1
|
Rastogi I, Mannone JA, Gibadullin R, Moseman JE, Sidney J, Sette A, McNeel DG, Gellman SH. β-amino acid substitution in the SIINFEKL antigen alters immunological recognition. Cancer Biol Ther 2025; 26:2486141. [PMID: 40200635 PMCID: PMC11988276 DOI: 10.1080/15384047.2025.2486141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Peptide vaccines offer a direct way to initiate an immunogenic response to a defined antigen epitope. However, peptide vaccines are unstable in vivo, subject to rapid enzymatic proteolysis. Replacement of an α-amino acid residue with a homologous β-amino acid residue (native side chain, but backbone extended by a single CH2 unit) impairs proteolysis at nearby amide bonds. Therefore, antigen analogues containing α-to-β replacements have been examined for functional mimicry of native all-α antigens. Another group previously took this approach in the ovalbumin (OVA) antigen model by evaluating single α-to-β analogues of the murine major histocompatibility complex (MHC) I-restricted peptide SIINFEKL. METHODS We re-examined this set of α/β SIINFEKL antigens. We tested the susceptibility to proteolysis in mouse serum and their ability to activate OVA-antigen-specific CD8 T cells in vitro. Additionally, we tested the α/β antigens in vivo for their ability to induce an antigen-specific immunogenic response in naïve mice and in OVA-expressing tumor-bearing mice. RESULTS The α/β antigens were comparable to the native antigen in their susceptibility to proteolysis in serum. Each α/β antigen was capable of activating antigen-specific CD8 T cells in vitro. However, antigen-specific CD8 T cells induced against α/β antigens in vivo were not cross-reactive to the native antigen. Moreover, immunization with α/β analogues did not elicit anti-tumor effects in tumor-bearing mice. CONCLUSIONS We conclude that even though α/β analogues of the SIINFEKL antigen can elicit a T cell-based response, this class of backbone-modified peptides is not promising from the perspective of antitumor vaccine development.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John A. Mannone
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jena E. Moseman
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, CA, USA
| | - Douglas G. McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Kleinendorst SC, Hooijmans CR, Muselaers S, Oosterwijk E, Konijnenberg M, Heskamp S, van Lith SAM. Efficacy of combined targeted radionuclide therapy and immune checkpoint Inhibition in animal tumour models: a systematic review and meta-analysis of the literature. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07293-0. [PMID: 40281282 DOI: 10.1007/s00259-025-07293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE Given radiation's immunomodulatory effects and the complementary anti-cancer mechanisms of targeted radionuclide therapy (TRT) and immune checkpoint inhibition (ICI), their combination holds promise as a cancer treatment. This systematic review and meta-analysis summarize the literature on the therapeutic efficacy of combined TRT/ICI in animal tumour models. METHODS A systematic search in MEDLINE-PubMed and Embase-OVID was performed. Study characteristics and risk of bias were assessed. Outcome parameters included normalized area under the tumour growth curve and restricted mean survival time, of which ratios between combined treatment and untreated and monotherapy groups were analysed in a random-effects meta-analyses. Predefined subgroup analyses explored potential moderators of treatment efficacy. RESULTS In total, 31 studies were included. Study characteristics such as animal sex and age, cancer type, TRT target, and radionuclides, varied considerably across studies. The quality of the included studies could not always be assessed due to poor reporting. All meta-analyses indicated significantly improved survival and tumour growth of combination treatment over untreated, TRT and ICI monotherapy controls (RMST ratio 1.96 [1.72-2.23], 1.44 [ 1.34-1.55], 1.54 [1.38-1.72], and nAUC ratio 0.32 [0.25-0.42], 0.49 [0.41-0.59], 0.41 [0.31-0.55], respectively), with high between-study heterogeneity (I2 = 76.7-98.2%). The specific mode of action of ICI emerged as a potential moderator of treatment efficacy in subgroup analyses. CONCLUSION This systematic review highlights the therapeutic potential of combined TRT/ICI treatment, demonstrating preclinical proof-of-concept and supporting its further evaluation in clinical trials. However, the current literature remains insufficient to determine optimal treatment parameters like TRT tumour-absorbed dose and ICI type for clinical translation. Further research with improved reporting standards should systematically evaluate the impact of such parameters to enable robust comparisons.
Collapse
Affiliation(s)
- Simone C Kleinendorst
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stijn Muselaers
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Ceuppens H, Pombo Antunes AR, Navarro L, Ertveldt T, Berdal M, Nagachinta S, De Ridder K, Lahoutte T, Keyaerts M, Devoogdt N, Goyvaerts C, D'Huyvetter M, Breckpot K. Efficient α and β - radionuclide therapy targeting fibroblast activation protein-α in an aggressive preclinical mouse tumour model. Eur J Nucl Med Mol Imaging 2025; 52:444-457. [PMID: 39237746 DOI: 10.1007/s00259-024-06914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
PURPOSE Targeted radionuclide therapy (TRT) is a cancer treatment with relative therapeutic efficacy across various cancer types. We studied the therapeutic potential of TRT using fibroblast activation protein-α (FAP) targeting sdAbs (4AH29) labelled with 225Ac or 131I in immunocompetent mice in a human FAP (hFAP) expressing lung cancer mouse model. We further explored the combination of TRT with programmed cell death ligand 1 (PD-L1) immune checkpoint blockade (ICB). METHODS We studied the biodistribution and tumour uptake of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 by ex vivo γ-counting. Therapeutic efficacy of [131I]I-GMIB-4AH29 and [225Ac]Ac-DOTA-4AH29 was evaluated in an immunocompetent mouse model. Flow cytometry analysis of tumours from [225Ac]Ac-DOTA-4AH29 treated mice was performed. Treatment with [225Ac]Ac-DOTA-4AH29 was repeated in combination with PD-L1 ICB. RESULTS The biodistribution showed high tumour uptake of [131I]I-GMIB-4AH29 with 3.5 ± 0.5% IA/g 1 h post-injection (p.i.) decreasing to 0.9 ± 0.1% IA/g after 24 h. Tumour uptake of [225Ac]Ac-DOTA-4AH29 was also relevant with 2.1 ± 0.5% IA/g 1 h p.i. with a less steep decrease to 1.7 ± 0.2% IA/g after 24 h. Survival was significantly improved after treatment with low and high doses [131I]I-GMIB-4AH29 or [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Moreover, we observed significantly higher PD-L1 expression in tumours of mice treated with [225Ac]Ac-DOTA-4AH29 compared to vehicle solution. Therefore, we combined high dose [225Ac]Ac-DOTA-4AH29 with PD-L1 ICB showing therapeutic synergy. CONCLUSION [225Ac]Ac-DOTA-4AH29 and [131I]I-GMIB-4AH29 exhibit high and persistent tumour targeting, translating into prolonged survival in mice bearing aggressive tumours. Moreover, we demonstrate that the combination of PD-L1 ICB with [225Ac]Ac-DOTA-4AH29 TRT enhances its therapeutic efficacy.
Collapse
Affiliation(s)
- Hannelore Ceuppens
- Vrije Universiteit Brussel, Department of Biomedical Sciences, Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Laarbeeklaan 103. Building E, Brussels, 1090, Belgium.
| | | | - Laurent Navarro
- Precirix NV/SA, Burg. Etienne Demunterlaan 3, Brussels, B-1090, Belgium
| | - Thomas Ertveldt
- Vrije Universiteit Brussel, Molecular Imaging and Therapy Research Group, Laarbeeklaan 103/K, Brussels, 1090, Belgium
| | - Marion Berdal
- Precirix NV/SA, Burg. Etienne Demunterlaan 3, Brussels, B-1090, Belgium
| | - Surasa Nagachinta
- Precirix NV/SA, Burg. Etienne Demunterlaan 3, Brussels, B-1090, Belgium
| | - Kirsten De Ridder
- Vrije Universiteit Brussel, Department of Biomedical Sciences, Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Laarbeeklaan 103. Building E, Brussels, 1090, Belgium
| | - Tony Lahoutte
- Vrije Universiteit Brussel, Molecular Imaging and Therapy Research Group, Laarbeeklaan 103/K, Brussels, 1090, Belgium
- Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZ Brussel), Nuclear Medicine Department, Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Marleen Keyaerts
- Vrije Universiteit Brussel, Molecular Imaging and Therapy Research Group, Laarbeeklaan 103/K, Brussels, 1090, Belgium
- Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel (UZ Brussel), Nuclear Medicine Department, Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Nick Devoogdt
- Vrije Universiteit Brussel, Molecular Imaging and Therapy Research Group, Laarbeeklaan 103/K, Brussels, 1090, Belgium
| | - Cleo Goyvaerts
- Vrije Universiteit Brussel, Molecular Imaging and Therapy Research Group, Laarbeeklaan 103/K, Brussels, 1090, Belgium
| | - Matthias D'Huyvetter
- Precirix NV/SA, Burg. Etienne Demunterlaan 3, Brussels, B-1090, Belgium.
- Vrije Universiteit Brussel, Molecular Imaging and Therapy Research Group, Laarbeeklaan 103/K, Brussels, 1090, Belgium.
| | - Karine Breckpot
- Vrije Universiteit Brussel, Department of Biomedical Sciences, Translational Oncology Research Center, Laboratory for Molecular and Cellular Therapy, Laarbeeklaan 103. Building E, Brussels, 1090, Belgium.
| |
Collapse
|
4
|
Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med 2024; 16:eadk0642. [PMID: 39292804 PMCID: PMC11522033 DOI: 10.1126/scitranslmed.adk0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Jessica M. Vera
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Sage Bionetworks, 2901 Third Ave. Suite 330, Seattle, WA 98121, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas C. Havighurst
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ishan Chakravarthy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raad H. Allawi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - KyungMann Kim
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A. Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
- Oregon Clinic, Portland, OR 97232, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
| | - Jessica R. Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M. Ong
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
5
|
Singh R, Thotakura AK, Alati S, Lisok A, Jiang Z, Merino VF, Minn I, Yadav S, Markowski MC, Ged Y, Pavlovich CP, Singla N, Solnes LB, Gorin MA, Pomper MG, Rowe SP, Banerjee SR. Performance of PSMA-targeted radiotheranostics in an experimental model of renal cell carcinoma. Front Oncol 2024; 14:1432286. [PMID: 39324008 PMCID: PMC11423292 DOI: 10.3389/fonc.2024.1432286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Renal cell carcinoma (RCC) represents cancer originating from the renal epithelium and accounts for > 90% of cancers in the kidney. Prostate-specific membrane antigen (PSMA) is overexpressed in tumor-associated neovascular endothelial cells of many solid tumors, including metastatic RCC. Although studied in several small clinical studies, PSMA-based imaging and therapy have not been pursued rigorously in preclinical RCC. This study aimed to evaluate the preclinical performance of PSMA-based radiotheranostic agents in a relevant murine model. Methods A PSMA-overexpressing murine cell line, PSMA+ RENCA, was developed by lentiviral transduction. PSMA-based theranostic agents, 68Ga-L1/177Lu-L1/225Ac-L1, were synthesized in high radiochemical yield and purity following our reported methods. Immunocompetent BALB/c mice were used for flank and orthotopic tumor inoculation. 68Ga-L1 was evaluated in small animal PET/CT imaging in flank and PET/MR imaging in orthotopic models. Cell viability studies were conducted for 177Lu-L1 and 225Ac-L1. Proof-of-concept treatment studies were performed using 225Ac-L1 (0, 37 kBq, 2 kBq × 37 kBq, 1 week apart) using PSMA+ RENCA in the flank model. Results Cellular uptake of 68Ga-L1, 177Lu-L1, and 225Ac-L1 confirmed the specificity of the agents to PSMA+ RENCA cells rather than to RENCA (wt) cells, which are low in PSMA expression. The uptake in PSMA+ RENCA cells at 1 h for 68Ga-L1 (49.0% incubated dose [ID] ± 3.6%ID/million cells), 177Lu-L1 (22.1%ID ± 0.5%ID)/million cells), and 225Ac-L1 (4.1% ± 0.2% ID)/million cells), respectively, were higher than the RENCA (wt) cells (~ 1%ID-2%ID/million cells). PET/CT images displayed > 7-fold higher accumulation of 68Ga-L1 in PSMA+ RENCA compared to RENCA (wt) in flank implantation at 1 h. A twofold higher accumulation of 68Ga-L1 was observed in orthotopic tumors than in normal kidneys during 1-3 h postinjection. High lung uptake was observed with 68Ga-L1 PET/MR imaging 3 weeks after orthotopic implantation of PSMA+ RENCA due to spontaneous lung metastases. The imaging data were further confirmed by immunohistochemical characterization. 225Ac-L1 (0-37 kBq) displayed a dose-dependent reduction of cell proliferation in the PSMA+ RENCA cells after 48 h incubation; ~ 40% reduction in the cells with treated 37 kBq compared to vehicle (p < 0.001); however, no effect was observed with 177Lu-L1 (0-3700 kBq) up to 144 h postinoculation, suggesting lower efficacy of β-particle-emitting radiations in cellular studies compared to α-particle-emitting 225Ac-L1. Animals treated with 225Ac-L1 at 1 week posttumor inoculation in flank models displayed significant tumor growth delay (p < 0.03) and longer median survival of 21 days and 24 days for the treatment groups 37 kBq and 2 kBq × 37 kBq, respectively, compared to the vehicle group (12 days). Conclusion The results suggest that a theranostic strategy targeting PSMA, employing PET and α-emitting radiopharmaceuticals, enabled tumor growth control and enhanced survival in a relevant immunocompetent murine model of RCC. These studies provide the rationale for clinical studies of PSMA-targeted theranostic agents in patients with RCC.
Collapse
Affiliation(s)
- Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Anand K. Thotakura
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Alla Lisok
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Zirui Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Vanessa F. Merino
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Santosh Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
| | - Mark C. Markowski
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Yasser Ged
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Christian P. Pavlovich
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Nirmish Singla
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
- Department of Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Lilja B. Solnes
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
| | - Michael A. Gorin
- The Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Martin G. Pomper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Steven P. Rowe
- Department of Radiology, University of North Carolina, Chapel Hill, NC, United States
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center,
Baltimore, MD, United States
| |
Collapse
|
6
|
Kleinendorst SC, Oosterwijk E, Molkenboer-Kuenen J, Frielink C, Franssen GM, Boreel DF, Tamborino G, Gloudemans M, Hendrikx M, Kroon D, Hillen J, Bussink J, Muselaers S, Mulders P, Konijnenberg MW, Wheatcroft MP, Twumasi-Boateng K, Heskamp S. Towards effective CAIX-targeted radionuclide and checkpoint inhibition combination therapy for advanced clear cell renal cell carcinoma. Theranostics 2024; 14:3693-3707. [PMID: 38948062 PMCID: PMC11209717 DOI: 10.7150/thno.96944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.
Collapse
Affiliation(s)
- Simone C. Kleinendorst
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke Molkenboer-Kuenen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gerben M. Franssen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daan F. Boreel
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giulia Tamborino
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manon Gloudemans
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel Hendrikx
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dennis Kroon
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jopp Hillen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stijn Muselaers
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Mulders
- Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark W. Konijnenberg
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
Jeon D, Hill E, Moseman JE, McNeel DG. Combining toll-like receptor agonists with immune checkpoint blockade affects antitumor vaccine efficacy. J Immunother Cancer 2024; 12:e008799. [PMID: 38702146 PMCID: PMC11086196 DOI: 10.1136/jitc-2024-008799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND T cell checkpoint receptors are expressed when T cells are activated, and modulation of the expression or signaling of these receptors can alter the function of T cells and their antitumor efficacy. We previously found that T cells activated with cognate antigen had increases in the expression of PD-1, and this was attenuated in the presence of multiple toll-like receptor (TLR) agonists, notably TLR3 plus TLR9. In the current report, we sought to investigate whether combining TLR agonists with immune checkpoint blockade can further augment vaccine-mediated T cell antitumor immunity in murine tumor models. METHODS TLR agonists (TLR3 plus TLR9) and immune checkpoint inhibitors (antibodies targeting PD-1, CTLA-4, LAG-3, TIM-3 or VISTA) were combined and delivered with vaccines or vaccine-activated CD8+T cells to E.G7-OVA or MyC-CaP tumor-bearing mice. Tumors were assessed for growth and then collected and analyzed by flow cytometry. RESULTS Immunization of E.G7-OVA tumor-bearing mice with SIINFEKL peptide vaccine, coadministered with TLR agonists and αCTLA-4, demonstrated greater antitumor efficacy than immunization with TLR agonists or αCTLA-4 alone. Conversely, the antitumor efficacy was abrogated when vaccine and TLR agonists were combined with αPD-1. TLR agonists suppressed PD-1 expression on regulatory T cells (Tregs) and activated this population. Depletion of Tregs in tumor-bearing mice led to greater antitumor efficacy of this combination therapy, even in the presence of αPD-1. Combining vaccination with TLR agonists and αCTLA-4 or αLAG-3 showed greater antitumor than with combinations with αTIM-3 or αVISTA. CONCLUSION The combination of TLR agonists and αCTLA-4 or αLAG-3 can further improve the efficacy of a cancer vaccine, an effect not observed using αPD-1 due to activation of Tregs when αPD-1 was combined with TLR3 and TLR9 agonists. These data suggest that optimal combinations of TLR agonists and immune checkpoint blockade may improve the efficacy of human anticancer vaccines.
Collapse
Affiliation(s)
- Donghwan Jeon
- Cancer Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ethan Hill
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jena E Moseman
- Cancer Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Muralidhar A, Hernandez R, Morris ZS, Comas Rojas H, Bio Idrissou M, Weichert JP, McNeel DG. Myeloid-derived suppressor cells attenuate the antitumor efficacy of radiopharmaceutical therapy using 90Y-NM600 in combination with androgen deprivation therapy in murine prostate tumors. J Immunother Cancer 2024; 12:e008760. [PMID: 38663936 PMCID: PMC11043705 DOI: 10.1136/jitc-2023-008760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
RATIONALE Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.
Collapse
Affiliation(s)
| | | | - Zachary S Morris
- Human Oncology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hansel Comas Rojas
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Shea AG, Idrissou MB, Torres AI, Chen T, Hernandez R, Morris ZS, Sodji QH. Immunological effects of radiopharmaceutical therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1331364. [PMID: 39355211 PMCID: PMC11440989 DOI: 10.3389/fnume.2024.1331364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 10/03/2024]
Abstract
Radiation therapy (RT) is a pillar of cancer therapy used by more than half of all cancer patients. Clinically, RT is mostly delivered as external beam radiation therapy (EBRT). However, the scope of EBRT is limited in the metastatic setting, where all sites of disease need to be irradiated. Such a limitation is attributed to radiation-induced toxicities, for example on bone marrow and hematologic toxicities, resulting from a large EBRT field. Radiopharmaceutical therapy (RPT) has emerged as an alternative to EBRT for the irradiation of all sites of metastatic disease. While RPT can reduce tumor burden, it can also impact the immune system and anti-tumor immunity. Understanding these effects is crucial for predicting and managing treatment-related hematological toxicities and optimizing their integration with other therapeutic modalities, such as immunotherapies. Here, we review the immunomodulatory effects of α- and β-particle emitter-based RPT on various immune cell lines, such as CD8+ and CD4+ T cells, natural killer (NK) cells, and regulatory T (Treg) cells. We briefly discuss Auger electron-emitter (AEE)-based RPT, and finally, we highlight the combination of RPT with immune checkpoint inhibitors, which may offer potential therapeutic synergies for patients with metastatic cancers.
Collapse
Affiliation(s)
- Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Ana Isabel Torres
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tessa Chen
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Reiner Hernandez
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Quaovi H. Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Pouget JP, Chan TA, Galluzzi L, Constanzo J. Radiopharmaceuticals as combinatorial partners for immune checkpoint inhibitors. Trends Cancer 2023; 9:968-981. [PMID: 37612188 PMCID: PMC11311210 DOI: 10.1016/j.trecan.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of multiple cancer types. However, only a fraction of patients with cancer responds to ICIs employed as stand-alone therapeutics, calling for the development of safe and effective combinatorial regimens to extend the benefits of ICIs to a larger patient population. In addition to exhibiting a good safety and efficacy profile, targeted radionuclide therapy (TRT) with radiopharmaceuticals that specifically accumulate in the tumor microenvironment has been associated with promising immunostimulatory effects that (at least in preclinical cancer models) provide a robust platform for the development of TRT/ICI combinations. We discuss preclinical and clinical findings suggesting that TRT stands out as a promising partner for the development of safe and efficient combinatorial regimens involving ICIs.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France.
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Centre, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
11
|
Alati S, Singh R, Pomper MG, Rowe SP, Banerjee SR. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin Nucl Med 2023; 53:663-686. [PMID: 37468417 DOI: 10.1053/j.semnuclmed.2023.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men worldwide. Among the various treatment options, radiopharmaceutical therapy has shown notable success in metastatic, castration-resistant disease. Radiopharmaceutical therapy is a systemic approach that delivers cytotoxic radiation doses precisely to the malignant tumors and/or tumor microenvironment. Therapeutic radiopharmaceuticals are composed of a therapeutic radionuclide and a high-affinity, tumor-targeting carrier molecule. Therapeutic radionuclides used in preclinical prostate cancer studies are primarily α-, β--, or Auger-electron-emitting radiometals or radiohalogens. Monoclonal antibodies, antibody-derived fragments, peptides, and small molecules are frequently used as tumor-targeting molecules. Over the years, several important membrane-associated proteases and receptors have been identified, validated, and subsequently used for preclinical radiotherapeutic development for prostate cancer. Prostate-specific membrane antigen (PSMA) is the most well-studied prostate cancer-associated protease in preclinical literature. PSMA-targeting radiotherapeutic agents are being investigated using high-affinity antibody- and small-molecule-based agents for safety and efficacy. Early generations of such agents were developed simply by replacing radionuclides of the imaging agents with therapeutic ones. Later, extensive structure-activity relationship studies were conducted to address the safety and efficacy issues obtained from initial patient data. Recent regulatory approval of the 177Lu-labeled low-molecular-weight agent, 177Lu-PSMA-617, is a significant accomplishment. Current preclinical experiments are focused on the structural modification of 177Lu-PSMA-617 and relevant investigational agents to increase tumor targeting and reduce off-target binding and toxicity in healthy organs. While lutetium-177 (177Lu) remains the most widely used radionuclide, radiolabeled analogs with iodine-131 (128I), yttrium-90 (89Y), copper-67 (67Cu), and terbium-161 (161Tb) have been evaluated as potential alternatives in recent years. In addition, agents carrying the α-particle-emitting radiohalogen, astatine-211 (211At), or radiometals, actinium-225 (225Ac), lead-212 (212Pb), radium-223 (223Ra), and thorium-227 (227Th), have been increasingly investigated in preclinical research. Besides PSMA-based radiotherapeutics, other prominent prostate cancer-related proteases, for example, human kallikrein peptidases (HK2 and HK3), have been explored using monoclonal-antibody-(mAb)-based targeting platforms. Several promising mAbs targeting receptors overexpressed on the different stages of prostate cancer have also been developed for radiopharmaceutical therapy, for example, Delta-like ligand 3 (DLL-3), CD46, and CUB domain-containing protein 1 (CDCP1). Progress is also being made using peptide-based targeting platforms for the gastrin-releasing peptide receptor (GRPR), a well-established membrane-associated receptor expressed in localized and metastatic prostate cancers. Furthermore, mechanism-driven combination therapies appear to be a burgeoning area in the context of preclinical prostate cancer radiotherapeutics. Here, we review the current developments related to the preclinical radiopharmaceutical therapy of prostate cancer. These are summarized in two major topics: (1) therapeutic radionuclides and (2) tumor-targeting approaches using monoclonal antibodies, small molecules, and peptides.
Collapse
Affiliation(s)
- Suresh Alati
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Rajan Singh
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD.
| |
Collapse
|
12
|
Muralidhar A, Potluri HK, Jaiswal T, McNeel DG. Targeted Radiation and Immune Therapies-Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics 2023; 15:252. [PMID: 36678880 PMCID: PMC9863141 DOI: 10.3390/pharmaceutics15010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Prostate cancer is the most diagnosed malignancy in men in the United States and the second leading cause of cancer-related death. For localized disease, radiation therapy is a standard treatment that is often curative. For metastatic disease, radiation therapy has been primarily used for palliation, however, several newer systemic radiation therapies have been demonstrated to significantly improve patient outcomes and improve survival. In particular, several targeted radionuclide therapies have been approved for the treatment of advanced-stage cancer, including strontium-89, samarium-153, and radium-223 for bone-metastatic disease, and lutetium-177-labeled PSMA-617 for patients with prostate-specific membrane antigen (PSMA)-expressing metastatic castration-resistant prostate cancer (mCRPC). Contrarily, immune-based treatments have generally demonstrated little activity in advanced prostate cancer, with the exception of the autologous cellular vaccine, sipuleucel-T. This has been attributed to the presence of an immune-suppressive prostate cancer microenvironment. The ability of radiation therapy to not only eradicate tumor cells but also potentially other immune-regulatory cells within the tumor immune microenvironment suggests that targeted radionuclide therapies may be well poised to combine with immune-targeted therapies to eliminate prostate cancer metastases more effectively. This review provides an overview of the recent advances of targeted radiation agents currently approved for prostate cancer, and those being investigated in combination with immunotherapy, and discusses the challenges as well as the opportunities in this field.
Collapse
Affiliation(s)
- Anusha Muralidhar
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Hemanth K. Potluri
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Tanya Jaiswal
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Douglas G. McNeel
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
- 7007 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
13
|
Kerr CP, Grudzinski JJ, Nguyen TP, Hernandez R, Weichert JP, Morris ZS. Developments in Combining Targeted Radionuclide Therapies and Immunotherapies for Cancer Treatment. Pharmaceutics 2022; 15:128. [PMID: 36678756 PMCID: PMC9865370 DOI: 10.3390/pharmaceutics15010128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Targeted radionuclide therapy (TRT) and immunotherapy are rapidly growing classes of cancer treatments. Basic, translational, and clinical research are now investigating therapeutic combinations of these agents. In comparison to external beam radiation therapy (EBRT), TRT has the unique advantage of treating all disease sites following intravenous injection and selective tumor uptake and retention-a particularly beneficial property in metastatic disease settings. The therapeutic value of combining radiation therapy with immune checkpoint blockade to treat metastases has been demonstrated in preclinical studies, whereas results of clinical studies have been mixed. Several clinical trials combining TRT and immune checkpoint blockade have been initiated based on preclinical studies combining these with EBRT and/or TRT. Despite the interest in translation of TRT and immunotherapy combinations, many questions remain surrounding the mechanisms of interaction and the optimal approach to clinical implementation of these combinations. This review highlights the mechanisms of interaction between anti-tumor immunity and radiation therapy and the status of basic and translational research and clinical trials investigating combinations of TRT and immunotherapies.
Collapse
Affiliation(s)
- Caroline P. Kerr
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Joseph J. Grudzinski
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Thanh Phuong Nguyen
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jamey P. Weichert
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary S. Morris
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|