1
|
O'Connor CA, Harrold E, Lin D, Walch H, Gazzo A, Ranganathan M, Kane S, Keane F, Schoenfeld J, Moss D, Thurtle-Schmidt DM, Suehnholz SP, Chakravarty D, Balogun F, Varghese A, Yu K, Kelsen D, Latham A, Weigelt B, Park W, Stadler Z, O'Reilly EM. Lynch Syndrome and Somatic Mismatch Repair Variants in Pancreas Cancer. JAMA Oncol 2024; 10:1511-1518. [PMID: 39235819 PMCID: PMC11378065 DOI: 10.1001/jamaoncol.2024.3651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 09/06/2024]
Abstract
Importance Microsatellite (MS) instability (MSI-H) occurs frequently in Lynch syndrome (LS)-associated tumors and is associated with response to immune checkpoint blockade (ICB) therapy. MSI-H is conferred by germline or somatic variants in mismatch repair genes. The contribution of somatic oncogenesis to MSI-H in pancreatic cancer (PC) is unknown. Objective To evaluate an LS-related PC cohort to define clinicogenomic features, describe somatic MSI-H cases (germline negative), characterize response to ICB, and guide preferred MS testing methods. Design, Setting, and Participants This single-institution, retrospective analysis was conducted from March 2012 to July 2023 at Memorial Sloan Kettering Cancer Center and included 55 patients with PC and either an LS germline pathogenic variant (gPV) or somatic mismatch repair (MMR) variant. Main Outcomes and Measures Composite MMR and MS status determined using orthogonal methods. An artificial intelligence classifier was used to account for low-cellularity specimens. Demographic and clinical data were abstracted from medical record. Zygosity status and somatic comutation landscape analyzed. Results Fifty-five patients (23 women [42%]) had PC and an MMR variant: 32 (58%) had LS (LS cohort) and 23 (42%) had a somatic MMR variant (no germline pathogenic variant, somatic MMR cohort). In the LS cohort, 10 (31%) had gMSH2, 9 (28%) gMSH6, 8 (25%) gPMS2, 4 (13%) gMLH1, 1 (3%) gEPCAM. The median age at diagnosis was 68 years (range, 45-88 years). For composite MS status, 17 (59%) were MSI-H, 12 (41%) MS stable, and 3 MS unknown. Five cases were reclassified as MSI-H by the artificial intelligence classifier. In the somatic MMR cohort, 11 (48%) had MSH6, 7 (30%) MLH1, 3 (13%) MSH2, and 2 (9%) PMS2. The median age at diagnosis was 72 years (range, 66-85 years). For composite MS status, 10 (43%) were MSI-H, 11 (48%) MS stable, and 2 (9%) MS indeterminate. Six cases were reclassified as MSI-H by the artificial intelligence classifier. For the LS and somatic MMR cohorts, 20 received ICB (n = 17 MSI-H). The median ICB duration was 27.7 months (95% CI, 11.5 to not reached); the disease control rate was 80%. Conclusion The results of this cross-sectional study suggest that MSI-H occurs due to LS or somatic oncogenesis in PC. Orthogonal MS testing is key in PC; the artificial intelligence classifier reclassified approximately 20% of cases, most of which were low cellularity. ICB for patients with LS or somatic MSI-H PC provided significant benefit.
Collapse
Affiliation(s)
- Catherine A O'Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Biology, Davidson College, Davidson, North Carolina
| | - Emily Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - David Lin
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, New York
| | - Henry Walch
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering, New York, New York
| | - Andrea Gazzo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sarah Kane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Schoenfeld
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Drew Moss
- Mount Sinai Morningside West, New York, New York
| | | | - Sarah P Suehnholz
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Debyani Chakravarty
- Human Oncology Pathogenesis Program, Sloan Kettering Institute, New York, New York
| | - Fiyinfolu Balogun
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Anna Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Kenneth Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
| | - Britta Weigelt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- David M. Rubenstein Center for Pancreas Cancer Research, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
2
|
Connelly CF, Towne WS, Desai N, Smithgall MC, Cimic A, Baskota SU. Cytologic testing for mismatch repair deficiency/microsatellite instability and NTRK gene fusion is not routinely indicated in primary pancreaticobiliary carcinoma cell block material. J Am Soc Cytopathol 2024; 13:413-419. [PMID: 39341739 DOI: 10.1016/j.jasc.2024.08.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Pancreaticobiliary carcinomas rarely harbor targetable genetic alterations, including microsatellite instability (MSI) or neurotrophic tyrosine receptor kinase (NTRK) gene fusions. As these malignancies are typically present at an advanced stage and have suboptimal response to chemotherapy, the discovery of an actionable genomic alteration provides an additional avenue of treatment for chemotherapy-refractory cases. MATERIALS AND METHODS In this study, we evaluate 319 cases of pancreaticobiliary carcinoma diagnosed on fine-needle aspiration biopsy or biliary brushing for DNA mismatch repair (MMR) protein deficiency and pan-TRK overexpression by immunohistochemistry (IHC) and compare these results to MSI and NTRK gene fusion molecular testing. RESULTS AND CONCLUSION Although we find a high concordance between MMR protein IHC and MSI molecular testing in the evaluation of MMR deficiency and between pan-TRK IHC and NTRK fusion testing by next-generation sequencing, the low prevalence of either of these genetic alterations in our cohort casts doubt on the value of screening cases of pancreaticobiliary carcinoma for MMR protein deficiency and NTRK fusions.
Collapse
Affiliation(s)
- Courtney F Connelly
- Department of Pathology and Cell Biology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York
| | - William S Towne
- Department of Pathology, St. Luke's University Health Network, Bethlehem, Pennsylvania
| | - Niyati Desai
- Department of Pathology and Cell Biology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York
| | - Marie C Smithgall
- Department of Pathology and Cell Biology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York
| | - Adela Cimic
- Department of Pathology and Cell Biology, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York
| | - Swikrity U Baskota
- Department of Pathology and Laboratory Medicine, University of California Irvine Health School of Medicine, Sacramento, California.
| |
Collapse
|
3
|
Xiao Y, Pan T, Da W, Liu Y, Chen S, Chen D, Liu K, Zheng Y, Xie D, Gao Y, Xu H, Sun Y, Tan W. Aptamer-drug conjugates-loaded bacteria for pancreatic cancer synergistic therapy. Signal Transduct Target Ther 2024; 9:272. [PMID: 39397032 PMCID: PMC11471780 DOI: 10.1038/s41392-024-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with the highest mortality rates, and it currently lacks effective drugs. Aptamer-drug conjugates (ApDC), as a form of nucleic acid drug, show great potential in cancer therapy. However, the instability of nucleic acid-based drugs in vivo and the avascularity of pancreatic cancer with dense stroma have limited their application. Fortunately, VNP20009, a genetically modified strain of Salmonella typhimurium, which has a preference for anaerobic environments, but is toxic and lacks specificity, can potentially serve as a delivery vehicle for ApDC. Here, we propose a synergistic therapy approach that combines the penetrative capability of bacteria with the targeting and toxic effects of ApDC by conjugating ApDC to VNP20009 through straightforward, one-step click chemistry. With this strategy, bacteria specifically target pancreatic cancer through anaerobic chemotaxis and subsequently adhere to tumor cells driven by the aptamer's specific binding. Results indicate that this method prolongs the serum stability of ApDC up to 48 h and resulted in increased drug concentration at tumor sites compared to the free drugs group. Moreover, the aptamer's targeted binding to cancer cells tripled bacterial colonization at the tumor site, leading to increased death of tumor cells and T cell infiltration. Notably, by integrating chemotherapy and immunotherapy, the effectiveness of the treatment is significantly enhanced, showing consistent results across various animal models. Overall, this strategy takes advantage of bacteria and ApDC and thus presents an effective synergistic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yu Xiao
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Pan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wuren Da
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanding Liu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangya Chen
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daiquan Chen
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keying Liu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Zheng
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Daolong Xie
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Gao
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Xu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yang Sun
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
4
|
Wu Z, Pan T, Li W, Zhang YH, Guo SH, Liu Y, Zhang L, Wang ZY. Comprehensive pan-cancer analysis reveals prognostic implications of TMEM92 in the tumor immune microenvironment. Clin Transl Oncol 2024; 26:2701-2717. [PMID: 38642258 DOI: 10.1007/s12094-024-03477-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Transmembrane protein 92 (TMEM92) has been implicated in the facilitation of tumor progression. Nevertheless, comprehensive analyses concerning the prognostic significance of TMEM92, as well as its role in immunological responses across diverse cancer types, remain to be elucidated. METHODS In this study, data was sourced from a range of publicly accessible online platforms and databases, including TCGA, GTEx, UCSC Xena, CCLE, cBioPortal, HPA, TIMER2.0, GEPIA, CancerSEA, GDSC, exoRBase, and ImmuCellAI. We systematically analyzed the expression patterns of TMEM92 at both mRNA and protein levels across diverse human organs, tissues, extracellular vesicles (EVs), and cell lines associated with multiple cancer types. Subsequently, analyses were conducted to determine the relationship between TMEM92 and various parameters such as prognosis, DNA methylation, copy number variation (CNV), the tumor microenvironment (TME), immune cell infiltration, genes with immunological relevance, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and half-maximal inhibitory concentration (IC50) values. RESULTS In the present study, we observed a pronounced overexpression of TMEM92 across a majority of cancer types, which was concomitantly associated with a less favorable prognosis. A notable association emerged between TMEM92 expression and both DNA methylation and CNV. Furthermore, a pronounced relationship was discerned between TMEM92 expression, the TME, and the degree of immune cell infiltration. Intriguingly, while TMEM92 expression displayed a positive correlation with macrophage presence, it inversely correlated with the infiltration level of CD8 + T cells. Concurrently, significant associations were identified between TMEM92 and the major histocompatibility complex, TMB, MSI, and MMR. Results derived from Gene Set Enrichment Analysis and Gene Set Variation Analysis further substantiated the nexus of TMEM92 with both immune and metabolic pathways within the oncogenic context. CONCLUSIONS These findings expanded the understanding of the roles of TMEM92 in tumorigenesis and progression and suggest that TMEM92 may have an immunoregulatory role in several malignancies.
Collapse
Affiliation(s)
- Zheng Wu
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China
| | - Teng Pan
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China
| | - Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China
| | - Yue-Hua Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China
| | - Sheng-Hu Guo
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China
| | - Ya Liu
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China
| | - Lei Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China
| | - Zhi-Yu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, No. 12 of Jiankang Road, Chang-an District, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
5
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
6
|
Elhariri A, Patel J, Mahadevia H, Albelal D, Ahmed AK, Jones JC, Borad MJ, Babiker H. Identifying Actionable Alterations in KRAS Wild-Type Pancreatic Cancer. Target Oncol 2024; 19:679-689. [PMID: 39123077 DOI: 10.1007/s11523-024-01088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The 5-year relative survival rate for pancreatic cancer is currently the lowest among all cancer types with a dismal 13%. A Kirsten rat sarcoma virus (KRAS) gene mutation is present in approximately 90% of patients with pancreatic cancer; however, KRAS-specific drugs are not yet widely used in clinical practice for pancreatic cancer, specifically the KRASG12D variant. Advances in genomic testing revealed an opportunity to detect genetic alterations in a subset of patients with no KRAS mutation termed KRAS wild-type. Patients with KRAS wild-type tumors have a propensity to express driver alterations, hence paving the way for utilizing a targeted therapy approach either via clinical trials or standard-of-care drugs. These alterations include fusions, amplifications, translocations, rearrangements and microsatellite instability-high tumors and can be as high as 11% in some studies. Here, we discuss some of the most notable alterations in KRAS wild-type and highlight promising clinical trials.
Collapse
Affiliation(s)
- Ahmed Elhariri
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jaydeepbhai Patel
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Himil Mahadevia
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Douaa Albelal
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ahmed K Ahmed
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Jeremy C Jones
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Mitesh J Borad
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Hani Babiker
- Division of Hematology-Oncology, Department of Medicine, Mayo Clinic Florida, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| |
Collapse
|
7
|
de Jesus VHF, Donadio MDS, de Brito ÂBC, Gentilli AC. A narrative review on rare types of pancreatic cancer: should they be treated as pancreatic ductal adenocarcinomas? Ther Adv Med Oncol 2024; 16:17588359241265213. [PMID: 39072242 PMCID: PMC11282540 DOI: 10.1177/17588359241265213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Pancreatic cancer is one of the deadliest malignancies in humans and it is expected to play a bigger part in cancer burden in the years to come. Pancreatic ductal adenocarcinoma (PDAC) represents 85% of all primary pancreatic malignancies. Recently, much attention has been given to PDAC, with significant advances in the understanding of the mechanisms underpinning disease initiation and progression, along with noticeable improvements in overall survival in both localized and metastatic settings. However, given their rarity, rare histological subtypes of pancreatic cancer have been underappreciated and are frequently treated as PDAC, even though they might present non-overlapping molecular alterations and clinical behavior. While some of these rare histological subtypes are true variants of PDAC that should be treated likewise, others represent separate clinicopathological entities, warranting a different therapeutic approach. In this review, we highlight clinical, pathological, and molecular aspects of rare histological types of pancreatic cancer, along with the currently available data to guide treatment decisions.
Collapse
Affiliation(s)
- Victor Hugo Fonseca de Jesus
- Oncoclínicas, Department of Gastrointestinal Medical Oncology, Santos Dumont St. 182, 4 floor, Florianópolis, Santa Catarina 88015-020, Brazil
- Department of Medical Oncology, Centro de Pesquisas Oncológicas, Florianópolis, Santa Catarina, Brazil
| | | | | | | |
Collapse
|
8
|
Guo Z, Cao B, Hu Z, Wu J, Zhou W, Zhang W, Shi Z. Immunotherapy, prognostic, and tumor biomarker based on pancancer analysis, SMARCD3. Aging (Albany NY) 2024; 16:10074-10107. [PMID: 38862250 PMCID: PMC11210247 DOI: 10.18632/aging.205921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND SMARCD3 has recently been shown to be an important gene affecting cancer, playing an important role in medulloblastoma and pancreatic ductal adenocarcinoma. Therefore, we conducted this research to investigate the potential involvement of SMARCD3 across cancers and to offer recommendations for future studies. METHODS Utilizing information on 33 malignancies in the UCSC Xena database, SMARCD3 expression and its prognostic value were assessed. The tumor microenvironment was evaluated with the "CIBERSORT" and "ESTIMATE" algorithms. SMARCD3 and immune-related genes were analyzed using the TISIDB website. The pathways related to the target genes were examined using GSEA. MSI (microsatellite instability), TMB (tumor mutational burden), and immunotherapy analysis were used to evaluate the impact of target genes on the response to immunotherapy. RESULTS There is heterogeneity in terms of the expression and prognostic value of SMARCD3 among various cancers, but it is a risk factor for many cancers including uterine corpus endometrial cancer (UCEC), renal clear cell carcinoma (KIRC), and gastric adenocarcinoma (STAD). GSEA revealed that SMARCD3 is related to chromatin remodeling and transcriptional activation, lipid metabolism, and the activities of various immune cells. The TMB and MSI analyses suggested that SMARCD3 affects the immune response efficiency of KIRC, LUAD and STAD. Immunotherapy analysis suggested that SMARCD3 may be a potential immunotherapy target. RT-qPCR demonstrated the variation in SMARCD3 expression in KIRC, LUAD, and STAD. CONCLUSION Our study revealed that SMARCD3 affects the prognosis and immunotherapy response of some tumors, providing a direction for further research on this gene.
Collapse
Affiliation(s)
- Zishun Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Bingji Cao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhuozheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiajun Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Weijun Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhihua Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
9
|
Wang H, Zhang Y, Zhang H, Cao H, Mao J, Chen X, Wang L, Zhang N, Luo P, Xue J, Qi X, Dong X, Liu G, Cheng Q. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm (Beijing) 2024; 5:e564. [PMID: 38807975 PMCID: PMC11130638 DOI: 10.1002/mco2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Yi Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hao Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Hui Cao
- Department of PsychiatryThe School of Clinical Medicine, Hunan University of Chinese MedicineChangshaChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province)ChangshaChina
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xinxin Chen
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Liangchi Wang
- Department of NeurosurgeryFengdu People's Hospital, ChongqingChongqingChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Ji Xue
- Department of NeurosurgeryTraditional Chinese Medicine Hospital Dianjiang ChongqingChongqingChina
| | - Xiaoya Qi
- Health Management CenterThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Xiancheng Dong
- Department of Cerebrovascular DiseasesDazhou Central HospitalSichuanChina
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
10
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
11
|
Wilbur HC, Le DT, Agarwal P. Immunotherapy of MSI Cancer: Facts and Hopes. Clin Cancer Res 2024; 30:1438-1447. [PMID: 38015720 DOI: 10.1158/1078-0432.ccr-21-1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Microsatellite instability (MSI) is a tumor molecular phenotype that evolves from loss of function in the mismatch repair (MMR) proteins through deleterious germline mutations, epigenetic inactivation, or somatic biallelic mutations. This phenotype is characterized by genomic hyper-mutability, increased neoantigen expression, and a favorable, immune-rich tumor microenvironment. These features confer a greater likelihood of response to treatment with the class of agents known as immune checkpoint inhibitors (ICI) and, potentially, other immune-based therapeutics. MSI as a predictive biomarker for response to treatment with ICIs ultimately led to the first tissue-agnostic approval of pembrolizumab for advanced, previously treated MSI or deficient MMR (dMMR) tumors. Nevertheless, response to ICIs in dMMR/MSI tumors is not universal. Identifying predictors of response and elucidating mechanisms of immune escape will be crucial to continued successful treatment of this subset. In this review, we aim to describe the pathogenesis and key immunologic features of dMMR/MSI tumors, provide a brief overview of the currently approved treatments, and discuss promising novel immune-based therapeutics currently under investigation.
Collapse
Affiliation(s)
- H Catherine Wilbur
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Dung T Le
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Parul Agarwal
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Sakakida T, Ishikawa T, Doi T, Morita R, Kataoka S, Miyake H, Yamaguchi K, Moriguchi M, Sogame Y, Yasuda H, Iwasaku M, Konishi H, Takayama K, Itoh Y. Genomic profile and clinical features of MSI-H and TMB-high pancreatic cancers: real-world data from C-CAT database. J Gastroenterol 2024; 59:145-156. [PMID: 38006445 DOI: 10.1007/s00535-023-02058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Microsatellite instability high (MSI-H) and tumor mutational burden high (TMB-high) pancreatic cancer are rare, and information is lacking. Based on the C-CAT database, we analyzed the clinical and genomic characteristics of patients with these subtypes. METHODS We retrospectively reviewed data on 2206 patients with unresectable pancreatic adenocarcinoma enrolled in C-CAT between July 2019 and January 2022. The clinical features, proportion of genomic variants classified as oncogenic/pathogenic in C-CAT, overall response rate (ORR), disease control rate (DCR), and time to treatment failure (TTF) of chemotherapy as first-line treatment were evaluated. RESULTS Numbers of patients with MSI-H and TMB-high were 7 (0.3%) and 39 (1.8%), respectively. All MSI-H patients were TMB-high. MSI-H and TMB-high patients harbored more mismatch repair genes, such as MSH2, homologous recombination-related genes, such as ATR and BRCA2, and other genes including BRAF, KMT2D, and SMARCA4. None of the 6 MSI-H patients who received chemotherapy achieved a clinical response, including 4 patients treated with gemcitabine plus nab-paclitaxel (GnP) therapy, whose DCR was significantly lower than that of microsatellite stable (MSS) patients (0 vs. 67.0%, respectively, p = 0.01). Among the TMB-high and TMB-low groups, no significant differences were shown in ORR, DCR (17.1 vs. 23.1% and 57.1 vs. 63.1%, respectively), or median TTF (25.9 vs. 28.0 weeks, respectively) of overall first-line chemotherapy. CONCLUSIONS MSI-H and TMB-high pancreatic cancers showed some distinct genomic and clinical features from our real-world data. These results suggest the importance of adapting optimal treatment strategies according to the genomic alterations.
Collapse
Affiliation(s)
- Tomoki Sakakida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan.
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Outpatient Oncology Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuichi Morita
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Seita Kataoka
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Hayato Miyake
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Yoshio Sogame
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Masahiro Iwasaku
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Cancer Genome Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Outpatient Oncology Unit, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, 465 Kajiicho, Hirokoji agaru, Kawaramachi Street, Kamigyoku, Kyoto, Kyoto, 602-8566, Japan
| |
Collapse
|
13
|
Kleef R, Dank M, Herold M, Agoston EI, Lohinszky J, Martinek E, Herold Z, Szasz AM. Comparison of the effectiveness of integrative immunomodulatory treatments and conventional therapies on the survival of selected gastrointestinal cancer patients. Sci Rep 2023; 13:20360. [PMID: 37990076 PMCID: PMC10663566 DOI: 10.1038/s41598-023-47802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
In the last decade, the use of immunomodulating treatments (IMT) at integrative oncology providers (IOP) increased. IMTs are used to modulate the tumor microenvironment, which might lead to increased response-to-treatment, and the indication of immune checkpoint inhibitors might also be widened. The efficacy and safety of IMTs in advanced/metastatic gastrointestinal cancers were compared with conventional chemo(radio)therapy (CT). 21 colorectal- (CRC), 14 pancreatic- (PC), 5 cholangiocellular- (CCC), 5 gastric- (GC) and 4 esophageal cancer (EC) patients received IMT. IMT and CT were compared in CRC and PC. CT was administered at an academic oncology center. After the initiation of IMT, a median survival of ~ 20 (CRC, PC and EC) and ~ 10 months (CCC and GC) was observed. Of the IMTs, locoregional modulated electro-hyperthermia had the most positive effect on overall survival (HR: 0.3055; P = 0.0260), while fever-inducing interleukin-2, and low-dose ipilimumab showed a positive tendency. IMT was superior to CT in PC (HR: 0.1974; P = 0.0013), while modest effect was detected in CRC (HR: 0.7797; P = 0.4710). When the whole study population was analyzed, IMTs showed minimal effect on patient survival, still CT had the greatest effect if introduced as early as possible (HR: 0.0624; P < 0.0001). The integrative IMTs in the presented form have mild impact on gastrointestinal cancer patients' survival, however, we observed its benefit in PC, which warrants further investigations.
Collapse
Affiliation(s)
- Ralf Kleef
- Dr. Kleef Medical Center, 1030, Vienna, Austria
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emese Irma Agoston
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, 1082, Hungary
| | - Julia Lohinszky
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emoke Martinek
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary.
| |
Collapse
|
14
|
García-Ortiz MV, Cano-Ramírez P, Toledano-Fonseca M, Aranda E, Rodríguez-Ariza A. Diagnosing and monitoring pancreatic cancer through cell-free DNA methylation: progress and prospects. Biomark Res 2023; 11:88. [PMID: 37798621 PMCID: PMC10552233 DOI: 10.1186/s40364-023-00528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Pancreatic cancer is one of the most challenging cancers due to its high mortality rates. Considering the late diagnosis and the limited survival benefit with current treatment options, it becomes imperative to optimize early detection, prognosis and prediction of treatment response. To address these challenges, significant research efforts have been undertaken in recent years to develop liquid-biopsy-based biomarkers for pancreatic cancer. In particular, an increasing number of studies point to cell-free DNA (cfDNA) methylation analysis as a promising non-invasive approach for the discovery and validation of epigenetic biomarkers with diagnostic or prognostic potential. In this review we provide an update on recent advancements in the field of cfDNA methylation analysis in pancreatic cancer. We discuss the relevance of DNA methylation in the context of pancreatic cancer, recent cfDNA methylation research, its clinical utility, and future directions for integrating cfDNA methylation analysis into routine clinical practice.
Collapse
Affiliation(s)
- María Victoria García-Ortiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain.
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain.
| | - Pablo Cano-Ramírez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
| | - Marta Toledano-Fonseca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
| | - Enrique Aranda
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
- Department of Medicine, Faculty of Medicine, University of Córdoba, Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Andalusia-Roche Network Mixed Alliance in Precision Medical Oncology, Sevilla, Spain
- Cancer Network Biomedical Research Center (CIBERONC), Madrid, Spain
- Medical Oncology Department, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
15
|
Kasi PM, Bucheit LA, Liao J, Starr J, Barata P, Klempner SJ, Gandara D, Shergill A, Madeira da Silva L, Weipert C, Zhang N, Pretz C, Hardin A, Kiedrowski LA, Odegaard JI. Pan-Cancer Prevalence of Microsatellite Instability-High (MSI-H) Identified by Circulating Tumor DNA and Associated Real-World Clinical Outcomes. JCO Precis Oncol 2023; 7:e2300118. [PMID: 37769226 DOI: 10.1200/po.23.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE Immune checkpoint inhibitors are approved for advanced solid tumors with microsatellite instability-high (MSI-H). Although several technologies can assess MSI-H status, detection and outcomes with circulating tumor DNA (ctDNA)-detected MSI-H are lacking. As such, we examined pan-cancer MSI-H prevalence across 21 cancers and outcomes after ctDNA-detected MSI-H. METHODS Patients with advanced cancer who had ctDNA testing (Guardant360) from October 1, 2018, to June 30, 2022, were retrospectively assessed for prevalence. GuardantINFORM, which includes anonymized genomic and structured payer claims data, was queried to assess outcomes. Patients who initiated new treatment within 90 days of MSI-H detection were sorted into immunotherapy included in treatment (IO) or no immunotherapy included (non-IO) groups. Real-world time to treatment discontinuation (rwTTD) and real-world time to next treatment (rwTTNT) were assessed in months as proxies of progression-free survival (PFS); real-world overall survival (rwOS) was assessed in months. Cox regression tests analyzed differences. Colorectal cancer, non-small-cell lung cancer (NSCLC), prostate cancer, gastroesophageal cancer, and uterine cancer (UC) were assessed independently; all other cancers were grouped. RESULTS In total, 1.4% of 171,881 patients had MSI-H detected. Of 770 patients with outcomes available, rwTTD and rwTTNT were significantly longer for patients who received IO compared with non-IO for all cancers (P ≤ .05; hazard ratio [HR] range, 0.31-0.52 and 0.25-0.54, respectively) except NSCLC. rwOS had limited follow-up for all cohorts except UC (IO 39 v non-IO 23 months; HR, 0.18; P = .004); however, there was a consistent trend toward prolonged OS in IO-treated patients. CONCLUSION These data support use of a well-validated ctDNA assay to detect MSI-H across solid tumors and suggest prolonged PFS in patients treated with IO-containing regimens after detection. Tumor-agnostic, ctDNA-based MSI testing may be reliable for rapid decision making.
Collapse
Affiliation(s)
| | | | | | | | - Pedro Barata
- Case Western Reserve University/University Hospitals, Cleveland, OH
| | | | - David Gandara
- UC Davis Comprehensive Cancer Center, Sacramento, CA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Coston T, Desai A, Babiker H, Sonbol MB, Chakrabarti S, Mahipal A, McWilliams R, Ma WW, Bekaii-Saab TS, Stauffer J, Starr JS. Efficacy of Immune Checkpoint Inhibition and Cytotoxic Chemotherapy in Mismatch Repair-Deficient and Microsatellite Instability-High Pancreatic Cancer: Mayo Clinic Experience. JCO Precis Oncol 2023; 7:e2200706. [PMID: 37625102 DOI: 10.1200/po.22.00706] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
PURPOSE Pancreatic cancer (PC) carries a poor prognosis with high rates of unresectable/metastatic disease at diagnosis, recurrence after resection, and few systemic therapy options. Deficient mismatch repair (dMMR)/high microsatellite instability (MSI-H) PCs demonstrated uncharacteristically poor outcomes in KEYNOTE-158, evaluating pembrolizumab in MSI-H solid tumors. Our study aggregates the Mayo Clinic experience with dMMR/MSI-H PCs, characterizing the clinical, molecular, and treatment response patterns with a focus on response to immune checkpoint inhibitors (ICIs). METHODS Retrospective data were collected from the electronic medical record from December 2009 to February 2023. Patients were included if they had a pathologically confirmed pancreatic malignancy and had (1) deficient expression of mismatch repair (MMR) proteins by tumor immunohistochemistry, (2) pathogenic mutation of MMR genes on genomic sequencing, and/or (3) MSI-H by polymerase chain reaction. RESULTS Thirty-two patients were identified for inclusion, with all stages of disease represented. Sixteen of these patients underwent surgery or chemoradiotherapy. Of these patients, uncharacteristically favorable responses were seen, with a recurrence rate of only 19% (n = 3) despite a median follow-up of 25 months. In the palliative setting, excellent responses to ICI were seen, with overall response rate (ORR) of 75% (20% complete response). Median time to disease progression was not reached. Response rates to cytotoxic chemotherapy in the palliative setting were poor, with 30% ORR and median time to progression of 4 months. We observed a high rate of discrepancy between MMR and MSI testing methods, representing 19% of the entire cohort and 26% of evaluable cases. CONCLUSION Our data argue for the preferential use of ICI over cytotoxic chemotherapy in any patient with dMMR/MSI-H PC requiring systemic therapy, including in the metastatic and adjuvant/neoadjuvant settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Wee Ma
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| | | | | | | |
Collapse
|
17
|
Inagaki C, Kawakami H, Maeda D, Sakai D, Urakawa S, Nishida K, Kudo T, Doki Y, Eguchi H, Wada H, Satoh T. The potential clinical utility of cell-free DNA for gastric cancer patients treated with nivolumab monotherapy. Sci Rep 2023; 13:5652. [PMID: 37024664 PMCID: PMC10079661 DOI: 10.1038/s41598-023-32645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
To assess the potential clinical utility of cell-free DNA (cfDNA)-based biomarkers for identifying gastric cancer (GC) patients who benefit from nivolumab. From 31 GC patients treated with nivolumab monotherapy (240 mg/body, Bi-weekly) in 3rd or later line setting, we prospectively collected blood samples at baseline and before the 3rd dose. We compared cfDNA-based molecular findings, including microsatellite instability (MSI) status, to tissue-based biomarkers. We assessed the clinical value of blood tumor mutation burden (bTMB) and copy number alterations (CNA) as well as the cfDNA dynamics. The concordance between deficient-MMR and cfDNA-based MSI-high was 100% (3/3). Patients with bTMB ≥ 6 mut/Mb had significantly better progression-free survival (PFS) and overall survival (OS); however, such significance disappeared when excluding MSI-High cases. The combination of bTMB and CNA positivity identified patients with survival benefit regardless of MSI status (both PFS and OS, P < 0.001), with the best survival in those with bTMB≥6mut/Mb and CNAnegative. Moreover, patients with decreased bTMB during treatment had a better disease control rate (P = 0.04) and longer PFS (P = 0.04). Our results suggest that a combination of bTMB and CNA may predict nivolumab efficacy for GC patients regardless of MSI status. bTMB dynamics have a potential utility as an on-treatment biomarker.
Collapse
Affiliation(s)
- Chiaki Inagaki
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan.
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medicine, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Daisuke Sakai
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital, Suita, 565-0871, Japan
| | - Shinya Urakawa
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Kentaro Nishida
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Toshihiro Kudo
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan
- Center for Cancer Genomics and Personalized Medicine, Osaka University Hospital, Suita, 565-0871, Japan
| |
Collapse
|
18
|
Storandt MH, Tran N, Martin N, Jatoi A. Pembrolizumab near the end of life in patients with metastatic pancreatic cancer: a multi-site consecutive series to examine survival and patient treatment burden. Cancer Immunol Immunother 2023:10.1007/s00262-023-03397-4. [PMID: 36872382 DOI: 10.1007/s00262-023-03397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/03/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Pembrolizumab confers minimal benefit to most patients with pancreas cancer. We explored survival and patient treatment burden (for example, death within 14 days of therapy) in a subgroup who had early access to pembrolizumab . METHODS This multisite study examined consecutive pancreas cancer patients, who received pembrolizumab from 2004 through 2022. Median overall survival of > 4 months was to be deemed favorable. Patient treatment burden and medical record quotations are presented descriptively. RESULTS Forty-one patients (median age 66 years; range 36, 84) are included. Fifteen (37%) had dMMR, MSI-H, TMB-H, or Lynch syndrome; and 23 (56%) received concurrent therapy. The median overall survival was 7.2 months (95% confidence interval (CI): 5.2, 12.7 months); 29 were deceased at the time of reporting. Patients with dMMR, MSI-H, TMB-H, or Lynch syndrome had a lower risk of death: hazard ratio (HR): 0.29 (95% CI: 0.12, 0.72); p = 0.008. Medical record phrases ("brilliant response") aligned with the above. One patient died within 14 days of therapy, and one was in an intensive care unit within 30 days of death. Fifteen patients enrolled in hospice; four of these died < 3 days later. CONCLUSIONS These unexpectedly favorable findings underscore the need for healthcare providers-including palliative care providers-to knowledgeably guide patients about cancer therapy even near the end of life.
Collapse
Affiliation(s)
| | - Nguyen Tran
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Nichole Martin
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aminah Jatoi
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Sahin IH, Zhang J, Saridogan T, Gorantla V, Rhree J, Malhotra M, Thomas R, Hsu D, Saeed A. Neoadjuvant Immune Checkpoint Inhibitor Therapy for Patients With Microsatellite Instability-High Colorectal Cancer: Shedding Light on the Future. JCO Oncol Pract 2023; 19:251-259. [PMID: 36862965 DOI: 10.1200/op.22.00762] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment paradigm of mismatch repair-deficient/microsatellite instability-high (MMMR-D/MSI-H) colorectal cancer (CRC). Unique molecular features of MMR-D/MSI-H CRC with frameshift alterations, which result in mutation-associated neoantigen (MANA) generation, create an ideal molecular framework for MANA-driven T-cell priming and antitumor immunity. These biologic characteristics of MMR-D/MSI-H CRC resulted in rapid drug development with ICIs for patients with MMR-D/MSI-H CRC. Observed deep and durable responses with the use of ICIs in advanced-stage disease have stimulated the development of clinical trials with ICIs for patients with early-stage MMR-D/MSI-H CRC. Most recently, neoadjuvant dostarlimab monotherapy for nonoperative management of MMR-D/MSI-H rectal cancer and neoadjuvant NICHE trial with nivolumab and ipilimumab for MMR-D/MSI-H colon cancer resulted in groundbreaking results. Although nonoperative management of patients with MMR-D/MSI-H rectal cancer with ICIs will potentially define our current therapeutic approach, therapeutic goals of neoadjuvant ICI therapy for patients with MMR-D/MSI-H colon cancer may differ given that nonoperative management has not been well established for colon cancer. Herein, we overview recent advancements in ICI-based therapies for patients with early-stage MMR-D/MSI-H colon and rectal cancer and elaborate on the future treatment paradigm of this unique subgroup of CRC.
Collapse
Affiliation(s)
- Ibrahim Halil Sahin
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Janie Zhang
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Turcin Saridogan
- Department of Medicine, Hacettepe University of School of Medicine, Ankara, Turkey
| | | | - John Rhree
- University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Roby Thomas
- University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Dennis Hsu
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Anwaar Saeed
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
20
|
Gkountakos A, Martelli FM, Silvestris N, Bevere M, De Bellis M, Alaimo L, Sapuppo E, Masetto F, Mombello A, Simbolo M, Bariani E, Milella M, Fassan M, Scarpa A, Luchini C. Extrahepatic Distal Cholangiocarcinoma vs. Pancreatic Ductal Adenocarcinoma: Histology and Molecular Profiling for Differential Diagnosis and Treatment. Cancers (Basel) 2023; 15:1454. [PMID: 36900245 PMCID: PMC10001378 DOI: 10.3390/cancers15051454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and distal cholangiocarcinoma (dCCA) are very aggressive tumors with a high mortality rate. Pancreas and distal bile ducts share a common embryonic development. Hence, PDAC and dCCA exhibit similar histological features that make a differential diagnosis during routine diagnostic practice challenging. However, there are also significant differences, with potential clinical implications. Even if PDAC and dCCA are generally associated with poor survival, patients with dCCA seem to present a better prognosis. Moreover, although precision oncology-based approaches are still limited in both entities, their most important targets are different and include alterations affecting BRCA1/2 and related genes in PDAC, as well as HER2 amplification in dCCA. Along this line, microsatellite instability represents a potential contact point in terms of tailored treatments, but its prevalence is very low in both tumor types. This review aims at defining the most important similarities and differences in terms of clinicopathological and molecular features between these two entities, also discussing the main theranostic implications derived from this challenging differential diagnosis.
Collapse
Affiliation(s)
- Anastasios Gkountakos
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Filippo M. Martelli
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Michele Bevere
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Mario De Bellis
- Department of Surgery, Dentistry, Gynecology, and Pediatrics, Division of General and Hepatobiliary Surgery, University of Verona, 37134 Verona, Italy
| | - Laura Alaimo
- Department of Surgery, Dentistry, Gynecology, and Pediatrics, Division of General and Hepatobiliary Surgery, University of Verona, 37134 Verona, Italy
| | - Elena Sapuppo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Francesca Masetto
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
| | - Aldo Mombello
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Elena Bariani
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Michele Milella
- Section of Medical Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Matteo Fassan
- Section of Pathology, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy
| | - Aldo Scarpa
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudio Luchini
- ARC-NET Applied Research on Cancer Center, University of Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| |
Collapse
|
21
|
Alouani E, Rousseau B, Andre T, Marabelle A. Immunotherapy advances in cancers with mismatch repair or proofreading deficiencies. NATURE CANCER 2022; 3:1414-1417. [PMID: 36539500 DOI: 10.1038/s43018-022-00497-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Emily Alouani
- Digestive Medical Oncology Department, IUCT-Rangueil, Toulouse Hospital University, Toulouse, France
| | - Benoit Rousseau
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thierry Andre
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, INSERM 938, SIRIC CURAMUS, Paris, France
| | - Aurelien Marabelle
- Université Paris Saclay, Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), INSERM U1015 & CIC1428, Villejuif, France.
| |
Collapse
|
22
|
Detection of microsatellite instability high (MSI-H) status by targeted plasma-based genotyping in metastatic breast cancer. NPJ Breast Cancer 2022; 8:117. [PMCID: PMC9636209 DOI: 10.1038/s41523-022-00490-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractWe evaluate microsatellite instability-high (MSI-H) status with cell-free DNA (cfDNA) in metastatic breast cancer (MBC) and the association with clinico-genomic characteristics. Patients with MSI-H in cfDNA (Guardant360®, 74 gene next-generation sequencing (NGS) with MBC are identified. We conduct a retrospective review. The median number of alterations and a median maximum mutant allelic fraction (MAF) in MSI-H and non-MSI-H cohorts are compared with Mann–Whitney U-test. Of 6718 patients with breast cancer with ≥1 plasma NGS alteration, 42 (0.63%) have MSI-H. A median number of genomic alterations per sample is 11 in MSI-H vs. 3 in non-MSI-H (Mann–Whitney U-test p < 0.0001) and the median maximum MAF is 16.8% in MSI-H vs. 2.6% in non-MSI-H (Mann–Whitney U-test p < 0.0001). The co-existing genomic landscape is heterogeneous. The median response duration for seven patients receiving immunotherapy is 92 days (range 29–273 days). CfDNA can identify MSI-H in MBC. Research is needed to validate immunotherapy usage in cfDNA-detected MSI-H MBC.
Collapse
|
23
|
Cox RE, Chakrabarti S. A Carcinoma of Unknown Primary (CUP) Patient Treated Successfully With Immunotherapy Upon Recognition of Deficient Mismatch Repair Signature on Liquid Biopsy: A Case Report. Cureus 2022; 14:e27184. [PMID: 36017278 PMCID: PMC9393345 DOI: 10.7759/cureus.27184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 11/05/2022] Open
|