1
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
2
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
3
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Espejo C, Ezenwa VO. Extracellular vesicles: an emerging tool for wild immunology. DISCOVERY IMMUNOLOGY 2024; 3:kyae011. [PMID: 39005930 PMCID: PMC11244269 DOI: 10.1093/discim/kyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024]
Abstract
The immune system is crucial for defending organisms against pathogens and maintaining health. Traditionally, research in immunology has relied on laboratory animals to understand how the immune system works. However, there is increasing recognition that wild animals, due to their greater genetic diversity, lifespan, and environmental exposures, have much to contribute to basic and translational immunology. Unfortunately, logistical challenges associated with collecting and storing samples from wildlife, and the lack of commercially available species-specific reagents have hindered the advancement of immunological research on wild species. Extracellular vesicles (EVs) are cell-derived nanoparticles present in all body fluids and tissues of organisms spanning from bacteria to mammals. Human and lab animal studies indicate that EVs are involved in a range of immunological processes, and recent work shows that EVs may play similar roles in diverse wildlife species. Thus, EVs can expand the toolbox available for wild immunology research, helping to overcome some of the challenges associated with this work. In this paper, we explore the potential application of EVs to wild immunology. First, we review current understanding of EV biology across diverse organisms. Next, we discuss key insights into the immune system gained from research on EVs in human and laboratory animal models and highlight emerging evidence from wild species. Finally, we identify research themes in wild immunology that can immediately benefit from the study of EVs and describe practical considerations for using EVs in wildlife research.
Collapse
Affiliation(s)
- Camila Espejo
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Vanessa O Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Muttiah B, Ng SL, Lokanathan Y, Ng MH, Law JX. Extracellular Vesicles in Breast Cancer: From Intercellular Communication to Therapeutic Opportunities. Pharmaceutics 2024; 16:654. [PMID: 38794316 PMCID: PMC11125876 DOI: 10.3390/pharmaceutics16050654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer, a multifaceted and heterogeneous disease, poses significant challenges in terms of understanding its intricate resistance mechanisms and devising effective therapeutic strategies. This review provides a comprehensive overview of the intricate landscape of extracellular vesicles (EVs) in the context of breast cancer, highlighting their diverse subtypes, biogenesis, and roles in intercellular communication within the tumour microenvironment (TME). The discussion spans various aspects, from EVs and stromal cells in breast cancer to their influence on angiogenesis, immune response, and chemoresistance. The impact of EV production in different culture systems, including two dimensional (2D), three dimensional (3D), and organoid models, is explored. Furthermore, this review delves into the therapeutic potential of EVs in breast cancer, presenting emerging strategies such as engineered EVs for gene delivery, nanoplatforms for targeted chemotherapy, and disrupting tumour derived EVs as a treatment approach. Understanding these complex interactions of EV within the breast cancer milieu is crucial for identifying resistance mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (M.H.N.)
| |
Collapse
|
6
|
Piro A, Cufaro MC, Lanuti P, Brocco D, De Lellis L, Florio R, Pilato S, Pagotto S, De Fabritiis S, Vespa S, Catitti G, Verginelli F, Simeone P, Pieragostino D, Del Boccio P, Fontana A, Grassadonia A, Di Ianni M, Cama A, Veschi S. Exploring the Immunomodulatory Potential of Pancreatic Cancer-Derived Extracellular Vesicles through Proteomic and Functional Analyses. Cancers (Basel) 2024; 16:1795. [PMID: 38791876 PMCID: PMC11120044 DOI: 10.3390/cancers16101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer (PC) has a poor prognosis and displays resistance to immunotherapy. A better understanding of tumor-derived extracellular vesicle (EV) effects on immune responses might contribute to improved immunotherapy. EVs derived from Capan-2 and BxPC-3 PC cells isolated by ultracentrifugation were characterized by atomic force microscopy, Western blot (WB), nanoparticle tracking analysis, and label-free proteomics. Fresh PBMCs from healthy donors were treated with PC- or control-derived heterologous EVs, followed by flow cytometry analysis of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated or untreated PBMCs was performed, and the IFN-γ concentration was measured by ELISA. Notably, most of the proteins identified in Capan-2 and BxPC-3 EVs by the proteomic analysis were connected in a single functional network (p = 1 × 10-16) and were involved in the "Immune System" (FDR: 1.10 × 10-24 and 3.69 × 10-19, respectively). Interestingly, the treatment of healthy donor-derived PBMCs with Capan-2 EVs but not with BxPC-3 EVs or heterologous control EVs induced early activation of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated PBMCs was consistent with their activation by Capan-2 EVs, indicating IFN-γ among the major upstream regulators, as confirmed by ELISA. The proteomic and functional analyses indicate that PC-EVs have pleiotropic effects, and some may activate early immune responses, which might be relevant for the development of highly needed immunotherapeutic strategies in this immune-cold tumor.
Collapse
Affiliation(s)
- Anna Piro
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Serena Pilato
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- UdA–TechLab, Research Center, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Sara Pagotto
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- UdA–TechLab, Research Center, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Antonino Grassadonia
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Hematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, 65124 Pescara, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| |
Collapse
|
7
|
Yun J, Saddawi-Konefka R, Goldenson B, Al-Msari R, Bernareggi D, Thangaraj JL, Tang S, Patel SH, Luna SM, Gutkind JS, Kaufman D. CHMP2A regulates broad immune cell-mediated antitumor activity in an immunocompetent in vivo head and neck squamous cell carcinoma model. J Immunother Cancer 2024; 12:e007187. [PMID: 38702144 PMCID: PMC11086353 DOI: 10.1136/jitc-2023-007187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are key effector cells of antitumor immunity. However, tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group, a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity. METHODS Here, we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system, a syngeneic, tobacco-signature murine head and neck squamous cell carcinoma model, we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO), following orthotopic transplantation into immunocompetent hosts. RESULTS We found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover, following orthotopic transplantation, KO of mCHMP2A in 4MOSC1 cells, but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However, there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically, we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells, CD8+T cells. NK cell, as well as fewer myeloid-derived suppressor cells (MDSC). CONCLUSIONS Together, these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.
Collapse
Affiliation(s)
- Jiyoung Yun
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Robert Saddawi-Konefka
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Otolaryngology-Head and Neck Surgery, University of California-San Diego, La Jolla, California, USA
| | - Benjamin Goldenson
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Riyam Al-Msari
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Davide Bernareggi
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Jaya L Thangaraj
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| | - Shiqi Tang
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Sonam H Patel
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Sarah M Luna
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Pharmacology, University of California School of Medicine, La Jolla, California, USA
| | - Dan Kaufman
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
- Dept. of Medicine, University of California-San Diego, La Jolla, California, USA
- Sanford Stem Cell Institute, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Huang Z, Liu X, Guo Q, Zhou Y, Shi L, Cai Q, Tang S, Ouyang Q, Zheng J. Extracellular vesicle-mediated communication between CD8 + cytotoxic T cells and tumor cells. Front Immunol 2024; 15:1376962. [PMID: 38562940 PMCID: PMC10982391 DOI: 10.3389/fimmu.2024.1376962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Tumors pose a significant global public health challenge, resulting in numerous fatalities annually. CD8+ T cells play a crucial role in combating tumors; however, their effectiveness is compromised by the tumor itself and the tumor microenvironment (TME), resulting in reduced efficacy of immunotherapy. In this dynamic interplay, extracellular vesicles (EVs) have emerged as pivotal mediators, facilitating direct and indirect communication between tumors and CD8+ T cells. In this article, we provide an overview of how tumor-derived EVs directly regulate CD8+ T cell function by carrying bioactive molecules they carry internally and on their surface. Simultaneously, these EVs modulate the TME, indirectly influencing the efficiency of CD8+ T cell responses. Furthermore, EVs derived from CD8+ T cells exhibit a dual role: they promote tumor immune evasion while also enhancing antitumor activity. Finally, we briefly discuss current prevailing approaches that utilize functionalized EVs based on tumor-targeted therapy and tumor immunotherapy. These approaches aim to present novel perspectives for EV-based tumor treatment strategies, demonstrating potential for advancements in the field.
Collapse
Affiliation(s)
- Zeyu Huang
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuehui Liu
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qinghao Guo
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yihang Zhou
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Shi
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shupei Tang
- Department of Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
9
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Hao Y, Chen P, Guo S, Li M, Jin X, Zhang M, Deng W, Li P, Lei W, Liang A, Qian W. Tumor-derived exosomes induce initial activation by exosomal CD19 antigen but impair the function of CD19-specific CAR T-cells via TGF-β signaling. Front Med 2024; 18:128-146. [PMID: 37870681 DOI: 10.1007/s11684-023-1010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/19/2023] [Indexed: 10/24/2023]
Abstract
Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor β (TGF-β)-Smad3 signaling with TGF-β inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-β inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Panpan Chen
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shanshan Guo
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Mengyuan Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xueli Jin
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Minghuan Zhang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Zheng H, Su N, Yan G, Li M, Chu H, Zhang J, Li B, Zhao J, Wang J, Gao M, Zhang X. Immunomagnetic capture and traceless release of native tumor-derived exosomes from human plasma for exploring interaction with recipient cells by aptamer-functionalized nanoflowers. Anal Chim Acta 2024; 1287:342109. [PMID: 38182386 DOI: 10.1016/j.aca.2023.342109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Tumor-derived exosomes (TEXs) play an important role in the development process of cancer, which can transport a large number of carcinogenic molecules to normal cells, and subsequently promote tumor metastasis. However, TEXs that were utilized in most of previous researches were obtained from the cell medium of tumor cell lines, which cannot reflect the physiological state of primary cells in vivo. Isolation of native TEXs from human plasma with intact function is contributed to exploring the interaction between TEXs and recipient cells for understanding their true biological functions. RESULTS We developed a strategy that involves both capture and release processes to obtain native TEXs from plasma of cancer patients. An MoS2-based immunomagnetic probe (Fe3O4@MoS2-Au-Aptamer, named as FMAA) with the advantages of high surface area, magnetic response and abundant affinity sites was designed and synthesized to capture TEXs through recognizing high-expression tumor-associated antigens of EpCAM. With the assistance of complementary sequences of EpCAM, TEXs were released with non-destruction and no residual labels. According to NTA analysis, 107-108 TEXs were recovered from per mL plasma of breast cancer patients. The interaction between native TEXs and normal epithelial cells confirms TEXs could induce significant activation of autophagy of recipient cells with co-culture for 12 h. Proteomics analysis demonstrated a total of 637 proteins inside epithelial cells had dynamic expression with the stimulation of TEXs and 5 proteins in the pathway of autophagy had elevated expression level. SIGNIFICANCE This work not only obtains native TEXs from human plasma with non-destruction and no residual labels, but also explores the interaction between TEXs and recipient cells for understanding their true biological functions, which will accelerate the application of TEXs in the field of biomarkers and therapeutic drugs.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Ning Su
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Guoquan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Mengran Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Huimin Chu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Bing Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
12
|
Al-Jipouri A, Eritja À, Bozic M. Unraveling the Multifaceted Roles of Extracellular Vesicles: Insights into Biology, Pharmacology, and Pharmaceutical Applications for Drug Delivery. Int J Mol Sci 2023; 25:485. [PMID: 38203656 PMCID: PMC10779093 DOI: 10.3390/ijms25010485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoparticles released from various cell types that have emerged as powerful new therapeutic option for a variety of diseases. EVs are involved in the transmission of biological signals between cells and in the regulation of a variety of biological processes, highlighting them as potential novel targets/platforms for therapeutics intervention and/or delivery. Therefore, it is necessary to investigate new aspects of EVs' biogenesis, biodistribution, metabolism, and excretion as well as safety/compatibility of both unmodified and engineered EVs upon administration in different pharmaceutical dosage forms and delivery systems. In this review, we summarize the current knowledge of essential physiological and pathological roles of EVs in different organs and organ systems. We provide an overview regarding application of EVs as therapeutic targets, therapeutics, and drug delivery platforms. We also explore various approaches implemented over the years to improve the dosage of specific EV products for different administration routes.
Collapse
Affiliation(s)
- Ali Al-Jipouri
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
| | - Àuria Eritja
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany;
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain;
| |
Collapse
|
13
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Wang C, Li W, Shao L, Zhou A, Zhao M, Li P, Zhang Z, Wu J. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res 2023; 28:484. [PMID: 37932800 PMCID: PMC10626716 DOI: 10.1186/s40001-023-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesicles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomarkers, therapeutic targets, and vehicles for targeted delivery.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Linlin Shao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Anni Zhou
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mengran Zhao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Peng Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zheng Zhang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
15
|
Kobayashi S, Kondo N, Tomiyama T, Nakamura N, Masuda M, Matsumoto Y, Honzawa Y, Tahara T, Ikeura T, Fukui T, Okazaki K, Naganuma M. Intravenous injection of tumor extracellular vesicles suppresses tumor growth by reducing the regulatory T cell phenotype. Cancer Immunol Immunother 2023; 72:3651-3664. [PMID: 37597014 PMCID: PMC10991856 DOI: 10.1007/s00262-023-03517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Colorectal cancer is a disease of unmet medical need. Although extracellular vesicles (EVs) have been implicated in anti-tumor responses, discrepancies were observed among studies. We analyzed the role of tumor-derived EVs (TEVs) in tumor progression in vivo by focusing on regulatory T (Treg) cells, which play essential roles in tumor development and progression. METHODS A mouse model of colorectal cancer lung metastasis was generated using BALB/c mice by tail vein injection of the BALB/c colon adenocarcinoma cell line Colon-26. TEVs derived from Colon-26 and BALB/c lung squamous cell carcinoma ASB-XIV were retrieved from the culture media supernatants. A TEV equivalent to 10 µg protein was injected every other day for 2 weeks. RESULTS Histology and immunohistochemistry studies revealed that lung tumors reduced in the Colon-26-EV group when compared to the phosphate-buffered saline (PBS) group. The population of CD4 + FoxP3 + cells in the lung was upregulated in the PBS group mice when compared to the healthy mice (P < 0.001), but was significantly downregulated in the Colon-26-EV group mice when compared to the PBS group mice (P < 0.01). Programmed cell death protein 1, glucocorticoid-induced TNFR-related protein, and CD69 expression in lung Treg cells were markedly upregulated in the PBS group when compared to the healthy mice, but downregulated in the Colon-26-EV group when compared to the PBS group. The changes in expression were dose-dependent for Colon-26-EVs. ASB-EVs also led to significantly downregulated Treg cell expression, although non-cancer line 3T3-derived EVs did not. CONCLUSION Our study suggests that TEVs possess components for tumor suppression.
Collapse
Grants
- JP20K17066 Grant-in-Aid for Young Scientists JSPS KAKENHI
- 20590810, 23591017, 24591020, 12008507, 17877850, 17K09468, 15K09052 Grant-in-Aid for Scientific Research (C) of the Ministry of Culture and Science of Japan
- 17824893 Research Program from the Japan Medical Research and Development (AMED)
- Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- Research Program on Intractable Diseases, from the Ministry of Labor and Welfare of Japan
- Grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan
Collapse
Affiliation(s)
- Sanshiro Kobayashi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Naohiro Nakamura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Masataka Masuda
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yasushi Matsumoto
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yusuke Honzawa
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tomomitsu Tahara
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tsukasa Ikeura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Makoto Naganuma
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
16
|
Weng HP, Ke CH, Tung CW, Tani A, Wang CC, Yang WY, Wang YS, Han W, Liao CH, Tomiyasu H, Lin CS. Canine diffuse large b-cell lymphoma downregulates the activity of CD8 + T-cells through tumor-derived extracellular vesicles. Cancer Cell Int 2023; 23:252. [PMID: 37884996 PMCID: PMC10601183 DOI: 10.1186/s12935-023-03104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Tumor-derived extracellular vesicles (EVs) have been proposed as the essential mediator between host immunity and cancer development. These EVs conduct cellular communication to facilitate tumor growth, enable invasion and metastasis, and shape the favorable tumor microenvironment. Lymphoma is one of the most common hematological malignancies in humans and dogs. Effective T-cell responses are required for the control of these malignancies. However, the immune crosstalk between CD8 + T-cells, which dominates anti-tumor responses, and canine lymphoma has rarely been described. METHODS This study investigates the immune manipulating effects of EVs, produced from the clinical cases and cell line of canine B cell lymphoma, on CD8 + T-cells isolated from canine donors. RESULTS Lymphoma-derived EVs lead to the apoptosis of CD8 + T-cells. Furthermore, EVs trigger the overexpression of CTLA-4 on CD8 + T-cells, which indicates that EV blockade could serve as a potential therapeutic strategy for lymphoma patients. Notably, EVs transform the CD8 + T-cells into regulatory phenotypes by upregulating their PD-1, PD-L1, and FoxP3 mRNA expression. The regulatory CD8 + T-cells secret the panel of inhibitory cytokines and angiogenic factors and thus create a pro-tumorigenic microenvironment. CONCLUSION In summary, the current study demonstrated that the EVs derived from canine B cell lymphoma impaired the anti-tumor activity of CD8 + T-cells and manipulated the possible induction of regulatory CD8 + T-cells to fail the activation of host cellular immunity.
Collapse
Affiliation(s)
- Hsin-Pei Weng
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35053, Miaoli, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 106, Taipei, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan
| | - Akiyoshi Tani
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Chia-Chi Wang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Wen-Yuan Yang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Shan Wang
- Lab. 2612, Rekiin Biotech Inc, Taipei, 114737, Taiwan
| | - Winston Han
- Lab. 2612, Rekiin Biotech Inc, Taipei, 114737, Taiwan
| | - Chi-Hsun Liao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd, Taipei, 10617, Taiwan ROC.
| |
Collapse
|
17
|
Suman S, Markovic SN. Melanoma-derived mediators can foster the premetastatic niche: crossroad to lymphatic metastasis. Trends Immunol 2023; 44:724-743. [PMID: 37573226 PMCID: PMC10528107 DOI: 10.1016/j.it.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Xiong L, Wei Y, Jia Q, Chen J, Chen T, Yuan J, Pi C, Liu H, Tang J, Yin S, Zuo Y, Zhang X, Liu F, Yang H, Zhao L. The application of extracellular vesicles in colorectal cancer metastasis and drug resistance: recent advances and trends. J Nanobiotechnology 2023; 21:143. [PMID: 37120534 PMCID: PMC10148416 DOI: 10.1186/s12951-023-01888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
Colorectal cancer (CRC) has high incidence and mortality rates and is one of the most common cancers of the digestive tract worldwide. Metastasis and drug resistance are the main causes of cancer treatment failure. Studies have recently suggested extracellular vesicles (EVs) as a novel mechanism for intercellular communication. They are vesicular particles, which are secreted and released into biological fluids, such as blood, urine, milk, etc., by a variety of cells and carry numerous biologically active molecules, including proteins, nucleic acids, lipids, metabolites, etc. EVs play a crucial part in the metastasis and drug resistance of CRC by delivering cargo to recipient cells and modulating their behavior. An in-depth exploration of EVs might facilitate a comprehensive understanding of the biological behavior of CRC metastasis and drug resistance, which might provide a basis for developing therapeutic strategies. Therefore, considering the specific biological properties of EVs, researchers have attempted to explore their potential as next-generation delivery systems. On the other hand, EVs have also been demonstrated as biomarkers for the prediction, diagnosis, and presumed prognosis of CRC. This review focuses on the role of EVs in regulating the metastasis and chemoresistance of CRC. Moreover, the clinical applications of EVs are also discussed.
Collapse
Affiliation(s)
- Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qiang Jia
- Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yuan
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People's Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
19
|
Liu CG, Chen J, Goh RMWJ, Liu YX, Wang L, Ma Z. The role of tumor-derived extracellular vesicles containing noncoding RNAs in mediating immune cell function and its implications from bench to bedside. Pharmacol Res 2023; 191:106756. [PMID: 37019192 DOI: 10.1016/j.phrs.2023.106756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.
Collapse
|
20
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
21
|
Virgilio T, Bordini J, Cascione L, Sartori G, Latino I, Molina Romero D, Leoni C, Akhmedov M, Rinaldi A, Arribas AJ, Morone D, Seyed Jafari SM, Bersudsky M, Ottolenghi A, Kwee I, Chiaravalli AM, Sessa F, Hunger RE, Bruno A, Mortara L, Voronov E, Monticelli S, Apte RN, Bertoni F, Gonzalez SF. Subcapsular Sinus Macrophages Promote Melanoma Metastasis to the Sentinel Lymph Nodes via an IL1α-STAT3 Axis. Cancer Immunol Res 2022; 10:1525-1541. [PMID: 36206577 PMCID: PMC9716256 DOI: 10.1158/2326-6066.cir-22-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
During melanoma metastasis, tumor cells originating in the skin migrate via lymphatic vessels to the sentinel lymph node (sLN). This process facilitates tumor cell spread across the body. Here, we characterized the innate inflammatory response to melanoma in the metastatic microenvironment of the sLN. We found that macrophages located in the subcapsular sinus (SS) produced protumoral IL1α after recognition of tumoral antigens. Moreover, we confirmed that the elimination of LN macrophages or the administration of an IL1α-specific blocking antibody reduced metastatic spread. To understand the mechanism of action of IL1α in the context of the sLN microenvironment, we applied single-cell RNA sequencing to microdissected metastases obtained from animals treated with the IL1α-specific blocking antibody. Among the different pathways affected, we identified STAT3 as one of the main targets of IL1α signaling in metastatic tumor cells. Moreover, we found that the antitumoral effect of the anti-IL1α was not mediated by lymphocytes because Il1r1 knockout mice did not show significant differences in metastasis growth. Finally, we found a synergistic antimetastatic effect of the combination of IL1α blockade and STAT3 inhibition with stattic, highlighting a new immunotherapy approach to preventing melanoma metastasis.
Collapse
Affiliation(s)
- Tommaso Virgilio
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Joy Bordini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,GenomSys SA, Lugano, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Irene Latino
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Daniel Molina Romero
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Murodzhon Akhmedov
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alberto J. Arribas
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Diego Morone
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - S. Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ivo Kwee
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,BigOmics Analytics, Lugano, Switzerland
| | - Anna Maria Chiaravalli
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, ASST dei Sette Laghi, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Robert E. Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy.,Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Francesco Bertoni
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Santiago F. Gonzalez
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Corresponding Author: Santiago F. Gonzalez, Institute for Research in Biomedicine, via Francesco Chiesa 5. CH-6500 Bellinzona. Switzerland. Phone: +41 58 666 7226; E-mail:
| |
Collapse
|
22
|
Vikramdeo KS, Anand S, Khan MA, Khushman M, Heslin MJ, Singh S, Singh AP, Dasgupta S. Detection of mitochondrial DNA mutations in circulating mitochondria-originated extracellular vesicles for potential diagnostic applications in pancreatic adenocarcinoma. Sci Rep 2022; 12:18455. [PMID: 36323735 PMCID: PMC9630429 DOI: 10.1038/s41598-022-22006-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
There is a complete lack of highly sensitive and specific biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis, limiting multi-modal therapeutic options. Mitochondrial DNA (mtDNA) is an excellent resource for biomarker discovery because of its high copy number and increased mutational frequency in cancer cells. We examined if mtDNA mutations can be detected in circulating extracellular vesicles (EVs) of PDAC patients and used for discerning between cancer and non-cancer subjects. A greater yield of circulating EVs (~ 1.4 fold; p = 0.002) was obtained in PDAC patients (n = 20) than non-cancer (NC) individuals (n = 10). PDAC-EVs contained a higher quantity of total DNA (~ 5.5 folds; p = 0.0001) than NC-EVs and had greater enrichment of mtDNA (~ 14.02-fold; p = 0.0001). PDAC-EVs also had higher levels of cardiolipin (a mitochondrial inner-membrane phospholipid), suggestive of their mitochondrial origin. All mtDNA mutations in PDAC-EVs were unique and frequency was remarkably higher. Most mtDNA mutations (41.5%) in PDAC-EVs were in the respiratory complex-I (RCI) (ND1-ND6), followed by the RCIII gene (CYTB; 11.2%). Among the non-coding genes, D-Loop and RNR2 exhibited the most mutations (15.2% each). Altogether, our study establishes, for the first time, that mtDNA mutations can be detected in circulating EVs and potentially serve as a tool for reliable PDAC diagnosis.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Shashi Anand
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Mohammad Aslam Khan
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
| | - Moh'd Khushman
- Department of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Division of Medical Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin J Heslin
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
| | - Seema Singh
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Santanu Dasgupta
- Cancer Biology Program, Department of Pathology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, USA.
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
23
|
Molecular Docking and Intracellular Translocation of Extracellular Vesicles for Efficient Drug Delivery. Int J Mol Sci 2022; 23:ijms232112971. [PMID: 36361760 PMCID: PMC9659046 DOI: 10.3390/ijms232112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, mediate intercellular communication by delivering their contents, such as nucleic acids, proteins, and lipids, to distant target cells. EVs play a role in the progression of several diseases. In particular, programmed death-ligand 1 (PD-L1) levels in exosomes are associated with cancer progression. Furthermore, exosomes are being used for new drug-delivery systems by modifying their membrane peptides to promote their intracellular transduction via micropinocytosis. In this review, we aim to show that an efficient drug-delivery system and a useful therapeutic strategy can be established by controlling the molecular docking and intracellular translocation of exosomes. We summarise the mechanisms of molecular docking of exosomes, the biological effects of exosomes transmitted into target cells, and the current state of exosomes as drug delivery systems.
Collapse
|
24
|
Tumor-derived exosomes deliver the tumor suppressor miR-3591-3p to induce M2 macrophage polarization and promote glioma progression. Oncogene 2022; 41:4618-4632. [PMID: 36085418 PMCID: PMC9546774 DOI: 10.1038/s41388-022-02457-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022]
Abstract
Exosomes can selectively secrete harmful metabolic substances from cells to maintain cellular homeostasis, and complex crosstalk occurs between exosomes and tumor-associated macrophages (TAMs) in the glioma immune microenvironment. However, the precise mechanisms by which these exosome-encapsulated cargos create an immunosuppressive microenvironment remain unclear. Herein, we investigated the effect of glioma-derived exosomes (GDEs) on macrophage polarization and glioma progression. We performed sequencing analysis of cerebrospinal fluid (CSF) and tumor tissues from glioma patients to identify functional microRNAs (miRNAs). High levels of miR-3591-3p were found in CSF and GDEs but not in normal brain tissue or glial cells. Functionally, GDEs and miR-3591-3p significantly induced M2 macrophage polarization and increased the secretion of IL10 and TGFβ1, which in turn promoted glioma invasion and migration. Moreover, miR-3591-3p overexpression in glioma cell lines resulted in G2/M arrest and markedly increased apoptosis. Mechanistically, miR-3591-3p can directly target CBLB and MAPK1 in macrophages and glioma cells, respectively, and further activate the JAK2/PI3K/AKT/mTOR, JAK2/STAT3, and MAPK signaling pathways. In vivo experiments confirmed that macrophages lentivirally transduced with miR-3591-3p can significantly promote glioma progression. Thus, our study demonstrates that tumor-suppressive miR-3591-3p in glioma cells can be secreted via exosomes and target TAMs to induce the formation of an immunosuppressive microenvironment. Collectively, these findings provide new insights into the role of glioma exosomal miRNAs in mediating the establishment of an immunosuppressive tumor microenvironment and show that miR-3591-3p may be a valuable biomarker and that blocking the encapsulation of miR-3591-3p into exosomes may become a novel immunotherapeutic strategy for glioma.
Collapse
|
25
|
MicroRNAs in the cancer cell-to-cell communication: An insight into biological vehicles. Biomed Pharmacother 2022; 153:113449. [PMID: 36076563 DOI: 10.1016/j.biopha.2022.113449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
|
26
|
CLL-Derived Extracellular Vesicles Impair T-Cell Activation and Foster T-Cell Exhaustion via Multiple Immunological Checkpoints. Cells 2022; 11:cells11142176. [PMID: 35883619 PMCID: PMC9320608 DOI: 10.3390/cells11142176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of malignant B-cells and multiple immune defects. This leads, among others, to severe infectious complications and inefficient immune surveillance. T-cell deficiencies in CLL include enhanced immune(-metabolic) exhaustion, impaired activation and cytokine production, and immunological synapse malformation. Several studies have meanwhile reported CLL-cell–T-cell interactions that culminate in T-cell dysfunction. However, the complex entirety of their interplay is incompletely understood. Here, we focused on the impact of CLL cell-derived vesicles (EVs), which are known to exert immunoregulatory effects, on T-cell function. Methods: We characterized EVs secreted by CLL-cells and determined their influence on T-cells in terms of survival, activation, (metabolic) fitness, and function. Results: We found that CLL-EVs hamper T-cell viability, proliferation, activation, and metabolism while fostering their exhaustion and formation of regulatory T-cell subsets. A detailed analysis of the CLL-EV cargo revealed an abundance of immunological checkpoints (ICs) that could explain the detected T-cell dysregulations. Conclusions: The identification of a variety of ICs loaded on CLL-EVs may account for T-cell defects in CLL patients and could represent a barrier for immunotherapies such as IC blockade or adoptive T-cell transfer. Our findings could pave way for improving antitumor immunity by simultaneously targeting EV formation or multiple ICs.
Collapse
|
27
|
Estrogens, Cancer and Immunity. Cancers (Basel) 2022; 14:cancers14092265. [PMID: 35565393 PMCID: PMC9101338 DOI: 10.3390/cancers14092265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Sex hormones are included in many physiological and pathological pathways. Estrogens belong to steroid hormones active in female sex. Estradiol (E2) is the strongest female sex hormone and, with its receptors, contributes to oncogenesis, cancer progression and response to treatment. In recent years, a role of immunosurveillance and suppression of immune response in malignancy has been well defined, forming the basis for cancer immunotherapy. The interplay of sex hormones with cancer immunity, as well as the response to immune checkpoint inhibitors, is of interest. In this review, we investigate the impact of sex hormones on natural immune response with respect to main active elements in anticancer immune surveillance: dendritic cells, macrophages, lymphocytes and checkpoint molecules. We describe the main sex-dependent tumors and the contribution of estrogen in their progression, response to treatment and especially modulation of anticancer immune response.
Collapse
|
28
|
Liu X, Wills CA, Chen L, Zhang J, Zhao Y, Zhou M, Sundstrom JM, Schell T, Spiegelman VS, Young MM, Wang HG. Small extracellular vesicles induce resistance to anti-GD2 immunotherapy unveiling tipifarnib as an adjunct to neuroblastoma immunotherapy. J Immunother Cancer 2022; 10:jitc-2021-004399. [PMID: 35483745 PMCID: PMC9052051 DOI: 10.1136/jitc-2021-004399] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Background Anti-GD2 monoclonal antibody immunotherapy has significantly improved the overall survival rate for high-risk neuroblastoma patients. However, 40% of patients fail to respond or develop resistance to treatment, and the molecular mechanisms by which this occurs remain poorly understood. Tumor-derived small extracellular vesicles (sEVs) have emerged as critical regulators in modulating the response to immunotherapy. In this study, we investigated the role of neuroblastoma-derived sEVs in promoting resistance to the anti-GD2 monoclonal antibody dinutuximab. Moreover, to determine whether pharmacologic inhibition of sEV secretion sensitizes tumors to dinutuximab treatment, we combined dinutuximab with tipifarnib, a farnesyltransferase inhibitor that inhibits sEV secretion. Methods We investigated the role of neuroblastoma-derived sEVs in modulating the response to dinutuximab by utilizing the syngeneic 9464D-GD2 mouse model. The effect of neuroblastoma-derived sEVs in modulating the tumor microenvironment (TME) and host immune system were evaluated by RNA-sequencing and flow cytometry. Importantly, we used this mouse model to investigate the efficacy of tipifarnib in sensitizing neuroblastoma tumors to dinutuximab. The effect of tipifarnib on both the TME and host immune system were assessed by flow cytometry. Results We demonstrated that neuroblastoma-derived sEVs significantly attenuated the efficacy of dinutuximab in vivo and modulated tumor immune cell infiltration upon dinutuximab treatment to create an immunosuppressive TME that contains more tumor-associated macrophages and fewer tumor-infiltrating NK cells. In addition, we demonstrated that neuroblastoma-derived sEVs suppress splenic NK cell maturation in vivo and dinutuximab-induced NK cell-mediated antibody-dependent cellular cytotoxicity in vitro. Importantly, tipifarnib drastically enhanced the efficacy of dinutuximab-mediated inhibition of tumor growth and prevented the immunosuppressive effects of neuroblastoma-derived sEVs in vivo. Conclusions These preclinical findings uncover a novel mechanism by which neuroblastoma-derived sEVs modulate the immune system to promote resistance to dinutuximab and suggest that tipifarnib-mediated inhibition of sEV secretion may serve as a viable treatment strategy to enhance the antitumor efficacy of anti-GD2 immunotherapy in high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Carson A Wills
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Longgui Chen
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jiawen Zhang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yuanjun Zhao
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Mi Zhou
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jeffrey M Sundstrom
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Todd Schell
- Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Vladimir S Spiegelman
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Megan M Young
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hong-Gang Wang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
29
|
Mitochondrial Proteins as Source of Cancer Neoantigens. Int J Mol Sci 2022; 23:ijms23052627. [PMID: 35269772 PMCID: PMC8909979 DOI: 10.3390/ijms23052627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
In the past decade, anti-tumour immune responses have been successfully exploited to improve the outcome of patients with different cancers. Significant progress has been made in taking advantage of different types of T cell functions for therapeutic purposes. Despite these achievements, only a subset of patients respond favorably to immunotherapy. Therefore, there is a need of novel approaches to improve the effector functions of immune cells and to recognize the major targets of anti-tumour immunity. A major hallmark of cancer is metabolic rewiring associated with switch of mitochondrial functions. These changes are a consequence of high energy demand and increased macromolecular synthesis in cancer cells. Such adaptations in tumour cells might generate novel targets of tumour therapy, including the generation of neoantigens. Here, we review the most recent advances in research on the immune response to mitochondrial proteins in different cellular conditions.
Collapse
|
30
|
CMTM6, a potential immunotherapy target. J Cancer Res Clin Oncol 2021; 148:47-56. [PMID: 34783871 DOI: 10.1007/s00432-021-03835-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
The CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6), which binds to the programmed death ligand 1 (PD-L1) and stabilizes the expression of PD-L1 on the cell surface, has been recently discovered as a novel regulator of PD-L1 expression in cancer. PD-L1 is an immune checkpoint inhibitory molecule that can mediate the immune escape of tumor cells in various tumors and has been studied intensively in recent years. In 2017, two articles simultaneously reported that CMTM6 can stabilize the expression of PD-L1 on the plasma membrane and prevent PD-L1 from being degraded by lysosomes; therefore, CMTM6 may play an important role in tumor cell immune escape and immunosuppression. At present, there are few studies on the relationship between the expression of CMTM6 and PD-L1 in different tumors and diseases. These studies together suggested that CMTM6 may be a potential novel immunotherapy target. In this review, we briefly describe the latest research progresses of CMTM6 in various cancers and other diseases.
Collapse
|
31
|
Shenoy GN, Bhatta M, Bankert RB. Tumor-Associated Exosomes: A Potential Therapeutic Target for Restoring Anti-Tumor T Cell Responses in Human Tumor Microenvironments. Cells 2021; 10:cells10113155. [PMID: 34831378 PMCID: PMC8619102 DOI: 10.3390/cells10113155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles (EVs) that are released by cells and play a variety of physiological roles including regulation of the immune system. Exosomes are heterogeneous and present in vast numbers in tumor microenvironments. A large subset of these vesicles has been demonstrated to be immunosuppressive. In this review, we focus on the suppression of T cell function by exosomes in human tumor microenvironments. We start with a brief introduction to exosomes, with emphasis on their biogenesis, isolation and characterization. Next, we discuss the immunosuppressive effect of exosomes on T cells, reviewing in vitro studies demonstrating the role of different proteins, nucleic acids and lipids known to be associated with exosome-mediated suppression of T cell function. Here, we also discuss initial proof-of-principle studies that established the potential for rescuing T cell function by blocking or targeting exosomes. In the final section, we review different in vivo models that were utilized to study as well as target exosome-mediated immunosuppression, highlighting the Xenomimetic mouse (X-mouse) model and the Omental Tumor Xenograft (OTX) model that were featured in a recent study to evaluate the efficacy of a novel phosphatidylserine-binding molecule for targeting immunosuppressive tumor-associated exosomes.
Collapse
Affiliation(s)
- Gautam N. Shenoy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Maulasri Bhatta
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Richard B. Bankert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Correspondence: ; Tel.: +1-716-829-2701
| |
Collapse
|