1
|
Abdel-Rahman SA, Gabr MT. Small molecules from antibody pharmacophores (SMAbPs) as a hit identification workflow for immune checkpoints. SCIENCE ADVANCES 2024; 10:eadq5540. [PMID: 39413175 PMCID: PMC11482313 DOI: 10.1126/sciadv.adq5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Small-molecule modulators of immune checkpoints are poised to revolutionize cancer immunotherapy. However, efficient strategies for hit identification are lacking. We introduce small molecules from antibody pharmacophores (SMAbPs), a workflow leveraging cocrystal structures of checkpoints with antibodies to create pharmacophore maps for virtual screening. Applying SMAbPs to five immune checkpoints yielded hits with submicromolar potency in both cell-free and cellular assays. Notably, SMAbPs identified the most potent T cell immunoglobulin and mucin-domain containing-3 and V-domain immunoglobulin suppressor of T cell activation (VISTA) inhibitors reported to date and first-in-class modulators of B and T lymphocyte attenuator, 4-IBB, and CD27. Targeting inhibitory and costimulatory checkpoints with hits identified through SMAbPs demonstrated remarkable in vivo antitumor activity, exemplified by MG-V-53 (VISTA inhibitor) and MG-C-30 (CD27 agonist), which significantly reduced tumor volumes in MC38 and EG7-OVA mouse models, respectively.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa T. Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Lim SH, Beers SA, Al-Shamkhani A, Cragg MS. Agonist Antibodies for Cancer Immunotherapy: History, Hopes, and Challenges. Clin Cancer Res 2024; 30:1712-1723. [PMID: 38153346 PMCID: PMC7615925 DOI: 10.1158/1078-0432.ccr-23-1014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/31/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Immunotherapy is among the most promising new treatment modalities to arise over the last two decades; antibody drugs are delivering immunotherapy to millions of patients with many different types of cancer. Initial success with antibody therapeutics came in the form of direct targeting or cytotoxic antibodies, such as rituximab and trastuzumab, which bind directly to tumor cells to elicit their destruction. These were followed by immunomodulatory antibodies that elicit antitumor responses by either stimulating immune cells or relieving tumor-mediated suppression. By far the most successful approach in the clinic to date has been relieving immune suppression, with immune checkpoint blockade now a standard approach in the treatment of many cancer types. Despite equivalent and sometimes even more impressive effects in preclinical models, agonist antibodies designed to stimulate the immune system have lagged behind in their clinical translation. In this review, we document the main receptors that have been targeted by agonist antibodies, consider the various approaches that have been evaluated to date, detail what we have learned, and consider how their anticancer potential can be unlocked.
Collapse
Affiliation(s)
- Sean H. Lim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Stephen A. Beers
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
3
|
Su Z, Wan Q. Potential therapeutic targets for membranous nephropathy: proteome-wide Mendelian randomization and colocalization analysis. Front Immunol 2024; 15:1342912. [PMID: 38707900 PMCID: PMC11069303 DOI: 10.3389/fimmu.2024.1342912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/21/2024] [Indexed: 05/07/2024] Open
Abstract
Background The currently available medications for treating membranous nephropathy (MN) still have unsatisfactory efficacy in inhibiting disease recurrence, slowing down its progression, and even halting the development of end-stage renal disease. There is still a need to develop novel drugs targeting MN. Methods We utilized summary statistics of MN from the Kiryluk Lab and obtained plasma protein data from Zheng et al. We performed a Bidirectional Mendelian randomization analysis, HEIDI test, mediation analysis, Bayesian colocalization, phenotype scanning, drug bank analysis, and protein-protein interaction network. Results The Mendelian randomization analysis uncovered 8 distinct proteins associated with MN after multiple false discovery rate corrections. Proteins related to an increased risk of MN in plasma include ABO [(Histo-Blood Group Abo System Transferase) (WR OR = 1.12, 95%CI:1.05-1.19, FDR=0.09, PPH4 = 0.79)], VWF [(Von Willebrand Factor) (WR OR = 1.41, 95%CI:1.16-1.72, FDR=0.02, PPH4 = 0.81)] and CD209 [(Cd209 Antigen) (WR OR = 1.19, 95%CI:1.07-1.31, FDR=0.09, PPH4 = 0.78)], and proteins that have a protective effect on MN: HRG [(Histidine-Rich Glycoprotein) (WR OR = 0.84, 95%CI:0.76-0.93, FDR=0.02, PPH4 = 0.80)], CD27 [(Cd27 Antigen) (WR OR = 0.78, 95%CI:0.68-0.90, FDR=0.02, PPH4 = 0.80)], LRPPRC [(Leucine-Rich Ppr Motif-Containing Protein, Mitochondrial) (WR OR = 0.79, 95%CI:0.69-0.91, FDR=0.09, PPH4 = 0.80)], TIMP4 [(Metalloproteinase Inhibitor 4) (WR OR = 0.67, 95%CI:0.53-0.84, FDR=0.09, PPH4 = 0.79)] and MAP2K4 [(Dual Specificity Mitogen-Activated Protein Kinase Kinase 4) (WR OR = 0.82, 95%CI:0.72-0.92, FDR=0.09, PPH4 = 0.80)]. ABO, HRG, and TIMP4 successfully passed the HEIDI test. None of these proteins exhibited a reverse causal relationship. Bayesian colocalization analysis provided evidence that all of them share variants with MN. We identified type 1 diabetes, trunk fat, and asthma as having intermediate effects in these pathways. Conclusions Our comprehensive analysis indicates a causal effect of ABO, CD27, VWF, HRG, CD209, LRPPRC, MAP2K4, and TIMP4 at the genetically determined circulating levels on the risk of MN. These proteins can potentially be a promising therapeutic target for the treatment of MN.
Collapse
Affiliation(s)
| | - Qijun Wan
- Department of Nephrology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Yang Y, Li J, Li D, Zhou W, Yan F, Wang W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotechnol Bioeng 2024; 121:835-852. [PMID: 38151887 DOI: 10.1002/bit.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.
Collapse
Affiliation(s)
- Yuening Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Dadas O, Allen JD, Buchan SL, Kim J, Chan HTC, Mockridge CI, Duriez PJ, Rogel A, Crispin M, Al-Shamkhani A. Fcγ receptor binding is required for maximal immunostimulation by CD70-Fc. Front Immunol 2023; 14:1252274. [PMID: 37965342 PMCID: PMC10641686 DOI: 10.3389/fimmu.2023.1252274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction T cell expressed CD27 provides costimulation upon binding to inducible membrane expressed trimeric CD70 and is required for protective CD8 T cell responses. CD27 agonists could therefore be used to bolster cellular vaccines and anti-tumour immune responses. To date, clinical development of CD27 agonists has focussed on anti-CD27 antibodies with little attention given to alternative approaches. Methods Here, we describe the generation and activity of soluble variants of CD70 that form either trimeric (t) or dimer-of-trimer proteins and conduct side-by-side comparisons with an agonist anti-CD27 antibody. To generate a dimer-of-trimer protein (dt), we fused three extracellular domains of CD70 to the Fc domain of mouse IgG1 in a 'string of beads' configuration (dtCD70-Fc). Results Whereas tCD70 failed to costimulate CD8 T cells, both dtCD70-Fc and an agonist anti-CD27 antibody were capable of enhancing T cell proliferation in vitro. Initial studies demonstrated that dtCD70-Fc was less efficacious than anti-CD27 in boosting a CD8 T cell vaccine response in vivo, concomitant with rapid clearance of dtCD70-Fc from the circulation. The accelerated plasma clearance of dtCD70-Fc was not due to the lack of neonatal Fc receptor binding but was dependent on the large population of oligomannose type glycosylation. Enzymatic treatment to reduce the oligomannose-type glycans in dtCD70-Fc improved its half-life and significantly enhanced its T cell stimulatory activity in vivo surpassing that of anti-CD27 antibody. We also show that whereas the ability of the anti-CD27 to boost a vaccine response was abolished in Fc gamma receptor (FcγR)-deficient mice, dtCD70-Fc remained active. By comparing the activity of dtCD70-Fc with a variant (dtCD70-Fc(D265A)) that lacks binding to FcγRs, we unexpectedly found that FcγR binding to dtCD70-Fc was required for maximal boosting of a CD8 T cell response in vivo. Interestingly, both dtCD70-Fc and dtCD70-Fc(D265A) were effective in prolonging the survival of mice harbouring BCL1 B cell lymphoma, demonstrating that a substantial part of the stimulatory activity of dtCD70-Fc in this setting is retained in the absence of FcγR interaction. Discussion These data reveal that TNFRSF ligands can be generated with a tunable activity profile and suggest that this class of immune agonists could have broad applications in immunotherapy.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, European University of Lefke, Lefke, Cyprus
| | - Joel D. Allen
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Sarah L. Buchan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jinny Kim
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - H. T. Claude Chan
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C. Ian Mockridge
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick J. Duriez
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anne Rogel
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Max Crispin
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aymen Al-Shamkhani
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Leitner J, Egerer R, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Steinberger P. FcγR requirements and costimulatory capacity of Urelumab, Utomilumab, and Varlilumab. Front Immunol 2023; 14:1208631. [PMID: 37575254 PMCID: PMC10413977 DOI: 10.3389/fimmu.2023.1208631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Targeting costimulatory receptors of the tumor necrosis factor receptor (TNFR) superfamily with agonistic antibodies is a promising approach in cancer immuno therapy. It is known that their efficacy strongly depends on FcγR cross-linking. Methods In this study, we made use of a Jurkat-based reporter platform to analyze the influence of individual FcγRs on the costimulatory activity of the 41BB agonists, Urelumab and Utomilumab, and the CD27 agonist, Varlilumab. Results We found that Urelumab (IgG4) can activate 41BB-NFκB signaling without FcγR cross-linking, but the presence of the FcγRs (CD32A, CD32B, CD64) augments the agonistic activity of Urelumab. The human IgG2 antibody Utomilumab exerts agonistic function only when crosslinked via CD32A and CD32B. The human IgG1 antibody Varlilumab showed strong agonistic activity with all FcγRs tested. In addition, we analyzed the costimulatory effects of Urelumab, Utomilumab, and Varlilumab in primary human peripheral blood mononuclear cells (PBMCs). Interestingly, we observed a very weak capacity of Varlilumab to enhance cytokine production and proliferation of CD4 and CD8 T cells. In the presence of Varlilumab the percentage of annexin V positive T cells was increased, indicating that this antibody mediated FcγR-dependent cytotoxic effects. Conclusion Collectively, our data underscore the importance to perform studies in reductionist systems as well as in primary PBMC samples to get a comprehensive understanding of the activity of costimulation agonists.
Collapse
Affiliation(s)
- Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ricarda Egerer
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Melo V, Nelemans LC, Vlaming M, Lourens HJ, Wiersma VR, Bilemjian V, Huls G, de Bruyn M, Bremer E. EGFR-selective activation of CD27 co-stimulatory signaling by a bispecific antibody enhances anti-tumor activity of T cells. Front Immunol 2023; 14:1191866. [PMID: 37545491 PMCID: PMC10399592 DOI: 10.3389/fimmu.2023.1191866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
A higher density of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment, particularly cytotoxic CD8+ T cells, is associated with improved clinical outcome in various cancers. However, local inhibitory factors can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from various cancer types express the co-stimulatory Tumor Necrosis Factor receptor CD27, making it a potential target for co-stimulation and re-activation of tumor-infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical responses remain limited. This is likely because current monoclonal antibodies fail to effectively activate CD27 signaling, as this receptor requires higher-order receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR, that targets both CD27 and the tumor antigen, epidermal growth factor receptor (EGFR). By targeting EGFR, which is commonly expressed on carcinomas, CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27. The design of CD27xEGFR includes an Fc-silent domain, which is designed to minimize potential toxicity by reducing Fc gamma receptor-mediated binding and activation of immune cells. CD27xEGFR bound to both of its targets simultaneously and triggered EGFR-restricted co-stimulation of T cells as measured by T cell proliferation, T cell activation markers, cytotoxicity and IFN-γ release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of artificial antigen-presenting carcinoma cell line models, leading to Effector-to-Target ratio-dependent elimination of cancer cells. Taken together, we present the in vitro characterization of a novel bispecific antibody that re-activates T cell immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.
Collapse
Affiliation(s)
- Vinicio Melo
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Levi Collin Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn Vlaming
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Valerie R. Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vrouyr Bilemjian
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics & Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Sprangers B, Leaf DE, Porta C, Soler MJ, Perazella MA. Diagnosis and management of immune checkpoint inhibitor-associated acute kidney injury. Nat Rev Nephrol 2022; 18:794-805. [PMID: 36168055 DOI: 10.1038/s41581-022-00630-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
Since their introduction into clinical practice a decade ago, immune checkpoint inhibitors (ICIs) have had an overwhelming impact on cancer treatment. Use of these agents in oncology continues to grow; however, the increased use of these agents has been associated with a parallel increase in ICI-associated immune-related adverse events, which can affect virtually any organ, including the kidneys. ICI-associated acute kidney injury (ICI-AKI) occurs in 2-5% of patients treated with ICIs. Its occurrence can have important consequences, including the temporary or permanent discontinuation of ICIs or other concomitant anticancer therapies and the need for prolonged treatment with corticosteroids. Various mechanisms have been proposed to underlie the development of ICI-AKI, including loss of tolerance to self-antigens, reactivation of drug-specific effector T cells, and the production of kidney-specific autoantibodies. ICI-AKI most commonly manifests as acute tubulo-interstitial nephritis on kidney biopsy and generally shows a favourable response to early initiation of corticosteroids, with complete or partial remission achieved in most patients. The evaluation of patients with suspected ICI-AKI requires careful diagnostic work-up and kidney biopsy for patients with moderate-to-severe ICI-AKI to ensure accurate diagnosis and inform appropriate treatment.
Collapse
Affiliation(s)
- Ben Sprangers
- Division of Nephrology, Ziekenhuis Oost-Limburg, Genk, Belgium. .,Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium.
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Camillo Porta
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Corsorziale Policlinico di Bari, Bari, Italy.,Oncology, Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Maria José Soler
- Nephrology Research Group, Vall d'hebrón Institut de Recerca (VHIR), Barcelona, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mark A Perazella
- Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA.,Veterans Affairs Medical Center, West Haven, Connecticut, USA
| |
Collapse
|