1
|
von Witzleben A, Grages A, Thomas J, Ezić J, Brunner C, Schuler PJ, Kraus JM, Kestler HA, Vahl JM, Doescher J, King EV, Ottensmeier CH, Hoffmann TK, Laban S. Immune checkpoint expression on tumor-infiltrating lymphocytes (TIL) is dependent on HPV status in oropharyngeal carcinoma (OPSCC) - A single-cell RNA sequencing analysis. Oral Oncol 2024; 159:107107. [PMID: 39549431 DOI: 10.1016/j.oraloncology.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
INTRODUCTION A substantial proportion of head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), is associated with human papillomavirus (HPV), resulting in distinct molecular phenotypes. In this study, we investigated differential immune checkpoint molecule (ICM) expression by HPV status using RNA sequencing data to identify additional ICM targets that may complement anti-PD1 antibodies. MATERIAL AND METHODS RNA sequencing was performed on 51 OPSCC cases and validated using the TCGA HNSCC dataset. Unsupervised clustering and differential gene expression analyses in R were conducted based on HPV status. Additionally, a published single-cell RNA sequencing (scRNA) dataset of tumor-infiltrating lymphocytes (TIL) and peripheral immune cells (PBMC) (GSE139324) was analyzed with a Seurat pipeline grouped by HPV status. RESULTS Our study identified a significant upregulation of all examined ICM in HPV-positive OPSCC through bulk RNA sequencing, validated by the TCGA cohort. Unsupervised clustering revealed a strong association between HPV-positive/-negative and high/low ICM expression cases respectively, indicating overlap between ICM and HPV status. In scRNA analysis, CD27, PD-1, OX-40, and BTLA were significantly more highly expressed on TILs of HPV-positive OPSCC. Conversely, VSIR was increased in PBMC and TILs of HPV-negative OPSCC, while LAG3 expression on PBMC was reduced in HPV-negative OPSCC. CONCLUSION Our study unveils the intricate interplay of ICMs in OPSCC, emphasizing the necessity for personalized therapeutic approaches based on HPV status and immune profiles. The identified ICMs, including PD1, CD27, and CTLA4, are promising candidates for further investigation and may enhance immunotherapeutic interventions in the HPV-dependent treatment strategies for OPSCC.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany.
| | - Ayla Grages
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK
| | - Jasmin Ezić
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany; Core Facility Immune Monitoring, Medical Faculty of Ulm University, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Johann M Kraus
- Institute for Medical Systems Biology, University of Ulm, Germany
| | - Hans A Kestler
- Institute for Medical Systems Biology, University of Ulm, Germany
| | - Julius M Vahl
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Augsburg, Germany
| | - Emma V King
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK; Department of Otorhinolaryngology, Head & Neck Surgery, Poole Hospital, Poole, UK
| | - Christian H Ottensmeier
- Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, UK
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| |
Collapse
|
2
|
Fesneau O, Samson KA, Rosales W, Jones B, Moudgil T, Fox BA, Rajamanickam V, Duhen T. IL-12 drives the expression of the inhibitory receptor NKG2A on human tumor-reactive CD8 T cells. Nat Commun 2024; 15:9988. [PMID: 39557863 PMCID: PMC11574270 DOI: 10.1038/s41467-024-54420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Blockade of NKG2A/HLA-E interaction is a promising strategy to unleash the anti-tumor response. Yet the role of NKG2A+ CD8 T cells in the anti-tumor response and the regulation of NKG2A expression on human tumor-infiltrating T cells are still poorly understood. Here, by performing CITE-seq on T cells derived from head and neck squamous cell carcinoma and colorectal cancer, we show that NKG2A expression is induced on CD8 T cells differentiating into cytotoxic, CD39+CD103+ double positive (DP) cells, a phenotype associated with tumor-reactive T cells. This developmental trajectory leads to TCR repertoire overlap between the NKG2A- and NKG2A+ DP CD8 T cells, suggesting shared antigen specificities. Mechanistically, IL-12 is essential for the expression of NKG2A on CD8 T cells in a CD40/CD40L- dependent manner, in conjunction with TCR stimulation. Our study thus reveals that NKG2A is induced by IL-12 on human tumor-reactive CD8 T cells exposed to a TGF-β-rich environment, highlighting an underappreciated immuno-regulatory feedback loop dependent on IL-12 stimulation.
Collapse
Affiliation(s)
- Olivier Fesneau
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Kimberly A Samson
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Wesley Rosales
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Bretton Jones
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Tarsem Moudgil
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - Thomas Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
3
|
Beckabir W, Zhou M, Lee JS, Vensko SP, Woodcock MG, Wang HH, Wobker SE, Atassi G, Wilkinson AD, Fowler K, Flick LM, Damrauer JS, Harrison MR, McKinnon KP, Rose TL, Milowsky MI, Serody JS, Kim WY, Vincent BG. Immune features are associated with response to neoadjuvant chemo-immunotherapy for muscle-invasive bladder cancer. Nat Commun 2024; 15:4448. [PMID: 38789460 PMCID: PMC11126571 DOI: 10.1038/s41467-024-48480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Neoadjuvant cisplatin-based chemotherapy is standard of care for muscle-invasive bladder cancer (MIBC). Immune checkpoint inhibition (ICI) alone, and ICI in combination with chemotherapy, have demonstrated promising pathologic response (
Collapse
Affiliation(s)
- Wolfgang Beckabir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Seok Lee
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Steven P Vensko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hsing-Hui Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alec D Wilkinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Fowler
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah M Flick
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Harrison
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Karen P McKinnon
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA
| | - Tracy L Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA.
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, UNC School of Medicine, Chapel Hill, NC, USA.
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Computational Medicine Program, UNC School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Wang L, Zhang J, Zhang W, Zheng M, Guo H, Pan X, Li W, Yang B, Ding L. The inhibitory effect of adenosine on tumor adaptive immunity and intervention strategies. Acta Pharm Sin B 2024; 14:1951-1964. [PMID: 38799637 PMCID: PMC11119508 DOI: 10.1016/j.apsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024] Open
Abstract
Adenosine (Ado) is significantly elevated in the tumor microenvironment (TME) compared to normal tissues. It binds to adenosine receptors (AdoRs), suppressing tumor antigen presentation and immune cell activation, thereby inhibiting tumor adaptive immunity. Ado downregulates major histocompatibility complex II (MHC II) and co-stimulatory factors on dendritic cells (DCs) and macrophages, inhibiting antigen presentation. It suppresses anti-tumor cytokine secretion and T cell activation by disrupting T cell receptor (TCR) binding and signal transduction. Ado also inhibits chemokine secretion and KCa3.1 channel activity, impeding effector T cell trafficking and infiltration into the tumor site. Furthermore, Ado diminishes T cell cytotoxicity against tumor cells by promoting immune-suppressive cytokine secretion, upregulating immune checkpoint proteins, and enhancing immune-suppressive cell activity. Reducing Ado production in the TME can significantly enhance anti-tumor immune responses and improve the efficacy of other immunotherapies. Preclinical and clinical development of inhibitors targeting Ado generation or AdoRs is underway. Therefore, this article will summarize and analyze the inhibitory effects and molecular mechanisms of Ado on tumor adaptive immunity, as well as provide an overview of the latest advancements in targeting Ado pathways in anti-tumor immune responses.
Collapse
Affiliation(s)
- Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| |
Collapse
|
5
|
Gorchs L, Fernández-Moro C, Asplund E, Oosthoek M, Solders M, Ghorbani P, Sparrelid E, Rangelova E, Löhr MJ, Kaipe H. Exhausted Tumor-infiltrating CD39+CD103+ CD8+ T Cells Unveil Potential for Increased Survival in Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:460-474. [PMID: 38335302 PMCID: PMC10875982 DOI: 10.1158/2767-9764.crc-23-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In pancreatic ductal adenocarcinoma, the infiltration of CD8+ T cells within the tumor microenvironment correlates with a favorable prognosis. However, a significant proportion of tumor-infiltrating T cells become trapped within the desmoplastic stroma and lack tumor reactivity. Here, we explored different T-cell subsets in pancreatic tumors and adjacent tissues. We identified a subset of CD8+ T cells, double positive (DP) for CD39 and CD103 in pancreatic tumors, which has recently been described to display tumor reactivity in other types of solid tumors. Interestingly, DP CD8+ T cells preferentially accumulated in central tumor tissues compared with paired peripheral tumor and adjacent non-tumor tissues. Consistent with an antigen encounter, DP CD8+ T cells demonstrated higher proliferative rates and displayed an exhausted phenotype, characterized by elevated expression of PD-1 and TIM-3, compared with CD39-CD103- CD8+ T cells. In addition, DP CD8+ T cells exhibited higher expression levels of the tissue trafficking receptors CCR5 and CXCR6, while displaying lower levels of CXCR3 and CXCR4. Importantly, a high proportion of DP CD8+ T cells is associated with increased patient survival. These findings suggest that DP CD8+ T cells with a phenotype reminiscent of that of tumor-reactive T cells are present in pancreatic tumors. The abundance of DP CD8+ T cells could potentially aid in selecting patients for pancreatic cancer immunotherapy trials. SIGNIFICANCE Patients with pancreatic cancer with a high proportion of CD39+CD103+ CD8+ T cells exhibiting a tumor-reactive phenotype have improved survival rates, suggesting their potential utility in selecting candidates for immunotherapy trials.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Fernández-Moro
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Ebba Asplund
- Department of Upper GI, C1:77 Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Marlies Oosthoek
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Solders
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Poya Ghorbani
- Department of Upper GI, C1:77 Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ernesto Sparrelid
- Department of Upper GI, C1:77 Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Surgery, Section for Upper Abdominal Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias J. Löhr
- Department of Upper GI, C1:77 Karolinska Comprehensive Cancer Center, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Sundström P, Hogg S, Quiding Järbrink M, Bexe Lindskog E. Immune cell infiltrates in peritoneal metastases from colorectal cancer. Front Immunol 2024; 15:1347900. [PMID: 38384469 PMCID: PMC10879551 DOI: 10.3389/fimmu.2024.1347900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Background The presence of peritoneal metastases (PMs) in patients with colorectal cancer (CRC) confers a poor prognosis and only a minority of patients will benefit from the available treatment options. In primary CRC tumors, it is well established that a high infiltration of CD8+ effector T cells correlates to a favorable patient outcome. In contrast, the immune response induced in PMs from CRC and how it relates to patient survival is still unknown. In this study, we characterized the immune infiltrates and the distribution of immune checkpoint receptors on T cells from PMs from CRC, in order to evaluate the potential benefit of checkpoint blockade immunotherapy for this patient group. Methods Surgically resected PM tissue from CRC patients (n=22) and synchronous primary tumors (n=8) were processed fresh to single cell suspensions using enzymatic digestion. Surface markers and cytokine production were analyzed using flow cytometry. Results T cells dominated the leukocyte infiltrate in the PM specimens analyzed, followed by monocytes and B cells. Comparing two different PMs from the same patient usually showed a similar distribution of immune cells in both samples. The T cell infiltrate was characterized by an activated phenotype and markers of exhaustion were enriched compared with matched circulating T cells, in particular the checkpoint receptors PD-1 and TIGIT. In functional assays most cytotoxic and helper T cells produced INF-γ and TNF following polyclonal stimulation, while few produced IL-17, indicating a dominance of Th1-type responses in the microenvironment of PMs. Conclusion Immune cells were present in all PMs from CRC examined. Although infiltrating T cells express markers of exhaustion, they produce Th1-type cytokines when stimulated. These results indicate the possibility to augment tumor-specific immune responses within PMs using checkpoint blockade inhibitors.
Collapse
Affiliation(s)
- Patrik Sundström
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Stephen Hogg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Marianne Quiding Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Elinor Bexe Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
7
|
Jiang F, Mao M, Jiang S, Jiao Y, Cao D, Xiang Y. PD-1 and TIGIT coexpressing CD8 + CD103 + tissue-resident memory cells in endometrial cancer as potential targets for immunotherapy. Int Immunopharmacol 2024; 127:111381. [PMID: 38150880 DOI: 10.1016/j.intimp.2023.111381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Immunotherapy has shown promise in treating various cancers; however, its efficacy in endometrial cancer (EC) remains suboptimal owing to the complex dynamics of the tumour immune microenvironment. This study focuses on exploring the potential of targeting the programmed cell death protein 1 gene (PD-1) and the T cell Immunoreceptor with Ig and ITIM domains gene (TIGIT) coexpressing tissue-resident memory cells in EC. METHODS A comprehensive approach, utilizing RNA sequencing, single-cell RNA sequencing, mass cytometry, and flow cytometry, was employed to analyse the expression patterns of PD-1 and TIGIT in the EC tumor environment and to characterize the phenotypic properties of tumor-infiltrating lymphocytes (TILs), particularly tissue-resident memory (TRM) cells. Additionally, in vitro cell experiments were conducted to assess the functional impact of PD-1 and TIGIT blockade on T-cell activity. RESULTS Our analysis identified a significant co-expression of PD-1 and TIGIT in TRM cells within the EC tumor microenvironment. These TRM cells displayed an exhausted phenotype with impaired cytotoxicity, enhanced proliferative capacity, and diminished cytotoxic activity. In vitro T-cell assays showed that a dual blockade of PD-1 and TIGIT more effectively restored T-cell functionality compared to single blockade, suggesting enhanced therapeutic potential. CONCLUSIONS TRM cells co-expressing PD-1 and TIGIT represent potential targets for EC immunotherapy. Dual immune checkpoint blockade targeting PD-1 and TIGIT may offer an effective therapeutic strategy for EC, providing valuable insights for the development of immunotherapeutic approaches.
Collapse
Affiliation(s)
- Fang Jiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Mingyi Mao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Shiyang Jiang
- Ovarian Cancer Program, Department of Gynaecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuhao Jiao
- Department of Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Dongyan Cao
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China
| | - Yang Xiang
- Department of Obstetrics and Gynaecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynaecologic Diseases, Beijing, China.
| |
Collapse
|
8
|
Chen G, Kong D, Lin Y. Neo-Antigen-Reactive T Cells Immunotherapy for Colorectal Cancer: A More Personalized Cancer Therapy Approach. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200186. [PMID: 37970536 PMCID: PMC10632666 DOI: 10.1002/gch2.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/09/2023] [Indexed: 11/17/2023]
Abstract
Colorectal cancer (CRC) is the second most common malignancy in women and the third most frequent cancer in men. Evidence has revealed that the survival of patients with metastatic CRC is very low, between one and three years. Neoantigens are known proteins encoded by mutations in tumor cells. It is theorized that recognizing neoantigens by T cells leads to T cell activation and further antitumor responses. Neoantigen-reactive T cells (NRTs) are designed against the mentioned neoantigens expressed by tumor cells. NRTs selectively kill tumor cells without damage to non-cancerous cells. Identifying patient-specific and high immunogen neoantigens is important in NRT immunotherapy of patients with CRC. However, the main challenges are the side effects and preparation of NRTs, as well as the effectiveness of these cells in vivo. This review summarized the properties of neoantigens as well as the preparation and therapeutic outcomes of NRTs for the treatment of CRC.
Collapse
Affiliation(s)
- Guan‐Liang Chen
- Department of Gastroenterology SurgeryAffiliated Hospital of Shaoxing UniversityShaoxing312000China
| | - De‐Xia Kong
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| | - Yan Lin
- Center for General Practice MedicineDepartment of GastroenterologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeNo. 158 Shangtang RoadHangzhouZhejiang310014China
| |
Collapse
|
9
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
10
|
Balzeau J, Ravindran A, Wang X, Maisuria J, Lucchesi A, Yao H, Matsueda S. Successful ex vivo expansion of tumor infiltrating lymphocytes with systemic chemotherapy prior to surgical resection. Cancer Immunol Immunother 2023; 72:3377-3385. [PMID: 37468658 PMCID: PMC10992235 DOI: 10.1007/s00262-023-03500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Tumor infiltrating lymphocytes (TIL) have demonstrated efficacious clinical outcomes for many patients with various types of solid cancers, including melanoma, gastrointestinal cancer, lung cancer, and head and neck cancer. Currently, the majority of clinical trials require that patients did not receive systemic therapy right before tumor tissue resection to avoid the interference of chemotherapy in the ex vivo TIL expansion. The primary disadvantage of this strategy is limiting the accessibility of TIL therapy for many eligible cancer patients. Over the past decade, substantial progress has been made for ex vivo expansion technologies in T cells. In this study, we investigated the possibility of enrolling patients who underwent chemotherapy prior to surgical resection. We collected seventeen tumor tissues from treatment naive cases, and five from cases that underwent chemotherapies. Cancer indications enrolled in this study were colorectal and lung cancers from both primary and metastatic sites, such as liver and brain. TILs from these tumors were expanded ex vivo to 2.1E8 (total viable lymphocytes counts) on average, with an overall success rate of 90.9%. Subsequently, TIL phenotypes and cytokine production were analyzed using flow cytometry and ELISA, respectively. We demonstrated functional TIL expansion from tumor tissues despite chemotherapy prior to surgical resection. We observed no significant phenotypic or functional differences between groups with and without chemotherapy. TIL expansion rate and characteristics were similar regardless of chemotherapy prior to resection, thereby providing a possibility to recruit patients with the most recent chemotherapy history in TIL therapy trials.
Collapse
Affiliation(s)
| | | | - Xin Wang
- Fresh Wind Biotechnologies China Inc., Tianjin, China
| | | | - Anna Lucchesi
- Fresh Wind Biotechnologies USA Inc., Houston, TX, USA
| | - Hui Yao
- Fresh Wind Biotechnologies USA Inc., Houston, TX, USA
| | | |
Collapse
|
11
|
Zhang Q, Liu Y, Wang X, Zhang C, Hou M, Liu Y. Integration of single-cell RNA sequencing and bulk RNA transcriptome sequencing reveals a heterogeneous immune landscape and pivotal cell subpopulations associated with colorectal cancer prognosis. Front Immunol 2023; 14:1184167. [PMID: 37675100 PMCID: PMC10477986 DOI: 10.3389/fimmu.2023.1184167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a highly heterogeneous cancer. The molecular and cellular characteristics differ between the colon and rectal cancer type due to the differences in their anatomical location and pathological properties. With the advent of single-cell sequencing, it has become possible to analyze inter- and intra-tumoral tissue heterogeneities. Methods A comprehensive CRC immune atlas, comprising 62,398 immune cells, was re-structured into 33 immune cell clusters at the single-cell level. Further, the immune cell lineage heterogeneity of colon, rectal, and paracancerous tissues was explored. Simultaneously, we characterized the TAM phenotypes and analyzed the transcriptomic factor regulatory network of each macrophage subset using SCENIC. In addition, monocle2 was used to elucidate the B cell developmental trajectory. The crosstalk between immune cells was explored using CellChat and the patterns of incoming and outgoing signals within the overall immune cell population were identified. Afterwards, the bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) were combined and the relative infiltration abundance of the identified subpopulations was analyzed using CIBERSORT. Moreover, cell composition patterns could be classified into five tumor microenvironment (TME) subtypes by employing a consistent non-negative matrix algorithm. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells in the tumor microenvironment were analyzed by multiplex immunohistochemistry. Results In the T cell lineage, we found that CXCL13+T cells were more widely distributed in colorectal cancer tissues, and the proportion of infiltration was increased. In addition, Th17 was found accounted for the highest proportion in CD39+CD101+PD1+T cells. Mover, Ma1-SPP1 showed the characteristics of M2 phenotypes and displayed an increased proportion in tumor tissues, which may promote angiogenesis. Plasma cells (PCs) displayed a significantly heterogeneous distribution in tumor as well as normal tissues. Specifically, the IgA+ PC population could be shown to be decreased in colorectal tumor tissues whereas the IgG+ PC one was enriched. In addition, information flow mediated by SPP1 and CD44, regulate signaling pathways of tumor progression. Among the five TME subtypes, the TME-1 subtype displayed a markedly reduced proportion of T-cell infiltration with the highest proportion of macrophages which was correlated to the worst prognosis. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells were observed in the CD44 enriched region. Discussion The heterogeneity distribution and phenotype of immune cells were analyzed in colon cancer and rectal cancer at the single-cell level. Further, the prognostic role of major tumor-infiltrating lymphocytes and TME subtypes in CRC was evaluated by integrating bulk RNA. These findings provide novel insight into the immunotherapy of CRC.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Yang Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xinyu Wang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Koppensteiner L, Mathieson L, Pattle S, Dorward DA, O'Connor R, Akram AR. Location of CD39 + T cell subpopulations within tumors predict differential outcomes in non-small cell lung cancer. J Immunother Cancer 2023; 11:e006770. [PMID: 37648263 PMCID: PMC10471883 DOI: 10.1136/jitc-2023-006770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 09/01/2023] Open
Abstract
PURPOSE An improved mechanistic understanding of immunosuppressive pathways in non-small cell lung cancer (NSCLC) is important to develop novel diagnostic and therapeutic approaches. Here, we investigate the prognostic significance of the ectonucleotidases CD39 and CD73 in NSCLC. EXPERIMENTAL DESIGN The expression and localization of CD39, CD73 and CD103 was digitally quantified in a cohort of 162 early treatment naïve NSCLC patients using multiplex-immunofluorescence and related to patient outcome. Expression among different cell-populations was assessed via flow cytometry. Targeted RNA-Seq was performed on CD4+ and CD8+ T cells from digested NSCLC tumor tissue and single-cell RNA-Seq data was analyzed to investigate the functional significance of CD39+ T cell populations. RESULTS We demonstrate that flow cytometry of early untreated NSCLC patients shows an upregulation of CD39 expression in the tumor tissue among natural killer (NK) cells, fibroblasts and T cells. CD73 expression is mainly found among fibroblasts and Epcam+cells in the tumor tissue. Multiplex Immunofluorescence in a cohort of 162 early untreated NSCLC patients demonstrates that CD39 expression is mainly localized in the tumor stroma while CD73 expression is equally distributed between tumor nest and stroma, and high expression of CD39 and CD73 in the tumor stroma is associated with poor recurrence-free survival (RFS) at 5 years. Additionally, we find that CD8+T cells located in the tumor nest express CD103 and the density of CD39+CD103+CD8+ T cells in the tumor nest predicts improved RFS at 5 years. Targeted RNA-Seq shows that the tumor microenvironment of NSCLC upregulates regulatory pathways in CD4+ T cells and exhaustion in CD8+ T cells, and analysis of a single cell RNA sequencing dataset shows that CD39+CD4+ cells are enriched in Treg signature gene-sets, and CD39+CD103+ cytotoxic T lymphocyte show gene signatures indicative of an exhausted cytotoxic phenotype with upregulated expression of CXCL13. CONCLUSIONS Knowledge of patterns of distribution and location are required to understand the prognostic impact of CD39+ T cell populations in NSCLC. This study provides an improved understanding of spatial and functional characteristics of CD39+ T cells and their significance to patient outcome.
Collapse
Affiliation(s)
| | - Layla Mathieson
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Samuel Pattle
- Department of Pathology, Royal Infirmary, Edinburgh, UK
| | | | - Richard O'Connor
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Chandiran K, Cauley LS. The diverse effects of transforming growth factor-β and SMAD signaling pathways during the CTL response. Front Immunol 2023; 14:1199671. [PMID: 37426662 PMCID: PMC10327426 DOI: 10.3389/fimmu.2023.1199671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an important role in defense against infections with intracellular pathogens and anti-tumor immunity. Efficient migration is required to locate and destroy infected cells in different regions of the body. CTLs accomplish this task by differentiating into specialized subsets of effector and memory CD8 T cells that traffic to different tissues. Transforming growth factor-beta (TGFβ) belongs to a large family of growth factors that elicit diverse cellular responses via canonical and non-canonical signaling pathways. Canonical SMAD-dependent signaling pathways are required to coordinate changes in homing receptor expression as CTLs traffic between different tissues. In this review, we discuss the various ways that TGFβ and SMAD-dependent signaling pathways shape the cellular immune response and transcriptional programming of newly activated CTLs. As protective immunity requires access to the circulation, emphasis is placed on cellular processes that are required for cell-migration through the vasculature.
Collapse
Affiliation(s)
- Karthik Chandiran
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Linda S. Cauley
- Department of Immunology, UCONN Health, Farmington, CT, United States
| |
Collapse
|