1
|
Rafei H, Rezvani K. Advances and challenges in chimeric antigen receptor-natural killer cell immunotherapy for cancer. Br J Haematol 2025; 206:443-446. [PMID: 39622255 PMCID: PMC11844749 DOI: 10.1111/bjh.19939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/23/2024] [Indexed: 01/29/2025]
Abstract
Chimeric antigen receptor (CAR)-natural killer (NK)-cell therapy has emerged as a promising strategy in the treatment of haematological malignancies and solid cancers. Leveraging the innate immune properties of NK cells, CAR-NK-cell therapies offer potential advantages for cell therapy, including safety of use in the allogeneic setting and reduced risk of toxicity. This Nutshell provides an overview of the latest advancements in CAR-NK-cell therapy and the challenges that remain.
Collapse
Affiliation(s)
- Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
3
|
Waaga-Gasser AM, Böldicke T. Genetically Engineered T Cells and Recombinant Antibodies to Target Intracellular Neoantigens: Current Status and Future Directions. Int J Mol Sci 2024; 25:13504. [PMID: 39769267 PMCID: PMC11727813 DOI: 10.3390/ijms252413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling. In contrast to the use of recombinant T cells, anti-neopeptide MHC (pMHC) antibodies and intrabodies neutralizing intracellular neoantigens can be more easily applied to cancer patients. However, different limitations should be considered, such as the loss of neoantigens, the modification of antigen peptide presentation, tumor heterogenicity, and the immunosuppressive activity of the tumor environment. The simultaneous application of immune checkpoint blocking antibodies and of CRISPR/Cas9-based genome editing tools to engineer different recombinant T cells with enhanced therapeutic functions could make T cell therapies more efficient and could pave the way for its routine clinical application.
Collapse
Affiliation(s)
- Ana Maria Waaga-Gasser
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
4
|
Chang T, Wu Y, Niu X, Guo Z, Gan J, Wang X, Liu Y, Pan Q, Mao Q, Yang Y. The cuproptosis-related signature predicts the prognosis and immune microenvironments of primary diffuse gliomas: a comprehensive analysis. Hum Genomics 2024; 18:74. [PMID: 38956740 PMCID: PMC11220998 DOI: 10.1186/s40246-024-00636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape of gliomas remains unexplored. METHODS We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signature and the immunological landscape of gliomas was undertaken from multiple perspectives. RESULTS Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-related markers, as well as cancer signaling pathway biomarkers and cytokines. CONCLUSION The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore the underlying biological background and novel therapeutic interventions in gliomas.
Collapse
Affiliation(s)
- Tao Chang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yihan Wu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Niu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Zhiwei Guo
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Gan
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Qi Pan
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400013, China.
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| |
Collapse
|
5
|
Wu J. Emerging Innate Immune Cells in Cancer Immunotherapy: Promises and Challenges. BioDrugs 2024; 38:499-509. [PMID: 38700835 PMCID: PMC11246812 DOI: 10.1007/s40259-024-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
Immune checkpoint inhibitor (ICI)-based therapy has made an unprecedented impact on survival benefit for a subset of cancer patients; however, only a subset of cancer patients is benefiting from ICI therapy if all cancer types are considered. With the advanced understanding of interactions of immune effector cell types and tumors, cell-based therapies are emerging as alternatives to patients who could not benefit from ICI therapy. Pioneering work of chimeric antigen receptor T (CAR-T) therapy for hematological malignancies has brought encouragement to a broad range of development for cellular-based cancer immunotherapy, both innate immune cell-based therapies and T-cell-based therapies. Innate immune cells are important cell types due to their rapid response, versatile function, superior safety profiles being demonstrated in early clinical development, and being able to utilize multiple allogeneic cell sources. Efforts on engineering innate immune cells and exploring their therapeutic potential are rapidly emerging. Some of the therapies, such as CD19 CAR natural killer (CAR-NK) cell-based therapy, have demonstrated comparable early efficacy with CD19 CAR-T cells. These studies underscore the significance of developing innate immune cells for cancer therapy. In this review, we focus on the current development of emerging NK cells, γδ T cells, and macrophages. We also present our views on potential challenges and perspectives to overcome these challenges.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Urology, Feinberg School of Medicine, Robert Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
6
|
van Hees EP, Morton LT, Remst DFG, Wouters AK, Van den Eynde A, Falkenburg JHF, Heemskerk MH. Self-sufficient primary natural killer cells engineered to express T cell receptors and interleukin-15 exhibit improved effector function and persistence. Front Immunol 2024; 15:1368290. [PMID: 38690288 PMCID: PMC11058644 DOI: 10.3389/fimmu.2024.1368290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Background NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.
Collapse
Affiliation(s)
- Els P. van Hees
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Dennis F. G. Remst
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Astrid Van den Eynde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Antwerp, Belgium
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| |
Collapse
|
7
|
Zhang W, Liu M, Li W, Song Y. Immune cells in the B-cell lymphoma microenvironment: From basic research to clinical applications. Chin Med J (Engl) 2024; 137:776-790. [PMID: 38269619 PMCID: PMC10997228 DOI: 10.1097/cm9.0000000000002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 01/26/2024] Open
Abstract
ABSTRACT B-cell lymphoma is a group of hematological malignancies characterized by variable genetic and biological features and clinical behaviors. The tumor microenvironment (TME) is a complex network in tumors, which consists of surrounding blood vessels, extracellular matrix, immune and non-immune cells, and signaling molecules. Increasing evidence has shown that the TME, especially immune cells within, is a double-edged sword, acting either as a tumor killer or as a promoter of tumor progression. These pro-tumor activities are driven by subpopulations of immune cells that express typical markers but have unique transcriptional characteristics, making tumor-associated immune cells good targets for human anti-cancer therapy by ablating immunosuppressive cells or enhancing immune-activated cells. Thus, exploring the role of immune cells in the TME provides distinct insights for immunotherapy in B-cell lymphoma. In this review, we elucidated the interaction between immune cells and tumor cells and their function in the initiation, progression, and prognosis of B-cell lymphoma, from preclinical experiments to clinical trials. Furthermore, we outlined potential therapeutic approaches and discussed the potential clinical value and future perspectives of targeting immune cells in patients with B-cell lymphoma.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengmeng Liu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Hematology, Henan Provincial Hematology Hospital, Zhengzhou, Henan 450000, China
| |
Collapse
|
8
|
Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol 2024; 21:315-331. [PMID: 38443448 PMCID: PMC10978891 DOI: 10.1038/s41423-024-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions.Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression.Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.
Collapse
Affiliation(s)
- Audrey Page
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
| | | | - Jenny Valladeau-Guilemond
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
- ErVimmune, Lyon, France.
- Centre Léon Bérard, Lyon, France.
- Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
9
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
10
|
Li Y, Rezvani K, Rafei H. Next-generation chimeric antigen receptors for T- and natural killer-cell therapies against cancer. Immunol Rev 2023; 320:217-235. [PMID: 37548050 PMCID: PMC10841677 DOI: 10.1111/imr.13255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Adoptive cellular therapy using chimeric antigen receptor (CAR) T cells has led to a paradigm shift in the treatment of various hematologic malignancies. However, the broad application of this approach for myeloid malignancies and solid cancers has been limited by the paucity and heterogeneity of target antigen expression, and lack of bona fide tumor-specific antigens that can be targeted without cross-reactivity against normal tissues. This may lead to unwanted on-target off-tumor toxicities that could undermine the desired antitumor effect. Recent advances in synthetic biology and genetic engineering have enabled reprogramming of immune effector cells to enhance their selectivity toward tumors, thus mitigating on-target off-tumor adverse effects. In this review, we outline the current strategies being explored to improve CAR selectivity toward tumor cells with a focus on natural killer (NK) cells, and the progress made in translating these strategies to the clinic.
Collapse
Affiliation(s)
- Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Peng Q, Ren B, Xin K, Liu W, Alam MS, Yang Y, Gu X, Zhu Y, Tian Y. CYFIP2 serves as a prognostic biomarker and correlates with tumor immune microenvironment in human cancers. Eur J Med Res 2023; 28:364. [PMID: 37735711 PMCID: PMC10515071 DOI: 10.1186/s40001-023-01366-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The mechanisms whereby CYFIP2 acts in tumor development and drives immune infiltration have been poorly explored. Thus, this study aimed to identifying the role of CYFIP2 in tumors and immune response. METHODS In this study, we first explored expression patterns, diagnostic role and prognostic value of CYFIP2 in cancers, particularly in lung adenocarcinoma (LUAD). Then, we performed functional enrichment, genetic alterations, DNA methylation analysis, and immune cell infiltration analysis of CYFIP2 to uncover its potential mechanisms involved in immune microenvironment. RESULTS We found that CYFIP2 significantly differentially expressed in different tumors including LUAD compared with normal tissues. Furthermore, CYFIP2 was found to be significantly correlated with clinical parameters in LUAD. According to the diagnostic and survival analysis, CYFIP2 may be employed as a potential diagnostic and prognostic biomarker. Moreover, genetic alterations revealed that mutation of CYFIP2 was the main types of alterations in different cancers. DNA methylation analysis indicated that CYFIP2 mRNA expression correlated with hypomethylation. Afterwards, functional enrichment analysis uncovered that CYFIP2 was involved in tumor-associated and immune-related pathways. Immune infiltration analysis indicated that CYFIP2 was significantly correlated with immune cells infiltration. In particular, CYFIP2 was strongly linked with immune microenvironment scores. Additionally, CYFIP2 exhibited a significant relationship with immune regulators and immune-related genes including chemokines, chemokines receptors, and MHC genes. CONCLUSION Our results suggested that CYFIP2 may serve as a prognostic cancer biomarker for determining prognosis and might be a promising therapeutic strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Bixin Ren
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kedao Xin
- Department of Radiation Oncology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Weihui Liu
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Md Shahin Alam
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yinyin Yang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Xuhao Gu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China
| | - Yaqun Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, San Xiang Road No. 1055, Suzhou, 215004, Jiangsu, China.
- Institute of Radiotherapy & Oncology, Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Karahan ZS, Aras M, Sütlü T. TCR-NK Cells: A Novel Source for Adoptive Immunotherapy of Cancer. Turk J Haematol 2023; 40:1-10. [PMID: 36719099 PMCID: PMC9979742 DOI: 10.4274/tjh.galenos.2022.2022.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Antigen-specific retargeting of cytotoxic lymphocytes against tumor-associated antigens has thus far remained largely dependent on chimeric antigen receptors (CARs) that can be constructed by the fusion of an extracellular targeting domain (classically a single-chain variable fragment from an antibody) fused with intracellular signaling domains to trigger activation of T or natural killer (NK) cells. A major limitation of CAR-based therapies is that this technology only allows for the targeting of antigens that would be located on the surface of target cells while non-surface antigens, which affect approximately three-fourths of all human genes, remain out of reach. The targeting of non-surface antigens is only possible using inherent T cell receptor (TCR) mechanisms. However, introducing a second TCR into T cells via genetic modification is problematic due to the heterodimeric nature of the TCR ligand-binding domain, which is composed of TCR α and β chains. It has been observed that the delivery of a second TCR α/β pair may lead to the mispairing of new TCR chains with the endogenously expressed ones and create mixed TCR dimers, and this has negatively affected the advancement of TCR-based T cell therapies. Recently, NK cells have been put forward as possible effectors for TCR gene therapy. Since NK cells do not endogenously express TCR chains, this seems to be an infallible approach to circumventing the problem of mispairing. Moreover, the similarity of intracellular signaling pathways and mechanisms of cytotoxicity between NK and T cells ensures that the triggering of antigen-specific responses by the TCR/CD3 complex can be used to induce antigen-specific cytotoxicity by TCR-modified NK (TCR-NK) cells. This review provides an overview of the initial studies of TCR-NK cells, identifies open questions in the field, and defines the place of this approach within the spectrum of adoptive immunotherapy techniques that rely on cytotoxic lymphocytes.
Collapse
Affiliation(s)
- Zeynep Sena Karahan
- Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye
| | - Mertkaya Aras
- Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye,Sabancı University Faculty of Engineering and Natural Sciences, Department of Molecular Biology, Genetics, and Bioengineering, İstanbul, Türkiye
| | - Tolga Sütlü
- Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye,* Address for Correspondence: Boğaziçi University Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, İstanbul, Türkiye E-mail:
| |
Collapse
|
13
|
Li S, Zhang C, Shen L, Teng X, Xiao Y, Yu B, Lu Z. TCR extracellular domain genetically linked to CD28, 2B4/41BB and DAP10/CD3ζ -engineered NK cells mediates antitumor effects. Cancer Immunol Immunother 2023; 72:769-774. [PMID: 35988132 DOI: 10.1007/s00262-022-03275-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
NK cells, especially FDA-approved NK-92 cells, could be used for TCR engineering owing to their specialized cytotoxicity against tumors, safety profile and potential use as an off-the-shelf cellular therapy. The TCR complex requires assembly of TCR- α/ β chains with CD3 molecules (CD3δ, CD3γ, CD3ε, CD3ζ) to be correctly expressed at the cell membrane, and yet NK cells lack expression of these CD3 subunits besides CD3ζ. Since transmembrane regions of TCR α and β chains are involved in TCR complex assembly, transmembrane regions of TCR replaced by CD28 transmembrane domain could result in the expression of TCR independent of its companion CD3 subunits. However, since the absence of CD3 signaling components can influence the transmission of TCR signals to NK cells, it is necessary to add the signaling molecules of NK cells followed by CD28 transmembrane domain. Both CD3ζ and DAP10 play an important role in the activation and cytotoxicity of NK cells; moreover, 2B4 and 4-1BB are the main costimulatory molecules in NK cells. Therefore, we designed a chimeric TCR that consisted of the extracellular domains of the TCR α and β chains specific for NYESO-1 fused to the CD28 transmembrane domain followed by the 41BB and CD3ζ signaling domains as well as the 2B4 and DAP10 signaling domain, respectively. The chimeric TCR genetically engineered NK-92 cells exhibit antigen-specific recognition and lysis of tumor cells both in vitro and in vivo. In addition, TCR-28-2B10/BBζ can be feasibly expressed in primary NK cells and exhibit antigen-reactive recognition and effect function. The overall encouraging data highlight the value of NK-92 cells and primary NK cells engineered to express therapeutic chimeric TCR for adoptive immunotherapies.
Collapse
Affiliation(s)
- Shance Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Luyan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xia Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yefei Xiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Bentong Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330000, People's Republic of China.
- Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, 330000, People's Republic of China.
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
14
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
15
|
Assessment of T Cell Receptor Complex Expression Kinetics in Natural Killer Cells. Curr Issues Mol Biol 2022; 44:3859-3871. [PMID: 36135177 PMCID: PMC9497757 DOI: 10.3390/cimb44090265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Among the polypeptides that comprise the T cell receptor (TCR), only CD3ζ is found in Natural Killer (NK) cells, where it transmits signals from activating receptors such as CD16 and NKp46. NK cells are potent immune cells that recognize target cells through germline-encoded activating and inhibitory receptors. Genetic engineering of NK cells enables tumor-specific antigen recognition and, thus, has a significant promise in adoptive cell therapy. Ectopic expression of engineered TCR components in T cells leads to mispairing with the endogenous components, making a knockout of the endogenous TCR necessary. To circumvent the mispairing of TCRs or the need for knockout technologies, TCR complex expression has been studied in NK cells. In the current study, we explored the cellular processing of the TCR complex in NK cells. We observed that in the absence of CD3 subunits, the TCR was not expressed on the surface of NK cells and vice versa. Moreover, a progressive increase in surface expression of TCR between day three and day seven was observed after transduction. Interestingly, the TCR complex expression in NK92 cells was enhanced with a proteasome inhibitor (bortezomib) but not a lysosomal inhibitor (chloroquine). Additionally, we observed that the TCR complex was functional in NK92 cells as measured by estimating CD107a as a degranulation marker, IFNγ cytokine production, and killing assays. NK92 cells strongly degranulated when CD3ε was engaged in the presence of TCR, but not when only CD3 was overexpressed. Therefore, our findings encourage further investigation to unravel the mechanisms that prevent the surface expression of the TCR complex.
Collapse
|