Leuven, Leuven, Belgium
| | | | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Michael Birrer
- UAMS Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, United States
| | - Diane M Provencher
- Centre Hospitalier de l'Université de Montréal (CHUM), Institut du Cancer de Montréal, Montreal, Canada
| | - Jalid Sehouli
- Gynecology with Center of Oncological Surgery, Charité-Medical University of Berlin, Berlin, Germany
| | - Nicoletta Colombo
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio González-Martín
- Department of Medical Oncology and Program in Solid Tumors-Cima, Cancer Center Clínica Universidad de Navarra, Madrid, Spain
| | - Ana Oaknin
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P B Ottevanger
- Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vilius Rudaitis
- Clinic of Obstetrics and Gynecology, Vilnius University Institute of Clinical Medicine, Vilnius, Lithuania
| | - Julie Kobie
- Merck & Co., Inc., Rahway, NJ, United States
| | | | | | - Yuan Sun
- Merck & Co., Inc., Rahway, NJ, United States
| | | | | | | | - Ursula A Matulonis
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
32
|
Gong X, Xiong J, Gong Y, Zhang J, Zhang J, Yang G, Chi H, Tian G. Deciphering the role of HPV-mediated metabolic regulation in shaping the tumor microenvironment and its implications for immunotherapy in HNSCC. Front Immunol 2023; 14:1275270. [PMID: 37876923 PMCID: PMC10590915 DOI: 10.3389/fimmu.2023.1275270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), as a complex and variable malignancy, poses a significant threat to human health. Since the intricate association between HPV and HNSCC emerged, its role within the TME has garnered extensive attention. HPV+HNSCC exhibits distinct immunological characteristics within the TME, intricately intertwined with mechanisms of immune evasion. HPV employs multifaceted pathways to intervene in metabolic regulation within the TME, exerting influence over immune cell functionality and neoplastic cell genesis. Furthermore, the heightened immune reactivity exhibited by HPV+HNSCC within the TME augments responses to immune interventions such as immune checkpoint inhibitors. Therefore, amidst the current limitations of therapeutic approaches, immunotherapy stands as a promising strategy to overcome the conventional confines of treating HNSCC. This article comprehensively outlines the impact of HPV on the inception and progression of HNSCC while discussing the amalgamation of metabolic regulation within the TME and immunotherapeutic strategies. By intervening in the reciprocal interactions between HPV and HNSCC within the TME, the potential to modulate the efficacy of immune-based treatments becomes evident. Concurrently, a synthesis of pertinent biomarker development is summarized. Such endeavors hold paramount significance for personalized therapeutic approaches and the more effective management of HNSCC patients.
Collapse
Affiliation(s)
- Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Yu Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Jieying Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Department of Clinical Medicine, School of Clinical Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
33
|
Gao K, Lian W, Zhao R, Huang W, Xiong J. The joint role of methylation and immune-related lncRNAs in ovarian cancer: Defining molecular subtypes and developing prognostic signature. Transl Oncol 2023; 34:101704. [PMID: 37257331 PMCID: PMC10245114 DOI: 10.1016/j.tranon.2023.101704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
INTRODUCTION Complex outcome of ovarian cancer (OC) stems from the tumor immune microenvironment (TIME) influenced by genetic and epigenetic factors. This study aimed to comprehensively explored the subclasses of OC through lncRNAs related to both N6-methyladenosine (m6A)/N1-methyladenosine (m1A)/N7-methylguanosine (m7G)/5-methylcytosine (m5C) in terms of epigenetic variability and immune molecules and develop a new set of risk predictive systems. MATERIAL AND METHODS The lncRNA data of OC were collected from TCGA. Spearman correlation analysis on lncRNA data of OC with immune-related gene expression and with m6A/m5C/m1A/m7G were respectively conducted. The m6A/m5C/m1A/m7G-related m6A/m5C/m1A/m7G related immune lncRNA subtypes were identified on the basis of the prognostic lncRNAs. Heterogeneity among subtypes was evaluated by tumor mutation analysis, tumor microenvironment (TME) component analysis, response to immune checkpoint blocked (ICB) and chemotherapeutic drugs. A risk predictive system was developed based on the results of Cox regression analysis and random survival forest analysis of the differences between each specific cluster and other clusters. RESULTS Three m6A/m5C/m1A/m7G-related immune lncRNA subtypes of OC showing distinct differences in prognosis, mutation pattern, TIME components, immunotherapy and chemotherapy response were identified. A set of risk predictive system consisting of 10 lncRNA for OC was developed, according to which the risk score of samples in each OC dataset was calculated and risk type was defined. CONCLUSIONS This study classified three m6A/m5C/m1A/m7G-related immune lncRNA subtypes with distinct heterogeneous mutation patterns, TME components, ICB therapy and immune response, and provided a set of risk predictive system consisted of 10 lncRNA for OC.
Collapse
Affiliation(s)
- Kefei Gao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wenqin Lian
- Department of Burns and Plastic & Wound Repair Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, China
| | - Rui Zhao
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Weiming Huang
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| |
Collapse
|
34
|
Vallianou NG, Evangelopoulos A, Kounatidis D, Panagopoulos F, Geladari E, Karampela I, Stratigou T, Dalamaga M. Immunotherapy in Head and Neck Cancer: Where Do We Stand? Curr Oncol Rep 2023; 25:897-912. [PMID: 37213060 DOI: 10.1007/s11912-023-01425-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
PURPOSEOF REVIEW Head and neck cancer (HNC) comprises a group of malignancies, amongst which squamous cell carcinoma accounts for more than 90% of the cases. HNC has been related to tobacco use, alcohol consumption, human papillomavirus, Epstein-Barr virus, air pollution, and previous local radiotherapy. HNC has been associated with substantial morbidity and mortality. This review aims to summarize the recent findings regarding immunotherapy in HNC. RECENT FINDINGS The recent introduction of immunotherapy, with the use of programmed death 1 (PD-1) inhibitors pembrolizumab and nivolumab, which have been FDA approved for the treatment of metastatic or recurrent head and neck squamous cell carcinoma, has changed the field in metastatic or recurrent disease. There are many ongoing trials regarding the use of novel immunotherapeutic agents, such as durvalumab, atezolizumab, avelumab, tremelimumab, and monalizumab. In this review, we focus on the therapeutic potential of novel immunotherapy treatment modalities, such as combinations of newer immune-checkpoint inhibitors; the use of tumor vaccines such as human papillomavirus-targeted vaccines; the potential use of oncolytic viruses; as well as the latest advances regarding adoptive cellular immunotherapy. As novel treatment options are still emerging, a more personalized approach to metastatic or recurrent HNC therapy should be followed. Moreover, the role of the microbiome in immunotherapy, the limitations of immunotherapy, and the various diagnostic, prognostic, and predictive biomarkers based on genetics and the tumor microenvironment are synopsized.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece.
| | - Angelos Evangelopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Irene Karampela
- 2Nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462, Athens, Chaidari, Greece
| | - Theodora Stratigou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| |
Collapse
|
35
|
Shitara K, Di Bartolomeo M, Mandala M, Ryu MH, Caglevic C, Olesinski T, Chung HC, Muro K, Goekkurt E, McDermott RS, Mansoor W, Wainberg ZA, Shih CS, Kobie J, Nebozhyn M, Cristescu R, Cao ZA, Loboda A, Özgüroğlu M. Association between gene expression signatures and clinical outcomes of pembrolizumab versus paclitaxel in advanced gastric cancer: exploratory analysis from the randomized, controlled, phase III KEYNOTE-061 trial. J Immunother Cancer 2023; 11:e006920. [PMID: 37399357 PMCID: PMC10314681 DOI: 10.1136/jitc-2023-006920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND In the randomized, controlled, phase III KEYNOTE-061 trial, second-line pembrolizumab did not significantly prolong overall survival (OS) versus paclitaxel in patients with PD-L1-positive (combined positive score ≥1) advanced gastric/gastroesophageal junction (G/GEJ) cancer but did elicit a longer duration of response and offered a favorable safety profile. This prespecified exploratory analysis was conducted to evaluate associations between tumor gene expression signatures and clinical outcomes in the phase III KEYNOTE-061 trial. METHODS Using RNA sequencing data obtained from formalin-fixed, paraffin-embedded baseline tumor tissue samples, we evaluated the 18-gene T-cell-inflamed gene expression profile (TcellinfGEP) and 10 non-TcellinfGEP signatures (angiogenesis, glycolysis, granulocytic myeloid-derived suppressor cell (gMDSC), hypoxia, monocytic MDSC (mMDSC), MYC, proliferation, RAS, stroma/epithelial-to-mesenchymal transition/transforming growth factor-β, WNT). The association between each signature on a continuous scale and outcomes was analyzed using logistic (objective response rate (ORR)) and Cox proportional hazards regression (progression-free survival (PFS) and OS). One-sided (pembrolizumab) and two-sided (paclitaxel) p values were calculated for TcellinfGEP (prespecified α=0.05) and the 10 non-TcellinfGEP signatures (multiplicity-adjusted; prespecified α=0.10). RESULTS RNA sequencing data were available for 137 patients in each treatment group. TcellinfGEP was positively associated with ORR (p=0.041) and PFS (p=0.026) for pembrolizumab but not paclitaxel (p>0.05). The TcellinfGEP-adjusted mMDSC signature was negatively associated with ORR (p=0.077), PFS (p=0.057), and OS (p=0.033) for pembrolizumab, while the TcellinfGEP-adjusted glycolysis (p=0.018), MYC (p=0.057), and proliferation (p=0.002) signatures were negatively associated with OS for paclitaxel. CONCLUSIONS This exploratory analysis of tumor TcellinfGEP showed associations with ORR and PFS for pembrolizumab but not for paclitaxel. TcellinfGEP-adjusted mMDSC signature was negatively associated with ORR, PFS, and OS for pembrolizumab but not paclitaxel. These data suggest myeloid-driven suppression may play a role in resistance to PD-1 inhibition in G/GEJ cancer and support a strategy of considering immunotherapy combinations which target this myeloid axis. TRIAL REGISTRATION NUMBER NCT02370498.
Collapse
Affiliation(s)
- Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Mandala
- Unit of Medical Oncology, University of Perugia, Perugia, Italy
| | - Min-Hee Ryu
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea (the Republic of)
| | - Christian Caglevic
- Cancer Research Department, Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago, Chile
| | - Tomasz Olesinski
- Department of Gastrointestinal Cancers and Neuroendocrine Tumors Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Hyun Cheol Chung
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Eray Goekkurt
- Hematology-Oncology Practice Eppendorf (HOPE) and University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Wasat Mansoor
- Christie Hospital NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Zev A Wainberg
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | - Mustafa Özgüroğlu
- Division of Medical Oncology, Clinical Trial Unit, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
36
|
Harrington KJ, Ferris RL, Gillison M, Tahara M, Argiris A, Fayette J, Schenker M, Bratland Å, Walker JWT, Grell P, Even C, Chung CH, Redman R, Coutte A, Salas S, Grant C, de Azevedo S, Soulières D, Hansen AR, Wei L, Khan TA, Miller-Moslin K, Roberts M, Haddad R. Efficacy and Safety of Nivolumab Plus Ipilimumab vs Nivolumab Alone for Treatment of Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck: The Phase 2 CheckMate 714 Randomized Clinical Trial. JAMA Oncol 2023; 9:779-789. [PMID: 37022706 PMCID: PMC10080406 DOI: 10.1001/jamaoncol.2023.0147] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/10/2022] [Indexed: 04/07/2023]
Abstract
Importance There remains an unmet need to improve clinical outcomes in patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Objective To evaluate clinical benefit of first-line nivolumab plus ipilimumab vs nivolumab alone in patients with R/M SCCHN. Design, Setting, and Participants The CheckMate 714, double-blind, phase 2 randomized clinical trial was conducted at 83 sites in 21 countries between October 20, 2016, and January 23, 2019. Eligible participants were aged 18 years or older and had platinum-refractory or platinum-eligible R/M SCCHN and no prior systemic therapy for R/M disease. Data were analyzed from October 20, 2016 (first patient, first visit), to March 8, 2019 (primary database lock), and April 6, 2020 (overall survival database lock). Interventions Patients were randomized 2:1 to receive nivolumab (3 mg/kg intravenously [IV] every 2 weeks) plus ipilimumab (1 mg/kg IV every 6 weeks) or nivolumab (3 mg/kg IV every 2 weeks) plus placebo for up to 2 years or until disease progression, unacceptable toxic effects, or consent withdrawal. Main Outcomes and Measures The primary end points were objective response rate (ORR) and duration of response between treatment arms by blinded independent central review in the population with platinum-refractory R/M SCCHN. Exploratory end points included safety. Results Of 425 included patients, 241 (56.7%; median age, 59 [range, 24-82] years; 194 males [80.5%]) had platinum-refractory disease (nivolumab plus ipilimumab, n = 159; nivolumab, n = 82) and 184 (43.3%; median age, 62 [range, 33-88] years; 152 males [82.6%]) had platinum-eligible disease (nivolumab plus ipilimumab, n = 123; nivolumab, n = 61). At primary database lock, the ORR in the population with platinum-refractory disease was 13.2% (95% CI, 8.4%-19.5%) with nivolumab plus ipilimumab vs 18.3% (95% CI, 10.6%-28.4%) with nivolumab (odds ratio [OR], 0.68; 95.5% CI, 0.33-1.43; P = .29). Median duration of response for nivolumab plus ipilimumab was not reached (NR) (95% CI, 11.0 months to NR) vs 11.1 months (95% CI, 4.1 months to NR) for nivolumab. In the population with platinum-eligible disease, the ORR was 20.3% (95% CI, 13.6%-28.5%) with nivolumab plus ipilimumab vs 29.5% (95% CI, 18.5%-42.6%) with nivolumab. The rates of grade 3 or 4 treatment-related adverse events with nivolumab plus ipilimumab vs nivolumab were 15.8% (25 of 158) vs 14.6% (12 of 82) in the population with platinum-refractory disease and 24.6% (30 of 122) vs 13.1% (8 of 61) in the population with platinum-eligible disease. Conclusions and Relevance The CheckMate 714 randomized clinical trial did not meet its primary end point of ORR benefit with first-line nivolumab plus ipilimumab vs nivolumab alone in platinum-refractory R/M SCCHN. Nivolumab plus ipilimumab was associated with an acceptable safety profile. Research to identify patient subpopulations in R/M SCCHN that would benefit from nivolumab plus ipilimumab over nivolumab monotherapy is warranted. Trial Registration ClinicalTrials.gov Identifier: NCT02823574.
Collapse
Affiliation(s)
- Kevin J. Harrington
- Royal Marsden Hospital/The Institute of Cancer Research National Institute for Health and Care Research Biomedical Research Centre, London, United Kingdom
| | | | - Maura Gillison
- The University of Texas MD Anderson Cancer Center, Houston
| | | | - Athanasios Argiris
- Hygeia Hospital, Marousi, Greece
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jérôme Fayette
- Centre Léon Bérard, Lyon, France
- Hôpital Saint-André, Bordeaux, France
| | | | | | | | - Peter Grell
- Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | | | | | - Rebecca Redman
- University of Louisville, Brown Cancer Center, Louisville, Kentucky
| | | | - Sébastien Salas
- Assistance Publique–Hôpitaux de Marseille, Marseille, France
| | | | | | | | - Aaron R. Hansen
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Li Wei
- Bristol Myers Squibb, Princeton, New Jersey
| | | | | | | | - Robert Haddad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
37
|
Tamimi A, Tamimi A, Sorkheh F, Asl SM, Ghafari A, Karimi AG, Erabi G, Pourmontaseri H, Deravi N. Monoclonal antibodies for the treatment of squamous cell carcinoma: A literature review. Cancer Rep (Hoboken) 2023; 6:e1802. [PMID: 37042307 PMCID: PMC10172176 DOI: 10.1002/cnr2.1802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Squamous cell carcinoma (SCC) is a relatively common and heterogenous malignancy of different organs, such as the skin, esophagus, and lungs. Although most cases experience good survival with surgical methods, management of advanced types of the disease remains challenging. Several modalities, including different chemotherapy regimens and immunotherapies, have been investigated in this matter, among which Monoclonal antibodies (Mabs) are one of the most promising ones. Since the development of Mabs, they have been widely used to treat different diseases. Mabs have shown significant efficacy with high specificity along with acceptable safety, which makes them a favorable option in cancer therapy. In this article, we aimed to review the different aspects of using Mabs in SCC therapy. RECENT FINDINGS We found that treating with different Mabs has shown excellent efficacy accompanied by acceptable safety in treating SCC of different organs. Therefore, Mabs are considered great options in the treatment of SCC, especially in advanced cases. Overall, two highly potent types of Mabs in SCC therapy are anti-EGFR Mabs and checkpoint inhibitors, especially Cetuximab, Nimotuzumab, and PD-1 inhibitors. Bevacizumab is also a promising option as adjuvant therapy to other modalities. CONCLUSION Although some Mabs have shown promising outcomes in SCC therapy, their application as a part of cancer treatment depends on further investigations regarding cost-effectiveness and predictors of response. FDA has approved several Mabs in SCC therapies, and Mabs may have a crucial role in this era in the near future, especially in treating head and neck and esophageal SCC and metastatic lung cancer.
Collapse
Affiliation(s)
- Amirhossein Tamimi
- Student Research Committee, School of MedicineGuilan University of Medical SciencesRashtIran
| | - Atena Tamimi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Sorkheh
- Student Research CommitteeBabol University of Medical SciencesBabolIran
| | - Saba Mardekatani Asl
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Arezoo Ghafari
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Hossein Pourmontaseri
- Student Research CommitteeFasa University of Medical SciencesFasaIran
- Bitab knowledge EnterpriseFasa University of Medical SciencesFasaIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
38
|
Huang CH, Huang YC, Xu JK, Chen SY, Tseng LC, Huang JL, Lin CS. ATM Inhibition-Induced ISG15/IFI27/OASL Is Correlated with Immunotherapy Response and Inflamed Immunophenotype. Cells 2023; 12:cells12091288. [PMID: 37174688 PMCID: PMC10177353 DOI: 10.3390/cells12091288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy can improve the survival of cancer patients with a high tumor mutation burden (TMB-H) or deficiency in DNA mismatch repair (dMMR) in their tumors. However, most cancer patients without TMB-H and dMMR do not benefit from ICB therapy. The inhibition of ATM can increase DNA damage and activate the interferon response, thus modulating the tumor immune microenvironment (TIME) and the efficacy of ICB therapy. In this study, we showed that ATM inhibition activated interferon signaling and induced interferon-stimulated genes (ISGs) in cisplatin-resistant and parent cancer cells. The ISGs induced by ATM inhibition were correlated with survival in cancer patients who received ICB therapy. In oral cancer, high expressions of ISG15, IFI27, and OASL were associated with low expressions of ATM, the activation of inflamed immune pathways, and increased tumor-infiltrating scores of CD8+ T, natural killer, and dendritic cells. The high expressions of ISG15, IFI27, and OASL were also correlated with complete remission in patients with cervical cancer treated with cisplatin. These results suggest that ATM inhibition can induce the interferon response and inflamed TIME, which may benefit ICB therapy.
Collapse
Affiliation(s)
- Chi-Han Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yun-Cian Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jun-Kai Xu
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Lu-Chia Tseng
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
39
|
Ursino C, Mouric C, Gros L, Bonnefoy N, Faget J. Intrinsic features of the cancer cell as drivers of immune checkpoint blockade response and refractoriness. Front Immunol 2023; 14:1170321. [PMID: 37180110 PMCID: PMC10169604 DOI: 10.3389/fimmu.2023.1170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Immune checkpoint blockade represents the latest revolution in cancer treatment by substantially increasing patients' lifetime and quality of life in multiple neoplastic pathologies. However, this new avenue of cancer management appeared extremely beneficial in a minority of cancer types and the sub-population of patients that would benefit from such therapies remain difficult to predict. In this review of the literature, we have summarized important knowledge linking cancer cell characteristics with the response to immunotherapy. Mostly focused on lung cancer, our objective was to illustrate how cancer cell diversity inside a well-defined pathology might explain sensitivity and refractoriness to immunotherapies. We first discuss how genomic instability, epigenetics and innate immune signaling could explain differences in the response to immune checkpoint blockers. Then, in a second part we detailed important notions suggesting that altered cancer cell metabolism, specific oncogenic signaling, tumor suppressor loss as well as tight control of the cGAS/STING pathway in the cancer cells can be associated with resistance to immune checkpoint blockade. At the end, we discussed recent evidences that could suggest that immune checkpoint blockade as first line therapy might shape the cancer cell clones diversity and give rise to the appearance of novel resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Julien Faget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Univ Montpellier, Institut du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
40
|
Gavrielatou N, Vathiotis I, Aung TN, Shafi S, Burela S, Fernandez AI, Moutafi M, Burtness B, Economopoulou P, Anastasiou M, Foukas P, Psyrri A, Rimm DL. Digital Spatial Profiling Links Beta-2-microglobulin Expression with Immune Checkpoint Blockade Outcomes in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:558-563. [PMID: 37057033 PMCID: PMC10088911 DOI: 10.1158/2767-9764.crc-22-0299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/02/2022] [Accepted: 03/03/2023] [Indexed: 03/10/2023]
Abstract
Programmed cell death protein-1 (PD-1)-targeted immunotherapy is approved for recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) treatment. Although its efficacy correlates with PD-L1 expression, response is limited even among positive cases. We employed digital spatial profiling (DSP) to discover potential biomarkers of immunotherapy outcomes in HNSCC. Fifty prospectively collected, pretreatment biopsy samples from patients with anti-PD-1-treated R/M HNSCC, were assessed using DSP, for 71 proteins in four molecularly defined compartments (tumor, leukocyte, macrophage, and stroma). Markers were evaluated for associations with progression-free (PFS) and overall survival (OS). High beta-2 microglobulin (B2M), LAG-3, CD25, and 4-1BB in tumor; high B2M, CD45, CD4 in stroma, and low fibronectin in the macrophage compartment, correlated with prolonged PFS. Improved PFS and OS were observed for cases with high B2M by quantitative and mRNA. Findings were validated in an independent cohort for PFS (HR, 0.41; 95% confidence interval, 0.19-0.93; P = 0.034). B2M-high tumors showed enrichment with immune cell and immune checkpoint markers. Our study illustrates B2M expression is associated with improved survival for immune checkpoint inhibitor (ICI)-treated HNSCC. Significance In the current study, DSP revealed the positive association of B2M expression in the tumor compartment with immunotherapy outcomes in R/M HNSCC.
Collapse
Affiliation(s)
- Niki Gavrielatou
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Ioannis Vathiotis
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Thazin Nwe Aung
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Saba Shafi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Sneha Burela
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Myrto Moutafi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Barbara Burtness
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut
| | - Panagiota Economopoulou
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Maria Anastasiou
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Periklis Foukas
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Amanda Psyrri
- Department of Internal Medicine, Section of Medical Oncology, Attikon University Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - David L. Rimm
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
41
|
John J, Chen SMY, Woolaver RA, Ge H, Vashisht M, Huang Z, Chen Z, Wang JH. Host-specific differences in top-expanded TCR clonotypes correlate with divergent outcomes of anti-PD-L1 treatment in responders versus non-responders. Front Immunol 2023; 14:1100520. [PMID: 37051229 PMCID: PMC10084475 DOI: 10.3389/fimmu.2023.1100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment; however, the responses to ICI treatment are highly variable in different individuals and the underlying mechanisms remain poorly understood. Here, we employed a mouse squamous cell carcinoma (SCC) model where tumor-bearing recipients diverged into responders (R) versus non-responders (NR) upon anti-PD-L1 treatment. We performed in-depth TCRβ sequencing with immunoSEQ platform to delineate the differences in CD8 tumor-infiltrating lymphocytes (TILs). We found that R and NR CD8 TILs both exhibited evidence of clonal expansion, suggesting activation regardless of response status. We detected no differences in clonal expansion or clonal diversity indexes between R vs. NR. However, the top expanded (>1%) TCRβ clonotypes appeared to be mutually exclusive between R and NR CD8 TILs, showing a preferential expansion of distinct TCRβ clonotypes in response to the same SCC tumor in R vs. NR. Notably, the mutual exclusivity of TCR clonotypes in R vs. NR was only observed when top TCRβ clonotypes were counted, because such top-expanded clonotypes are present in the opposite outcome group at a much lower frequency. Many TCRβ sequences were detected in only one recipient at a high frequency, implicating highly individualized anti-tumor immune responses. We conclude that differences in the clonal frequency of top TCR clonotypes between R and NR CD8 TILs may be one of the factors underlying differential anti-PD-L1 responses. This notion may offer a novel explanation for variable ICI responses in different individuals, which may substantially impact the development of new strategies for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Jessy John
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samantha M. Y. Chen
- Department of Immunology and Microbiology, University of Colorado, School of Medicine, Aurora, CO, United States
| | - Rachel A. Woolaver
- Department of Immunology and Microbiology, University of Colorado, School of Medicine, Aurora, CO, United States
| | - Huaibin Ge
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Monika Vashisht
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziyu Huang
- UPMC Hillman Cancer Center Biostatistics Facility, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zhangguo Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jing H. Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
42
|
Yilmaz E, Ismaila N, Bauman JE, Dabney R, Gan G, Jordan R, Kaufman M, Kirtane K, McBride SM, Old MO, Rooper L, Saba NF, Sheth S, Subramaniam RM, Wise-Draper TM, Wong D, Mell LK. Immunotherapy and Biomarker Testing in Recurrent and Metastatic Head and Neck Cancers: ASCO Guideline. J Clin Oncol 2023; 41:1132-1146. [PMID: 36521102 DOI: 10.1200/jco.22.02328] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To provide evidence-based recommendations for practicing physicians and other health care providers on immunotherapy and biomarker testing for head and neck cancers. METHODS ASCO convened an Expert Panel of medical oncology, surgical oncology, radiation oncology, radiology, pathology, and patient advocacy experts to conduct a literature search, including systematic reviews, meta-analyses, randomized controlled trials, and prospective and retrospective comparative observational studies published from 2000 through 2022. Outcomes of interest included survival, overall response, and locoregional control. Expert Panel members used available evidence and informal consensus to develop evidence-based guideline recommendations. RESULTS The literature search identified 28 relevant studies to inform the evidence base for this guideline. RECOMMENDATIONS When possible, evidence-based recommendations were developed to address biomarker testing, first-line treatment regimens based on programmed death ligand-1 scores, immunotherapy in platinum-refractory recurrent or metastatic head and neck squamous cell carcinoma, immunotherapy in nasopharyngeal carcinoma, and radiation therapy in combination with immunotherapy for treatment of local recurrence.Additional information is available at www.asco.org/head-neck-cancer-guidelines.
Collapse
Affiliation(s)
| | | | | | | | - Gregory Gan
- Kansas University Medical Center, Kansas City, KS
| | - Richard Jordan
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | - Rathan M Subramaniam
- Otago Medical School, University of Otago, Dunedin, New Zealand
- Duke University, Durham, NC
| | | | - Deborah Wong
- University of California Los Angeles, Los Angeles, CA
| | - Loren K Mell
- University of California San Diego, La Jolla, CA
| |
Collapse
|
43
|
Ho AL. Immunotherapy, Chemotherapy, or Both: Options for First-Line Therapy for Patients With Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. J Clin Oncol 2023; 41:736-741. [PMID: 36223554 PMCID: PMC9901972 DOI: 10.1200/jco.22.01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023] Open
Abstract
The Oncology Grand Rounds series is designed to place original reports published in the Journal into clinical context. A case presentation is followed by a description of diagnostic and management challenges, a review of the relevant literature, and a summary of the authors' suggested management approaches. The goal of this series is to help readers better understand how to apply the results of key studies, including those published in the Journal of Clinical Oncology, to patients seen in their own clinical practice.The development of immune checkpoint inhibitors has revolutionized the management of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). The landmark KEYNOTE-048 clinical trial established the programmed death-1 inhibitor pembrolizumab with and without chemotherapy as a new standard first-line treatment for patients with platinum-sensitive R/M HNSCC. Nonetheless, clinical decision making can be challenging when considering the significant morbidity associated with rapidly progressive disease in high-risk locations, patient fitness, and programmed death-ligand 1 expression. Both planned and unplanned subgroup analyses from KEYNOTE-048 provide valuable insights into how therapy for untreated R/M HNSCC may be optimized for individual patients. Given differences in the toxicity profile of pembrolizumab alone versus in combination with chemotherapy, prioritizing patient preference is paramount in this palliative treatment setting. Here, the case of a patient presenting with de novo metastatic HNSCC is discussed to highlight the practical application of KEYNOTE-048 data in clinical practice.
Collapse
Affiliation(s)
- Alan L. Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY
- Department of Medicine Weill Cornell Medical College, New York City, NY
| |
Collapse
|
44
|
Li L, Li J. Correlation of tumor mutational burden with prognosis and immune infiltration in lung adenocarcinoma. Front Oncol 2023; 13:1128785. [PMID: 36959799 PMCID: PMC10028277 DOI: 10.3389/fonc.2023.1128785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Background Tumor mutational burden (TMB) plays an important role in the evaluation of immunotherapy efficacy in lung adenocarcinoma (LUAD). Objective To improve the clinical management of LUAD by investigating the prognostic value of TMB and the relationship between TMB and immune infiltration. Methods TMB scores were calculated from the mutation data of 587 LUAD samples from The Cancer Genome Atlas (TCGA), and patients were divided into low-TMB and high-TMB groups based on the quartiles of the TMB score. Differentially expressed genes (DEGs), immune cell infiltration and survival analysis were compared between the low-TMB and high-TMB groups. We queried the expression of genes in lung cancer tissues through the GEPIA online database and performed experimental validation of the function of aberrant genes expressed in lung cancer tissues. Results We obtained sample information from TCGA for 587 LUAD patients, and the results of survival analysis for the high- and low- TMB groups suggested that patients in the high-TMB group had lower survival rates than those in the low-TMB group. A total of 756 DEGs were identified in the study, and gene set enrichment analysis (GSEA) showed that DEGs in the low-TMB group were enriched in immune-related pathways. Among the differentially expressed genes obtained, 15 immune-related key genes were screened with the help of ImmPort database, including 5 prognosis-related genes (CD274, PDCD1, CTLA4, LAG3, TIGIT). No difference in the expression of PDCD1, CTLA4, LAG3, TIGIT in lung cancer tissues and differential expression of CD274 in lung cancer tissues. Conclusions The survival rate of LUAD patients with low TMB was better than that of LUAD patients with high TMB. CD274 expression was down regulated in human LUAD cell lines H1299, PC-9, A549 and SPC-A1, which inhibited malignant progression of A549 cells.
Collapse
Affiliation(s)
- Lin Li
- Department of Thoracic Oncology, Jiangxi Cancer Hospital, Nanchang, China
| | - Junyu Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China
- Jiangxi Health Committee Key (JHCK) Laboratory of Tumor Metastasis, Jiangxi Cancer Hospital, Nanchang, China
- *Correspondence: Junyu Li,
| |
Collapse
|
45
|
Baudouin R, Badoual C, Lechien JR, Tartour E, Hans S. Peri-tumoral infiltrate in OSCC: “The simpler, the better” temptation. Am J Otolaryngol 2023; 44:103666. [DOI: 10.1016/j.amjoto.2022.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/06/2022] [Indexed: 12/05/2022]
|
46
|
Intrinsic and Extrinsic Transcriptional Profiles That Affect the Clinical Response to PD-1 Inhibitors in Patients with Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 15:cancers15010197. [PMID: 36612193 PMCID: PMC9818269 DOI: 10.3390/cancers15010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Using a machine learning method, we investigated the intrinsic and extrinsic transcriptional profiles that affect the clinical response to PD-1 inhibitors in 57 patients with non-small cell lung cancer (NSCLC). Among the top 100 genes associated with the responsiveness to PD-1 inhibitors, the proportion of intrinsic genes in lung adenocarcinoma (LUAD) (69%) was higher than in NSCLC overall (36%) and lung squamous cell carcinoma (LUSC) (33%). The intrinsic gene signature of LUAD (mean area under the ROC curve (AUC) = 0.957 and mean accuracy = 0.9) had higher predictive power than either the intrinsic gene signature of NSCLC or LUSC or the extrinsic gene signature of NSCLC, LUAD, or LUSC. The high intrinsic gene signature group had a high overall survival rate in LUAD (p = 0.034). When we performed a pathway enrichment analysis, the cell cycle and cellular senescence pathways were related to the upregulation of intrinsic genes in LUAD. The intrinsic signature of LUAD also showed a positive correlation with other immune checkpoint targets, including CD274, LAG3, and PDCD1LG2 (Spearman correlation coefficient > 0.25). PD-1 inhibitor-related intrinsic gene patterns differed significantly between LUAD and LUSC and may be a particularly useful biomarker in LUAD.
Collapse
|
47
|
Pfister DG, Haddad RI, Worden FP, Weiss J, Mehra R, Chow LQM, Liu SV, Kang H, Saba NF, Wirth LJ, Sukari A, Massarelli E, Ayers M, Albright A, Webber AL, Mogg R, Lunceford J, Huang L, Cristescu R, Cheng J, Seiwert TY, Bauml JM. Biomarkers predictive of response to pembrolizumab in head and neck cancer. Cancer Med 2022; 12:6603-6614. [PMID: 36479637 PMCID: PMC10067081 DOI: 10.1002/cam4.5434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We performed an integrated biomarker evaluation in pembrolizumab-treated patients with R/M HNSCC enrolled in KEYNOTE-012 or KEYNOTE-055. The relationship between biomarkers and HPV status was explored. METHODS We evaluated PD-L1 (combined positive score [CPS]), TMB, T-cell-inflamed gene expression profile (Tcellinf GEP), and HPV status. Associations between biomarkers were evaluated by logistic regression (ORR) and Cox regression (PFS, OS). RESULTS Two hundred and fifty-seven patients (KEYNOTE-012, n = 106; KEYNOTE-055, n = 151) had TMB data available; of these, 254 had PD-L1 and 236 had Tcellinf GEP. TMB, PD-L1, and Tcellinf GEP were each significantly associated with ORR (p < 0.01). Kaplan-Meier curves at prespecified cutoffs generally showed PFS and OS separation in the anticipated direction for these biomarkers, except for OS and TMB. TMB did not correlate with PD-L1 or Tcellinf GEP (Spearman ρ = -0.03 and ρ = -0.13, respectively); PD-L1 and Tcellinf GEP were moderately correlated (Spearman ρ = 0.47). In multivariate models, TMB, PD-L1, and Tcellinf GEP were each independently predictive for ORR (p < 0.001). ORR was higher in patients with high versus low levels of biomarkers when dichotomized using prespecified cutoffs; patients with higher versus lower levels of TMB and PD-L1 or TMB and Tcellinf GEP had the highest ORRs. Within HPV subgroups, higher versus lower distributions of biomarkers (PD-L1, TMB, and Tcellinf GEP) were associated with response. HPV detection by p16-immunohistochemistry and WES showed good concordance (81%); results were generally similar by HPV status, regardless of the detection method. CONCLUSIONS TMB and the inflammatory biomarkers PD-L1 and Tcellinf GEP, assessed alone or together, may be useful for characterizing clinical response to pembrolizumab in R/M HNSCC.
Collapse
Affiliation(s)
- David G. Pfister
- Division of Solid Tumor Oncology, Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
| | - Robert I. Haddad
- Department of Medical Oncology Dana‐Farber Cancer Institute Boston Massachusetts USA
| | - Francis P. Worden
- Division of Medical Oncology University of Michigan Ann Arbor Michigan USA
| | - Jared Weiss
- Department of Medicine University of North Carolina Lineberger Comprehensive Cancer Center Chapel Hill North Carolina USA
| | - Ranee Mehra
- Fox Chase Cancer Center Philadelphia Pennsylvania USA
- University of Maryland Greenebaum Comprehensive Cancer Center Baltimore Maryland USA
| | - Laura Q. M. Chow
- Department of Medicine, Division of Medical Oncology University of Washington Seattle WA USA
- The University of Texas at Austin, Dell Medical School Texas Austin USA
| | - Stephen V. Liu
- Department of Medicine Georgetown University Medical Center Washington DC USA
| | - Hyunseok Kang
- Department of Medical Oncology Johns Hopkins University Baltimore Maryland USA
- University of California San Francisco California USA
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology Winship Cancer Institute, Emory University Atlanta Georgia USA
| | - Lori J. Wirth
- Department of Medicine Massachusetts General Hospital Boston Massachusetts USA
| | - Ammar Sukari
- Department of Oncology Karmanos Cancer Institute, Wayne State University Detroit Michigan USA
| | - Erminia Massarelli
- Department of Medical Oncology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Mark Ayers
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
| | - Andrew Albright
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
| | - Andrea L. Webber
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
| | - Robin Mogg
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
| | - Jared Lunceford
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
| | - Lingkang Huang
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
| | - Razvan Cristescu
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
| | - Jonathan Cheng
- Department of Medical Oncology, Merck & Co., Inc. Rahway New Jersey USA
- Bristol Myers Squibb Philadelphia Pennsylvania USA
| | - Tanguy Y. Seiwert
- Section of Hematology‐Oncology University of Chicago Department of Medicine Chicago Illinois USA
- Johns Hopkins University Baltimore Maryland USA
| | - Joshua M. Bauml
- Division of Hematology and Oncology, Department of Internal Medicine University of Pennsylvania Philadelphia Pennsylvania USA
- Janssen Research and Development Philadelphia Pennsylvania USA
| |
Collapse
|
48
|
Chen Z, John J, Wang JH. Why responses to immune checkpoint inhibitors are heterogeneous in head and neck cancers: Contributions from tumor-intrinsic and host-intrinsic factors. Front Oncol 2022; 12:995434. [PMID: 36330485 PMCID: PMC9623029 DOI: 10.3389/fonc.2022.995434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment including in head and neck squamous cell carcinomas (HNSCCs); however, only a fraction of HNSCC patients respond to ICI, whereas the majority fail to do so. The mechanisms underlying such variable responses remain incompletely understood. A better understanding of such mechanisms may broaden the spectrum of responding patients and enhance the rate of ICI response. HNSCCs exhibit a high level of genetic heterogeneity, manifested as mutations or amplifications of oncogenes (e.g., PIK3CA) and mutations of tumor suppressor genes (e.g., TP53). The immune tumor microenvironment (TME) of HNSCCs also varies significantly in composition and in relative abundance of distinct immune subsets such as CD8 tumor-infiltrating lymphocytes (TILs) or tumor-associated macrophages (TAMs), which represents a high degree of immunological heterogeneity. Here, we briefly discuss how heterogeneous ICI responses may be attributed to tumor-intrinsic factors, including genetic, transcriptional, and functional variations in tumor cells, and host-intrinsic factors, including cellular composition of the TME (e.g., CD8 TILs and TAMs), and host-intrinsic differences in the T cell receptor (TCR) repertoire of CD8 TILs. We also discuss the potential impact of these factors on designing strategies for personalized immunotherapy of HNSCCs.
Collapse
Affiliation(s)
- Zhangguo Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jessy John
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jing H. Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Tumor Antigenicity and a Pre-Existing Adaptive Immune Response in Advanced BRAF Mutant Colorectal Cancers. Cancers (Basel) 2022; 14:cancers14163951. [PMID: 36010943 PMCID: PMC9405961 DOI: 10.3390/cancers14163951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary BRAF mutant metastatic CRCs (BRAF-mCRCs) are considered a unique clinical entity characterized by a dismal prognosis and that do not respond efficiently to both standard chemotherapy and to orally selective inhibitors of BRAFV600E. In this study, the gene expression profiles of 89 immunotherapy-naïve BRAF-CRCs were generated using the PanCancer IO 360 gene expression panel to improve the knowledge of the mechanisms involved in tumor-suppressive immune functions in BRAF-mCRCs. A significant fraction of BRAF-mCRCs shows a hot/inflamed profile and may be potential candidates for responding to immunotherapy. Only a partial overlap between these hot signatures and the presence of microsatellite instability (MSI) was observed, demonstrating that MSI tumors showed a not differential expression of MHC Class I antigen presentation pathway compared with microsatellite-stable tumors. The analysis of gene expression profiles is a promising strategy both for immune profiling of primary tumors before any treatment and for following the evolution of metastatic disease during therapy. Abstract The main hypothesis of this study is that gene expression profiles (GEPs) integrating both tumor antigenicity and a pre-existing adaptive immune response can be used to generate distinct immune-related signatures of BRAF mutant colorectal cancers (BRAF-CRCs) to identify actionable biomarkers predicting response to immunotherapy. GEPs of 89 immunotherapy-naïve BRAF-CRCs were generated using the Pan-Cancer IO 360 gene expression panel and the NanoString nCounter platform and were correlated with microsatellite instability (MSI) status and with CD8+ tumor-infiltrating lymphocyte (TIL) content. Hot/inflamed profiles were found in 52% of all cases, and high scores of Tumor Inflammation Signature were observed in 42% of the metastatic BRAF-CRCs. A subset of MSI tumors showed a cold profile. Antigen Processing Machinery (APM) signature was not differentially expressed in MSI tumors compared with MSS cases. By contrast, the APM signature was significantly upregulated in CD8+ BRAF-CRCs versus CD8− tumors. Our study demonstrates that a significant fraction of BRAF-CRCs may be a candidate for immunotherapy and that the simultaneous analysis of MSI status and CD8+ TIL content increases accuracy in identifying patients who can potentially benefit from immune checkpoint inhibitors. GEPs may be very useful in expanding the spectrum of patients with BRAF-CRCs who can benefit from immune checkpoint blockade.
Collapse
|
50
|
Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy. Nat Rev Cancer 2022; 22:437-451. [PMID: 35624152 PMCID: PMC11009036 DOI: 10.1038/s41568-022-00481-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that selectively degrades RNAs harbouring truncating mutations that prematurely terminate translation, including nonsense, frameshift and some splice-site mutations. Recent studies show that NMD shapes the mutational landscape of tumours by selecting for mutations that tend to downregulate the expression of tumour suppressor genes but not oncogenes. This suggests that NMD can benefit tumours, a notion further supported by the finding that mRNAs encoding immunogenic neoantigen peptides are typically targeted for decay by NMD. Together, this raises the possibility that NMD-inhibitory therapy could be of therapeutic benefit against many tumour types, including those with a high load of neoantigen-generating mutations. Complicating this scenario is the evidence that NMD can also be detrimental for many tumour types, and consequently tumours often have perturbed NMD. NMD may suppress tumour generation and progression by degrading subsets of specific normal mRNAs, including those encoding stress-response proteins, signalling factors and other proteins beneficial for tumours, as well as pro-tumour non-coding RNAs. Together, these findings suggest that NMD-modulatory therapy has the potential to provide widespread therapeutic benefit against diverse tumour types. However, whether NMD should be stimulated or repressed requires careful analysis of the tumour to be treated.
Collapse
Affiliation(s)
- Kun Tan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | - Miles F Wilkinson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|