1
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Kim JH, Hong J, Lee JA, Jung M, Choi E, Cho NY, Kang GH, Kim S. Immune microenvironmental heterogeneity according to tumor DNA methylation phenotypes in microsatellite instability-high colorectal cancers. Cancer Immunol Immunother 2024; 73:215. [PMID: 39235590 PMCID: PMC11377388 DOI: 10.1007/s00262-024-03805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The detailed association between tumor DNA methylation, including CpG island methylation, and tumor immunity is poorly understood. CpG island methylator phenotype (CIMP) is observed typically in sporadic colorectal cancers (CRCs) with microsatellite instability-high (MSI-H). Here, we investigated the differential features of the tumor immune microenvironment according to CIMP status in MSI-H CRCs. CIMP-high (CIMP-H) or CIMP-low/negative (CIMP-L/0) status was determined using MethyLight assay in 133 MSI-H CRCs. All MSI-H CRCs were subjected to digital pathology-based quantification of CD3 + /CD8 + /CD4 + /FoxP3 + /CD68 + /CD204 + /CD177 + tumor-infiltrating immune cells using whole-slide immunohistochemistry. Programmed death-ligand 1 (PD-L1) immunohistochemistry was evaluated using the tumor proportion score (TPS) and combined positive score (CPS). Representative cases were analyzed using whole-exome and RNA-sequencing. In 133 MSI-H CRCs, significantly higher densities of CD8 + tumor-infiltrating lymphocytes (TILs) were observed in CIMP-H tumors compared with CIMP-L/0 tumors. PD-L1 TPS and CPS in CIMP-H tumors were higher than in CIMP-L/0 tumors. Next-generation sequencing revealed that, compared with CIMP-L/0 tumors, CIMP-H tumors had higher fractions of CD8 + T cells/cytotoxic lymphocytes, higher cytolytic activity scores, and activated immune-mediated cell killing pathways. In contrast to CIMP-L/0 tumors, most CIMP-H tumors were identified as consensus molecular subtype 1, an immunogenic transcriptomic subtype of CRC. However, there were no differences in tumor mutational burden (TMB) between CIMP-H and CIMP-L/0 tumors in MSI-H CRCs. In conclusion, CIMP-H is associated with abundant cytotoxic CD8 + TILs and PD-L1 overexpression independent of TMB in MSI-H CRCs, suggesting that CIMP-H tumors represent a typical immune-hot subtype and are optimal candidates for immunotherapy in MSI-H tumors.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jiyun Hong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunwoo Choi
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Zou H, Liu C, Ruan Y, Fang L, Wu T, Han S, Dang T, Meng H, Zhang Y. Colorectal medullary carcinoma: a pathological subtype with intense immune response and potential to benefit from immune checkpoint inhibitors. Expert Rev Clin Immunol 2024; 20:997-1008. [PMID: 38459764 DOI: 10.1080/1744666x.2024.2328746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Different pathological types of colorectal cancer have distinguished immune landscape, and the efficacy of immunotherapy will be completely different. Colorectal medullary carcinoma, accounting for 2.2-3.2%, is characterized by massive lymphocyte infiltration. However, the attention to the immune characteristics of colorectal medullary carcinoma is insufficient. AREA COVERED We searched the literature about colorectal medullary carcinoma on PubMed through November 2023to investigate the hallmarks of colorectal medullary carcinoma's immune landscape, compare medullary carcinoma originating from different organs and provide theoretical evidence for precise treatment, including applying immunotherapy and BRAF inhibitors. EXPERT OPINION Colorectal medullary carcinoma is a pathological subtype with intense immune response, with six immune characteristics and has the potential to benefit from immunotherapy. Mismatch repair deficiency, ARID1A missing and BRAF V600E mutation often occurs. IFN-γ pathway is activated and PD-L1 expression is increased. Abundant lymphocyte infiltration performs tumor killing function. In addition, BRAF mutation plays an important role in the occurrence and development, and we can consider the combination of BRAF inhibitors and immunotherapy in patients with BRAF mutant. The exploration of colorectal medullary carcinoma will arouse researchers' attention to the correlation between pathological subtypes and immune response, and promote the process of precise immunotherapy.
Collapse
Affiliation(s)
- Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University in Shandong, Qingdao, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Jia X, Li Z, Zhou R, Feng W, Yi L, Zhang H, Chen B, Li Q, Huang S, Zhu X. Single cell and bulk RNA sequencing identifies tumor microenvironment subtypes and chemoresistance-related IGF1 + cancer-associated fibroblast in gastric cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167123. [PMID: 38484940 DOI: 10.1016/j.bbadis.2024.167123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) significantly influences prognosis and drug resistance in various tumors, yet its heterogeneity and the mechanisms affecting therapeutic response remain unclear in gastric cancer (GC). METHODS The heterogenous TME were explored with single-cell RNA-sequencing (scRNA-seq) data of 50 primary GC samples. We then identified four GC TME subtypes with nonnegative matrix factorization (NMF) and constructed a pearson nearest-centroid classifier based on subtype-specific upregulated genes. Genomic features and clinical significance of four subtypes were comprehensively evaluated. We reclustered fibroblasts to identify cancer-associated fibroblast (CAF) subtype associated with poor clinical outcomes. RT-qPCR and double immunofluorescence staining were applied to validate the findings. Cellchat analysis elucidated potential molecular mechanisms of the CAF subtype in GC disease progression and chemotherapy resistance. FINDINGS The GC TME exhibited high heterogeneity, influencing chemo-sensitivity. Four TME-based subtypes predicting response to immunotherapy and chemotherapy were identified and validated in 1406 GC patients. Among which, ISG1 subtype displayed higher fibroblasts infiltration and heightened oncogenic pathways, and inferior response to chemotherapy with unfavorable prognosis. Microsatellite instability-high (MSI-H) GCs within four TME subtypes showed immunological heterogeneity. We then reported an IGF1-overexpressing CAF was associated with chemo-resistance and GC recurrence. Cell communication analysis revealed IGF1+ CAF may induce drug-resistant phenotypes in tumor cells through IGF1-α6β4 integrin ligand-receptor binding and activation of EMT biological process. INTERPRETATION We identified four TME-based subtypes with different clinical outcomes and IGF1+ CAFs contributing to poor clinical outcomes in GC, which might provide guidance for individualized treatment and facilitate the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lixia Yi
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bing Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Ali E, Červenková L, Pálek R, Ambrozkiewicz F, Hošek P, Daum O, Liška V, Hemminki K, Trailin A. Prognostic role of macrophages and mast cells in the microenvironment of hepatocellular carcinoma after resection. BMC Cancer 2024; 24:142. [PMID: 38287290 PMCID: PMC10823625 DOI: 10.1186/s12885-024-11904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND The prognostic significance of mast cells and different phenotypes of macrophages in the microenvironment of hepatocellular carcinoma (HCC) following resection is unclear. We aimed in this study to assess the local distribution of infiltrating macrophages and mast cells of specific phenotypes in tissues of HCC and to evaluate their prognostic values for survival of post-surgical patients. METHODS The clinicopathological and follow-up data of 70 patients with HCC, who underwent curative resection of tumor from 1997 to 2019, were collected. The infiltration of CD68+ and CD163+ macrophages and CD117+ mast cells was assessed immunohistochemically in representative resected specimens of HCC and adjacent tissues. The area fraction (AF) of positively stained cells was estimated automatically using QuPath image analysis software in several regions, such as tumor center (TC), inner margin (IM), outer margin (OM), and peritumor (PT) area. The prognostic significance of immune cells, individually and in associations, for time to recurrence (TTR), disease-free survival (DFS), and overall survival (OS) was evaluated using Kaplan-Meier and Cox regression analyses. RESULTS High AF of CD68+ macrophages in TC and IM and high AF of mast cells in IM and PT area were associated with a longer DFS. High AF of CD163+ macrophages in PT area correlated with a shorter DFS. Patients from CD163TChigh & CD68TClow group had a shorter DFS compared to all the rest of the groups, and cases with CD163IMlow & CD68IMhigh demonstrated significantly longer DFS compared to low AF of both markers. Patients from CD68IMhigh & CD163PTlow group, CD117IMhigh & CD163PTlow group, and CD117PThigh & CD163PTlow group had a significantly longer DFS compared to all other combinations of respective cells. CONCLUSIONS The individual prognostic impact of CD68+ and CD163+ macrophages and mast cells in the microenvironment of HCC after resection depends on their abundance and location, whereas the cumulative impact is built upon combination of different cell phenotypes within and between regions.
Collapse
Affiliation(s)
- Esraa Ali
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Lenka Červenková
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Ruská 87, Prague, 10000, Czech Republic
| | - Richard Pálek
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen, 32300, Czech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Petr Hošek
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
| | - Ondrej Daum
- Sikl's Institute of Pathology, Faculty of Medicine and Teaching Hospital in Plzen, Charles University, Edvarda Beneše 13, Pilsen, 30599, Czech Republic
- Bioptická Laboratoř s.r.o, Mikulášské Nám. 4, Pilsen, 32600, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen, 32300, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| |
Collapse
|
6
|
Brisset M, Mehlen P, Meurette O, Hollande F. Notch receptor/ligand diversity: contribution to colorectal cancer stem cell heterogeneity. Front Cell Dev Biol 2023; 11:1231416. [PMID: 37860822 PMCID: PMC10582728 DOI: 10.3389/fcell.2023.1231416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Cancer cell heterogeneity is a key contributor to therapeutic failure and post-treatment recurrence. Targeting cell subpopulations responsible for chemoresistance and recurrence seems to be an attractive approach to improve treatment outcome in cancer patients. However, this remains challenging due to the complexity and incomplete characterization of tumor cell subpopulations. The heterogeneity of cells exhibiting stemness-related features, such as self-renewal and chemoresistance, fuels this complexity. Notch signaling is a known regulator of cancer stem cell (CSC) features in colorectal cancer (CRC), though the effects of its heterogenous signaling on CRC cell stemness are only just emerging. In this review, we discuss how Notch ligand-receptor specificity contributes to regulating stemness, self-renewal, chemoresistance and cancer stem cells heterogeneity in CRC.
Collapse
Affiliation(s)
- Morgan Brisset
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Patrick Mehlen
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Olivier Meurette
- Cancer Cell Death Laboratory, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Frédéric Hollande
- Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Soeratram TTD, Biesma HD, Egthuijsen JMP, Meershoek-Klein Kranenbarg E, Hartgrink HH, van de Velde CJH, Mookhoek A, van Dijk E, Kim Y, Ylstra B, van Laarhoven HWM, van Grieken NCT. Prognostic Value of T-Cell Density in the Tumor Center and Outer Margins in Gastric Cancer. Mod Pathol 2023; 36:100218. [PMID: 37182582 DOI: 10.1016/j.modpat.2023.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Tumor-infiltrating lymphocytes are associated with the survival of gastric cancer patients. T-cell densities in the tumor and its periphery were previously identified as prognostic T-cell markers for resectable gastric cancer. Immunohistochemistry for 5 T-cell markers, CD3, CD45RO, CD8, FOXP3, and granzyme B was performed on serial sections of N = 251 surgical resection specimens of patients treated with surgery only in the D1/D2 trial. Positive T cells were digitally quantified into tiles of 0.25 mm2 across 3 regions: the tumor center (TC), the inner invasive margin, and the outer invasive margin (OIM). A classification and regression tree model was employed to identify the optimal combination of median T-cell densities per region with cancer-specific survival (CSS) as the outcome. All statistical tests were 2-sided. CD8OIM was identified as the most dominant prognostic factor, followed by FOXP3TC, resulting in a decision tree containing 3 prognostically distinct subgroups with high (Hi) or low (Lo) density of the markers: CD8OIMHi, CD8OIMLo/FOXP3TCHi, and CD8OIMLo/FOXP3TCLo. In a multivariable Cox regression analysis, which included pathological T and N stages, Lauren histologic types, EBV status, microsatellite instability, and type of surgery, the immune subgroups were independent predictors for CSS. CSS was lower for CD8OIMLo/FOXP3TCHi (HR: 5.02; 95% CI: 2.03-12.42) and for CD8OIMLo/FOXP3TCLo (HR: 7.99; 95% CI: 3.22-19.86), compared with CD8OIMHi (P < .0001). The location and density of both CD8+ and FOXP3+ T cells in resectable gastric cancer are independently associated with survival. The combination of CD8OIM and FOXP3TC T-cell densities is a promising stratification factor that should be validated in independent studies.
Collapse
Affiliation(s)
- Tanya T D Soeratram
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Hedde D Biesma
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Jacqueline M P Egthuijsen
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Henk H Hartgrink
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Aart Mookhoek
- Department of Pathology, University of Bern, Bern, Switzerland
| | - Erik van Dijk
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Yongsoo Kim
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Department of Medical Oncology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole C T van Grieken
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Mestrallet G, Brown M, Bozkus CC, Bhardwaj N. Immune escape and resistance to immunotherapy in mismatch repair deficient tumors. Front Immunol 2023; 14:1210164. [PMID: 37492581 PMCID: PMC10363668 DOI: 10.3389/fimmu.2023.1210164] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Up to 30% of colorectal, endometrial and gastric cancers have a deficiency in mismatch repair (MMR) protein expression due to either germline or epigenetic inactivation. Patients with Lynch Syndrome who inherit an inactive MMR allele have an up to 80% risk for developing a mismatch repair deficient (MMRd) cancer. Due to an inability to repair DNA, MMRd tumors present with genomic instability in microsatellite regions (MS). Tumors with high MS instability (MSI-H) are characterized by an increased frequency of insertion/deletions (indels) that can encode novel neoantigens if they occur in coding regions. The high tumor antigen burden for MMRd cancers is accompanied by an inflamed tumor microenvironment (TME) that contributes to the clinical effectiveness of anti-PD-1 therapy in this patient population. However, between 40 and 70% of MMRd cancer patients do not respond to treatment with PD-1 blockade, suggesting that tumor-intrinsic and -extrinsic resistance mechanisms may affect the success of checkpoint blockade. Immune evasion mechanisms that occur during early tumorigenesis and persist through cancer development may provide a window into resistance pathways that limit the effectiveness of anti-PD-1 therapy. Here, we review the mechanisms of immune escape in MMRd tumors during development and checkpoint blockade treatment, including T cell dysregulation and myeloid cell-mediated immunosuppression in the TME. Finally, we discuss the development of new therapeutic approaches to tackle resistance in MMRd tumors, including cancer vaccines, therapies targeting immunosuppressive myeloid programs, and immune checkpoint combination strategies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew Brown
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
9
|
Abushukair H, Ababneh O, Al-Bzour A, Sahin IH, Saeed A. Next generation immuno-oncology biomarkers in gastrointestinal cancer: what does the future hold? Expert Rev Mol Diagn 2023; 23:863-873. [PMID: 37642360 DOI: 10.1080/14737159.2023.2252739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Gastrointestinal (GI) cancers pose a significant health burden worldwide, necessitating advancements in diagnostic and treatment approaches. One promising avenue is the utilization of next-generation biomarkers, which hold the potential to revolutionize GI cancer management. AREAS COVERED This review explores the latest breakthroughs and expert opinions surrounding the application of next-generation immunotherapy biomarkers. It encompasses various aspects of the currently utilized biomarkers of immunotherapy in the context of GI cancers focusing on microsatellite stable cancers. It explores the promising research on the next generation of biomarkers addressing the challenges associated with integrating them into clinical practice and the need for standardized protocols and regulatory guidelines. EXPERT OPINION Immune profiling, multiplex immunohistochemistry, analysis of immune cell subsets, and novel genomic and epigenomic markers integrated with machine-learning approaches offer new avenues for identifying robust biomarkers. Liquid biopsy-based approaches, such as circulating tumor DNA (ctDNA) and exosome-based analyses, hold promise for real-time monitoring and early detection of treatment response.
Collapse
Affiliation(s)
- Hassan Abushukair
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Obada Ababneh
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Ayah Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Ibrahim Halil Sahin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Manca P, Corti F, Intini R, Mazzoli G, Miceli R, Germani MM, Bergamo F, Ambrosini M, Cristarella E, Cerantola R, Boccaccio C, Ricagno G, Ghelardi F, Randon G, Leoncini G, Milione M, Fassan M, Cremolini C, Lonardi S, Pietrantonio F. Tumour mutational burden as a biomarker in patients with mismatch repair deficient/microsatellite instability-high metastatic colorectal cancer treated with immune checkpoint inhibitors. Eur J Cancer 2023; 187:15-24. [PMID: 37099945 DOI: 10.1016/j.ejca.2023.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are the standard treatment in patients with mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). Tumour mutational burden (TMB) is a promising biomarker for the prediction of treatment outcomes. PATIENTS AND METHODS We screened 203 patients with dMMR/MSI-H mCRC treated with an anti-PD-(L)1 (anti-Programmed-Death-(Ligand)1) plus or minus an anti-Cytotoxic T-Lymphocyte Antigen 4 (anti-CTLA-4) agent at three Italian Academic Centers. TMB was tested by Foundation One Next Generation Sequencing assay and correlated with clinical outcomes, in the overall population and according to ICI regimen. RESULTS We included 110 patients with dMMR/MSI-H mCRC. Eighty patients received anti-PD-(L)1 monotherapy and 30 received anti-CTLA-4 combinations. Median TMB was 49 mut/Mb (range: 8-251 mut/Mb). The optimal prognostic cut-off for progression-free survival (PFS) stratification was 23 mut/Mb. Patients with TMB ≤23 mut/Mb had significantly worse PFS (adjusted Hazard Ratio [aHR] = 4.26, 95% confidence interval [CI]:1.85-9.82, p = 0.001) and overall survival (OS) (aHR = 5.14, 95% CI: 1.76-14.98, p = 0.003). Using a cut-off optimised for predicting treatment outcome, anti-CTLA-4 combination was associated with a significant PFS/OS benefit versus anti-PD-(L)1 monotherapy in patients with TMB>40 mut/Mb (2-year PFS: 100.0% versus 70.7%, p = 0.002; 2-year OS: 100.0% versus 76.0%, p = 0.025), but not in those with TMB ≤40 mut/Mb (2-year PFS: 59.7% versus 68.6%, p = 0.888; 2-year OS: 80.0% versus 81.0%, p = 0.949). CONCLUSION Patients with dMMR/MSI-H mCRC and relatively lower TMB value displayed early disease progression when receiving ICIs, whereas patients with the highest TMB values may obtain the maximal benefit from intensified anti-CTLA-4/PD-1 combination.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. https://twitter.com/@paomanca
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rossana Intini
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giacomo Mazzoli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosalba Miceli
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Maria Germani
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Bergamo
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eleonora Cristarella
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Cerantola
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Chiara Boccaccio
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gianmarco Ricagno
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Leoncini
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology IOV, IRCCS, Padua, Italy
| | - Chiara Cremolini
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Department of Medical Oncology 3, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
11
|
Jung M, Lee JA, Yoo SY, Bae JM, Kang GH, Kim JH. Intratumoral spatial heterogeneity of tumor-infiltrating lymphocytes is a significant factor for precisely stratifying prognostic immune subgroups of microsatellite instability-high colorectal carcinomas. Mod Pathol 2022; 35:2011-2022. [PMID: 35869301 DOI: 10.1038/s41379-022-01137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Although the density of tumor-infiltrating lymphocytes (TILs) is known to be linked to prognosis in various cancers, the prognostic impact and immunologic significance of the spatial heterogeneity of TILs have been rarely investigated. In this study, CD3+ and CD8+ TILs were quantified in independent cohorts (discovery, n = 73; and external validation, n = 93) of colorectal carcinomas (CRCs) with microsatellite instability-high (MSI-H) utilizing whole-slide image analysis of CD3/CD8 immunohistochemistry. The Shannon and Simpson indices, which measure intratumoral patch-to-patch evenness of TIL densities, were used to quantitatively assess the spatial heterogeneity of TILs in each case. To uncover immune-related gene expression signatures of spatial heterogeneity-based TIL subgroups of MSI-H CRCs, representative cases were subjected to GeoMx digital spatial profiler (DSP) analysis. As expected, a low density of TILs was significantly associated with poor disease-free survival (DFS) in MSI-H CRCs. The TIL-low tumors were further classified into two subgroups based on the spatial heterogeneity of TILs: TIL-low/heterogeneity-high and TIL-low/heterogeneity-low subgroups. In both discovery and validation cohorts, the TIL-low/heterogeneity-high, TIL-low/heterogeneity-low, and TIL-high subgroups were significantly associated with poor, intermediate, and good DFS, respectively. In the DSP analysis, the TIL-low/heterogeneity-high subgroup showed higher spatial diversity in the expression of immune-related genes than that of the TIL-low/heterogeneity-low subgroup and exhibited upregulation of genes related to immune checkpoints, chemokine/cytokine receptors, and myeloid cells. TIL-low/heterogeneity-high tumors were also enriched with gene sets related to good response to immune checkpoint inhibitor therapy. In conclusion, TIL-low MSI-H CRCs are prognostically heterogeneous and can be divided into prognostically and immunologically distinct subgroups by considering the spatial heterogeneity of TILs. Our data suggest that intratumoral spatial heterogeneity of TILs can be used as a key element for clinically relevant immunologic subtyping of tumors.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Seegene Medical Foundation, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Ware MB, Wolfarth AA, Goon JB, Ezeanya UI, Dhar S, Ferrando-Martinez S, Lee BH. The Role of Interleukin-7 in the Formation of Tertiary Lymphoid Structures and Their Prognostic Value in Gastrointestinal Cancers. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 5:105-117. [PMID: 36483588 PMCID: PMC9714415 DOI: 10.36401/jipo-22-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/17/2023]
Abstract
Immunotherapies for the treatment of solid tumors continue to develop in preclinical and clinical research settings. Unfortunately, for many patients the tumor fails to respond or becomes resistant to therapies such as checkpoint inhibitors (CPIs) targeting programmed cell death protein-1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen-4 (CTLA-4). In many cancers, failed response to CPIs can be attributed to poor T cell infiltration, dominant immunosuppression, and exhausted immune responses. In gastrointestinal (GI) cancers T cell infiltration can be dismal, with several reports finding that CD8+ T cells compose less than 2% of all cells within the tumor. Organized aggregates of lymphocytes, antigen-presenting cells, and vessels, together termed tertiary lymphoid structures (TLSs), are hypothesized to be a major source of T cells within solid tumors. The intratumoral formation of these organized immune centers appears to rely on intricate cytokine and chemokine signaling to heterogeneous cell populations such as B and T cells, innate lymphoid cells, fibroblasts, and dendritic cells. In GI cancers, the presence and density of TLSs provide prognostic value for predicting outcome and survival. Further, TLS presence and density associates with favorable responses to CPIs in many cancers. This review highlights the prognostic value of TLSs in GI cancers, the role of the homeostatic cytokine interleukin-7 (IL-7) in TLS formation, and the induction of TLSs in solid tumors by novel therapeutics.
Collapse
|
13
|
Clinical Significance and Immune Infiltration Analyses of the Cuproptosis-Related Human Copper Proteome in Gastric Cancer. Biomolecules 2022; 12:biom12101459. [PMID: 36291668 PMCID: PMC9599751 DOI: 10.3390/biom12101459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The human copper Cu proteome, also termed Cu-binding proteins (CBP), is responsible for transporting "free" Cu to the cell that is related to cuproptosis. However, their role in gastric cancer (GC) has not been reported. METHODS RNA expression data of 946 GC patients were collected. A series of machine learning and bioinformatic approaches were combined to build a CBP signature to predict survival and immune microenvironment and guide the priority treatment. Immunohistochemistry and multicolor immunofluorescence (mIF) in 1076 resection slides were used to verify immune features. RESULTS A CBP signature was constructed using the machine learning method from TCGA that classifies cases as CBP_low and CBP_high groups. Multivariable Cox analysis confirmed that the CBP signature was an independent prognostic factor in the training and validation cohorts. Additionally, GC patients with low CBPscores showed an increase in anti-tumor immune microenvironment, which was further verified by mIF in pathological resections following immunotherapy. Importantly, patients with low CBPscores had higher levels of TMB/MSI and responded well to immunotherapy. CONCLUSIONS We conducted the first and comprehensive CBP analysis of GC patients and established a clinically feasible CBP signature for predicting survival and response to treatment, which will be helpful for guiding personalized medicine.
Collapse
|
14
|
Tai P, Wang Z, Chen X, Chen A, Gong L, Cheng Y, Cao K. Multi-omics analysis of the oncogenic value of copper Metabolism-Related protein COMMD2 in human cancers. Cancer Med 2022. [PMID: 36205192 DOI: 10.1002/cam4.5320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The copper metabolism MURR1 domain (COMMD) protein family is involved in tumorigenicity of malignant tumors. However, as the member of COMMD, the role of COMMD2 in human tumors remains unknown. METHODS We used The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Human Protein Atlas (HPA) database, Cancer Cell Line Encyclopedia (CCLE) platform, univariate Cox regression analysis, Kaplan-Meier curve, cBioPortal, UALCAN database, Sangerbox online platform, GSCA database gene set enrichment analysis (GSEA), and GeneMANIA to analyze the expression of COMMD2, its prognostic values, genomic alteration patterns, and the correlation with tumor stemness, tumor mutational burden (TMB), microsatellite instability (MSI), and immune infiltrates, drug sensitivity, and gene function enrichment in pan-cancer. qRT-PCR, CCK-8, EdU, wound healing, and transwell migration assays were performed to confirm the function of COMMD2. RESULTS COMMD2 was strongly expressed in most cancer types. Elevated COMMD2 expression affects the prognosis, clinicopathological stage, and molecular or immune subtypes of various tumors. Moreover, promoter hypomethylation and mutations in the COMMD2 gene may be associated with its high expression and poor survival. Additionally, we discovered that COMMD2 expression was linked to tumor stemness, TMB, MSI, immune cell infiltration, immune-checkpoint inhibitors, and drug sensitivity in pan-cancer. Furthermore, the COMMD2 gene co-expression network is constructed with GSEA analysis, displaying significant interaction of COMMD2 with E2F targets, G2-M checkpoint, and mitotic spindle in bladder cancer (BLCA). Finally, RNA interference data showed suppression of COMMD2 prevented proliferation and migration of BLCA and uterine corpus endometrial carcinoma (UCEC) cells. CONCLUSION Our findings shed light on the COMMD2 functions in human cancers and demonstrate that it is a promising prognostic biomarker and therapeutic target in pan-cancer.
Collapse
Affiliation(s)
- Panpan Tai
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Aiyan Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Zhang Q, Hu J, Zhang Y, Li L, Wang T, Qian X. Case report: A colorectal cancer patient with microsatellite instability-high and MSH2 germline mutation failed to respond to anti-PD-1 immunotherapy. Front Immunol 2022; 13:953421. [PMID: 35990637 PMCID: PMC9389357 DOI: 10.3389/fimmu.2022.953421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Lynch syndrome (LS) is characterized by germline mutations in the DNA mismatch repair (MMR) genes. In colorectal cancer (CRC), germline mutations of DNA MMR genes commonly lead to microsatellite instability-high (MSI-H) subtype formation. Recent studies have demonstrated that CRC patients with MSI-H or mismatch repair-deficient (dMMR) status can benefit from anti-PD1 immunotherapy. However, almost 50% of CRC patients with MSI-H status do not respond to it. It is reported that heterogeneity of tumor and abnormal activation of cancer-related signaling pathways contribute to resistance to anti-PD1 therapy. To improve the clinical efficacy of such patients, the underlying mechanisms of resistance to anti-PD1 treatment must be explored. In this case, we describe an LS-associated CRC patient with MSI-H who suffered resistance to anti-PD1 therapy. Here, we attempted to elucidate the potential reasons, and thus appropriate strategies may be derived to overcome this clinical problem.
Collapse
Affiliation(s)
- Qun Zhang
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jing Hu
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Yaping Zhang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China
| | - Li Li
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ting Wang
- Department of Pathology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiaoping Qian
- Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
- *Correspondence: Xiaoping Qian,
| |
Collapse
|
16
|
Jia W, Zhang T, Yao Q, Li J, Nie Y, Lei X, Mao Z, Wang Y, Shi W, Song W. Tertiary Lymphatic Structures in Primary Hepatic Carcinoma: Controversy Cannot Overshadow Hope. Front Immunol 2022; 13:870458. [PMID: 35844587 PMCID: PMC9278517 DOI: 10.3389/fimmu.2022.870458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells found in the tumor microenvironment. TLS can influence primary hepatic carcinoma (PHC) occurrence and have an active role in cancer. TLS can promote or inhibit the growth of PHC depending on their location, and although available findings are controversial, they suggest that TLS have a protective role in PHC tissues and a non-protective role in paracancerous tissues. In addition, the cellular composition of TLS can also influence the outcome of PHC. As an immunity marker, TLS can act as a marker of immunotherapy to predict its effect and help to identify patients who will respond well to immunotherapy. Modulation of TLS formation through the use of chemokines/cytokines, immunotherapy, or induction of high endothelial vein to interfere with tumor growth has been studied extensively in PHC and other cancers. In addition, new tools such as genetic interventions, cellular crosstalk, preoperative radiotherapy, and advances in materials science have been shown to influence the prognosis of malignant tumors by modulating TLS production. These can also be used to develop PHC treatment.
Collapse
Affiliation(s)
- Weili Jia
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tianchen Zhang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qianyun Yao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianhui Li
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ye Nie
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinjun Lei
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenzhen Mao
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanfang Wang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen Shi
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenjie Song,
| |
Collapse
|