1
|
Ashok S, Ramachandra Rao S. Updates on protein-prenylation and associated inherited retinopathies. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410874. [PMID: 39026984 PMCID: PMC11254824 DOI: 10.3389/fopht.2024.1410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Membrane-anchored proteins play critical roles in cell signaling, cellular architecture, and membrane biology. Hydrophilic proteins are post-translationally modified by a diverse range of lipid molecules such as phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their partition and anchorage to the cell membrane. In this review article, we discuss the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene conjugation to proteins, and the functions of prenylated proteins in the neural retina. Recent discovery of novel prenyltransferases, prenylated protein chaperones, non-canonical prenylation-target motifs, and reversible prenylation is expected to increase the number of inherited systemic and blinding diseases with aberrant protein prenylation. Recent important investigations have also demonstrated the role of several unexpected regulators (such as protein charge, sequence/protein-chaperone interaction, light exposure history) in the photoreceptor trafficking of prenylated proteins. Technical advances in the investigation of the prenylated proteome and its application in vision research are discussed. Clinical updates and technical insights into known and putative prenylation-associated retinopathies are provided herein. Characterization of non-canonical prenylation mechanisms in the retina and retina-specific prenylated proteome is fundamental to the understanding of the pathogenesis of protein prenylation-associated inherited blinding disorders.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Sriganesh Ramachandra Rao
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Research Service, VA Western New York Healthcare System, Buffalo, NY, United States
| |
Collapse
|
2
|
Vasović DD, Ivković S, Živanović A, Major T, Milašin JM, Nikolić NS, Simonović JM, Šutulović N, Hrnčić D, Stanojlović O, Vesković M, Rašić DM, Mladenović D. Reduced light exposure mitigates streptozotocin-induced vascular changes and gliosis in diabetic retina by an anti-inflammatory effect and increased retinal cholesterol turnover. Chem Biol Interact 2024; 394:110996. [PMID: 38593908 DOI: 10.1016/j.cbi.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Diabetic retinopathy is not cured efficiently and changes of lifestyle measures may delay early retinal injury in diabetes. The aim of our study was to investigate the effects of reduced daily light exposure on retinal vascular changes in streptozotocin (STZ)-induced model of DM with emphasis on inflammation, Aqp4 expression, visual cycle and cholesterol metabolism-related gene expression in rat retina and RPE. Male Wistar rats were divided into the following groups: 1. control; 2. diabetic group (DM) treated with streptozotocin (100 mg/kg); 3. group exposed to light/dark cycle 6/18 h (6/18); 4. diabetic group exposed to light/dark cycle 6/18 h (DM+6/18). Retinal vascular abnormalities were estimated based on lectin staining, while the expression of genes involved in the visual cycle, cholesterol metabolism, and inflammation was determined by qRT-PCR. Reduced light exposure alleviated vasculopathy, gliosis and the expression of IL-1 and TNF-α in the retina with increased perivascular Aqp4 expression. The expression of genes involved in visual cycle and cholesterol metabolism was significantly up-regulated in RPE in DM+6/18 vs. DM group. In the retina only the expression of APOE was significantly higher in DM+6/18 vs. DM group. Reduced light exposure mitigates vascular changes and gliosis in DM via its anti-inflammatory effect, increased retinal cholesterol turnover and perivascular Aqp4 expression.
Collapse
Affiliation(s)
- Dolika D Vasović
- Eye Hospital, University Clinical Centre of Serbia, 11000, Belgrade, Serbia
| | - Sanja Ivković
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Ana Živanović
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Tamara Major
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena M Milašin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Nađa S Nikolić
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena M Simonović
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Nikola Šutulović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dragan Hrnčić
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Olivera Stanojlović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dejan M Rašić
- Eye Hospital, University Clinical Centre of Serbia, 11000, Belgrade, Serbia; School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
3
|
Masek M, Bachmann-Gagescu R. Control of protein and lipid composition of photoreceptor outer segments-Implications for retinal disease. Curr Top Dev Biol 2023; 155:165-225. [PMID: 38043951 DOI: 10.1016/bs.ctdb.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Vision is arguably our most important sense, and its loss brings substantial limitations to daily life for affected individuals. Light is perceived in retinal photoreceptors (PRs), which are highly specialized neurons subdivided into several compartments with distinct functions. The outer segments (OSs) of photoreceptors represent highly specialized primary ciliary compartments hosting the phototransduction cascade, which transforms incoming light into a neuronal signal. Retinal disease can result from various pathomechanisms originating in distinct subcompartments of the PR cell, or in the retinal pigment epithelium which supports the PRs. Dysfunction of primary cilia causes human disorders known as "ciliopathies", in which retinal disease is a common feature. This chapter focuses on PR OSs, discussing the mechanisms controlling their complex structure and composition. A sequence of tightly regulated sorting and trafficking events, both upstream of and within this ciliary compartment, ensures the establishment and maintenance of the adequate proteome and lipidome required for signaling in response to light. We discuss in particular our current understanding of the role of ciliopathy proteins involved in multi-protein complexes at the ciliary transition zone (CC2D2A) or BBSome (BBS1) and how their dysfunction causes retinal disease. While the loss of CC2D2A prevents the fusion of vesicles and delivery of the photopigment rhodopsin to the ciliary base, leading to early OS ultrastructural defects, BBS1 deficiency results in precocious accumulation of cholesterol in mutant OSs and decreased visual function preceding morphological changes. These distinct pathomechanisms underscore the central role of ciliary proteins involved in multiple processes controlling OS protein and lipid composition.
Collapse
Affiliation(s)
- Markus Masek
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ruxandra Bachmann-Gagescu
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; University Research Priority Program AdaBD, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Faber S, Letteboer SJF, Junger K, Butcher R, Tammana TVS, van Beersum SEC, Ueffing M, Collin RWJ, Liu Q, Boldt K, Roepman R. PDE6D Mediates Trafficking of Prenylated Proteins NIM1K and UBL3 to Primary Cilia. Cells 2023; 12:cells12020312. [PMID: 36672247 PMCID: PMC9857354 DOI: 10.3390/cells12020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Mutations in PDE6D impair the function of its cognate protein, phosphodiesterase 6D (PDE6D), in prenylated protein trafficking towards the ciliary membrane, causing the human ciliopathy Joubert Syndrome (JBTS22) and retinal degeneration in mice. In this study, we purified the prenylated cargo of PDE6D by affinity proteomics to gain insight into PDE6D-associated disease mechanisms. By this approach, we have identified a specific set of PDE6D-interacting proteins that are involved in photoreceptor integrity, GTPase activity, nuclear import, or ubiquitination. Among these interacting proteins, we identified novel ciliary cargo proteins of PDE6D, including FAM219A, serine/threonine-protein kinase NIM1 (NIM1K), and ubiquitin-like protein 3 (UBL3). We show that NIM1K and UBL3 localize inside the cilium in a prenylation-dependent manner. Furthermore, UBL3 also localizes in vesicle-like structures around the base of the cilium. Through affinity proteomics of UBL3, we confirmed its strong interaction with PDE6D and its association with proteins that regulate small extracellular vesicles (sEVs) and ciliogenesis. Moreover, we show that UBL3 localizes in specific photoreceptor cilium compartments in a prenylation-dependent manner. Therefore, we propose that UBL3 may play a role in the sorting of proteins towards the photoreceptor outer segment, further explaining the development of PDE6D-associated retinal degeneration.
Collapse
Affiliation(s)
- Siebren Faber
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stef J. F. Letteboer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Katrin Junger
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Rossano Butcher
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Trinadh V. Satish Tammana
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sylvia E. C. van Beersum
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Rob W. J. Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Qin Liu
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02115, USA
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Center of Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
5
|
Dvaladze A, Tavares E, Di Scipio M, Nimmo G, Grudzinska-Pechhacker MK, Paton T, Tumber A, Li S, Eileen C, Ertl-Wagner B, Mamak E, Hoffmann G, Marshall CR, Haas D, Mayatepek E, Schulze A, Heon E, Vincent A. Deep Intronic Variant in MVK as a Cause for Mevalonic Aciduria Initially Presenting as Non-syndromic Retinitis Pigmentosa. Clin Genet 2022; 102:524-529. [PMID: 35916082 DOI: 10.1111/cge.14207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Non-syndromic retinitis pigmentosa (NSRP) is a clinically and genetically heterogeneous group of disorders characterized by progressive degeneration of the rod and cone photoreceptors, often leading to blindness. The evolving association of syndromic genes to cause NSRP and the increasing role of intronic variants in explaining missing heritability in genetic disorders present challenges in establishing conclusive clinical and genetic diagnoses. This study sought to identify and validate the causative genetic variant(s) in a 13-year-old male initially diagnosed with NSRP. Genome sequencing identified a pathogenic missense variant in MVK [NM_000431.3:c.803T>C (p. Ile268Thr)], in trans with a novel intronic variant predicted to create a new donor splice site (c.768+71C>A). Proband cDNA analysis confirmed the inclusion of the first 68 base pairs of intron 8 that resulted in a frameshift in MVK (r.768_769ins[768+1_768+68]) and significantly reduced the expression of reference transcript (17.6%). Patient re-phenotyping revealed ataxia, cerebellar atrophy, elevated urinary mevalonate and LTE4 , in keeping with mild mevalonic aciduria and associated syndromic retinitis pigmentosa. Leakage of reference transcript likely explains the milder phenotype observed. This is the first association of a deep intronic splice variant to cause MVK-related disorder. This report highlights the importance of variant validation and patient re-phenotyping in establishing accurate diagnosis in the era of genome sequencing.
Collapse
Affiliation(s)
- Anna Dvaladze
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Erika Tavares
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Graeme Nimmo
- Clinical and Metabolic Genetics, HSC, Canada.,Fred A Litwin Family Centre for Genetic Medicine, The University Health Network, Toronto, Canada
| | - Monika K Grudzinska-Pechhacker
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada.,Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| | - Tara Paton
- The Centre for Applied Genomics, HSC, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| | - Shuning Li
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Christabel Eileen
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Birgit Ertl-Wagner
- Division of Neuroradiology, HSC, Canada.,Department of Medical Imaging, University of Toronto, Canada
| | - Eva Mamak
- Department of Psychology, HSC, Canada
| | - Georg Hoffmann
- Neuropaediatrics and Paediatric Metabolic Medicine, University Hospital Heidelberg, Germany
| | | | - Dorothea Haas
- Neuropaediatrics and Paediatric Metabolic Medicine, University Hospital Heidelberg, Germany
| | - Ertan Mayatepek
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University, Dusseldorf, Germany
| | - Andreas Schulze
- Clinical and Metabolic Genetics, HSC, Canada.,Department of Paediatrics, University of Toronto, Canada.,Department of Biochemistry, University of Toronto, Canada
| | - Elise Heon
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada.,Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada.,Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| |
Collapse
|
6
|
Elhani I, Hentgen V, Grateau G, Georgin-Lavialle S. Neurological manifestations in mevalonate kinase deficiency: A systematic review. Mol Genet Metab 2022; 136:85-93. [PMID: 35525811 DOI: 10.1016/j.ymgme.2022.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Mevalonate kinase deficiency (MKD) is a monogenic auto-inflammatory disease. Its manifestations range from partial MKD to mevalonic aciduria (MVA). All patients display a periodic fever, and MVA patients additionally exhibit severe neurological involvement. The objective of this work was to describe neurological manifestations of MKD. METHODS A systematic literature review was performed from January 1990 to January 2022. Forty-five patients from 18 case reports and five cohort studies were included in the analysis. RESULTS In cohort studies, the most-reported manifestations were headaches (41%) and fatigue (31%). Serious involvements including ataxia and developmental delay were described less than 1% of patients but 22-31% of case reports. They consistently appeared in the first years of life. Retinal dystrophy was frequently reported (31%) in case reports. Other manifestations, including uveitis, aseptic meningitis, and stroke remained rare. DISCUSSION Severe neurological manifestations are rare in MKD but are responsible for major functional disabilities. They are present at onset and never appear at follow-up of patients with mild MKD. Conversely, headaches and fatigue are frequent symptoms that should be investigated. Visual examinations should be performed on the appearance of visual symptoms. The efficacy of anti-IL-1β therapy on neurological manifestations should be further investigated.
Collapse
Affiliation(s)
- Inès Elhani
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France; Department of Pediatrics, National Reference Center for Auto-inflammatory Diseases and Amyloidosis, CEREMAIA, Versailles Hospital, Versailles, France
| | - Véronique Hentgen
- Department of Pediatrics, National Reference Center for Auto-inflammatory Diseases and Amyloidosis, CEREMAIA, Versailles Hospital, Versailles, France
| | - Gilles Grateau
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France.
| |
Collapse
|
7
|
Ahrens N, Aeissen E, Lippe A, Janssen-Bienhold U, Christoffers J, Koch KW. Farnesylation of Zebrafish G-Protein-Coupled Receptor Kinase Using Bio-orthogonal Labeling. ACS Chem Neurosci 2021; 12:1824-1832. [PMID: 33945258 DOI: 10.1021/acschemneuro.1c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
G-protein-coupled receptors are deactivated or desensitized by phosphorylation by respective G-protein-coupled receptor kinases (GRKs). In zebrafish rod and cone photoreceptor cells, four orthologous GRKs are expressed participating in the deactivation of rod and cone opsins. An important feature of GRKs in general is the consensus sites for lipid modification, which would allow the posttranslational attachment of isoprenoids facilitating membrane association and enzymatic performance. Because direct proof is missing for isoprenoid modification of zebrafish GRKs, we used a semichemical approach to study the incorporation of a farnesyl moiety into a GRK and its cellular consequences. The approach involves organic synthesis of a functionalized farnesyl derivative that is suitable for a subsequent alkyne-azide cycloaddition (click reaction). For this purpose, zebrafish GRK was expressed in HEK293 cells and modified in situ with the synthetic farnesyl moiety. Successful farnesylation by an endogenous farnesyltransferase was detected by immunoblotting and immunocytochemistry using a biotin-streptavidin-coupled assay and ligation with a fluorescence dye, respectively. Immunocytochemical detection of farnesylated GRK in different cell compartments indicates the applicability of the approach for studying the transport of cellular components.
Collapse
Affiliation(s)
- Nicole Ahrens
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Enno Aeissen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Anka Lippe
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Division of Neurobiology, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neurosciences, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
8
|
Ramazi S, Zahiri J. Posttranslational modifications in proteins: resources, tools and prediction methods. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6214407. [PMID: 33826699 DOI: 10.1093/database/baab012] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Posttranslational modifications (PTMs) refer to amino acid side chain modification in some proteins after their biosynthesis. There are more than 400 different types of PTMs affecting many aspects of protein functions. Such modifications happen as crucial molecular regulatory mechanisms to regulate diverse cellular processes. These processes have a significant impact on the structure and function of proteins. Disruption in PTMs can lead to the dysfunction of vital biological processes and hence to various diseases. High-throughput experimental methods for discovery of PTMs are very laborious and time-consuming. Therefore, there is an urgent need for computational methods and powerful tools to predict PTMs. There are vast amounts of PTMs data, which are publicly accessible through many online databases. In this survey, we comprehensively reviewed the major online databases and related tools. The current challenges of computational methods were reviewed in detail as well.
Collapse
Affiliation(s)
- Shahin Ramazi
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences Tarbiat Modares University, Jalal Ale Ahmad Highway, P.O. Box: 14115-111, Tehran, Iran
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
10
|
Poulter JA, Gravett MSC, Taylor RL, Fujinami K, De Zaeytijd J, Bellingham J, Rehman AU, Hayashi T, Kondo M, Rehman A, Ansar M, Donnelly D, Toomes C, Ali M, De Baere E, Leroy BP, Davies NP, Henderson RH, Webster AR, Rivolta C, Zeitz C, Mahroo OA, Arno G, Black GCM, McKibbin M, Harris SA, Khan KN, Inglehearn CF. New variants and in silico analyses in GRK1 associated Oguchi disease. Hum Mutat 2021; 42:164-176. [PMID: 33252155 PMCID: PMC7898643 DOI: 10.1002/humu.24140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.
Collapse
Affiliation(s)
- James A. Poulter
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | - Rachel L. Taylor
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
| | - Kaoru Fujinami
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
- Keio University School of MedicineTokyoJapan
| | | | | | - Atta Ur Rehman
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV)University of LausanneLausanneSwitzerland
| | | | - Mineo Kondo
- Mie University Graduate School of MedicineMieJapan
| | - Abdur Rehman
- Department of Genetics, Faculty of ScienceHazara University MansehraDhodialPakistan
| | - Muhammad Ansar
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
| | - Dan Donnelly
- School of Biomedical Sciences, University of LeedsLeedsUK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | | | - Bart P. Leroy
- Ghent UniversityGhentBelgium
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | | | | | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Carlo Rivolta
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
- Department of OphthalmologyUniversity Hospital BaselBaselSwitzerland
| | - Christina Zeitz
- Sorbonne UniversitéINSERM, CNRS, Institut de la VisionParisFrance
| | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Gavin Arno
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Graeme C. M. Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Leeds Teaching Hospitals NHS Trust, St James’ University HospitalLeedsUK
| | | | - Kamron N. Khan
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| |
Collapse
|
11
|
Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Genes (Basel) 2019; 10:genes10080557. [PMID: 31344897 PMCID: PMC6722924 DOI: 10.3390/genes10080557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
The light sensing outer segments of photoreceptors (PRs) are renewed every ten days due to their high photoactivity, especially of the cones during daytime vision. This demands a tremendous amount of energy, as well as a high turnover of their main biosynthetic compounds, membranes, and proteins. Therefore, a refined proteostasis network (PN), regulating the protein balance, is crucial for PR viability. In many inherited retinal diseases (IRDs) this balance is disrupted leading to protein accumulation in the inner segment and eventually the death of PRs. Various studies have been focusing on therapeutically targeting the different branches of the PR PN to restore the protein balance and ultimately to treat inherited blindness. This review first describes the different branches of the PN in detail. Subsequently, insights are provided on how therapeutic compounds directed against the different PN branches might slow down or even arrest the appalling, progressive blinding conditions. These insights are supported by findings of PN modulators in other research disciplines.
Collapse
|
12
|
Roy K, Marin EP. Lipid Modifications in Cilia Biology. J Clin Med 2019; 8:jcm8070921. [PMID: 31252577 PMCID: PMC6678300 DOI: 10.3390/jcm8070921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Cilia are specialized cellular structures with distinctive roles in various signaling cascades. Ciliary proteins need to be trafficked to the cilium to function properly; however, it is not completely understood how these proteins are delivered to their final localization. In this review, we will focus on how different lipid modifications are important in ciliary protein trafficking and, consequently, regulation of signaling pathways. Lipid modifications can play a variety of roles, including tethering proteins to the membrane, aiding trafficking through facilitating interactions with transporter proteins, and regulating protein stability and abundance. Future studies focusing on the role of lipid modifications of ciliary proteins will help our understanding of how cilia maintain specific protein pools strictly connected to their functions.
Collapse
Affiliation(s)
- Kasturi Roy
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA.
| | - Ethan P Marin
- Department of Internal Medicine, Section of Nephrology, Yale School of Medicine, PO Box 208029, New Haven, CT 06520-8029, USA
| |
Collapse
|
13
|
Storck EM, Morales-Sanfrutos J, Serwa RA, Panyain N, Lanyon-Hogg T, Tolmachova T, Ventimiglia LN, Martin-Serrano J, Seabra MC, Wojciak-Stothard B, Tate EW. Dual chemical probes enable quantitative system-wide analysis of protein prenylation and prenylation dynamics. Nat Chem 2019; 11:552-561. [PMID: 30936521 PMCID: PMC6544531 DOI: 10.1038/s41557-019-0237-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Post-translational farnesylation or geranylgeranylation at a C-terminal cysteine residue regulates the localization and function of over 100 proteins, including the Ras isoforms, and is a therapeutic target in diseases including cancer and infection. Here, we report global and selective profiling of prenylated proteins in living cells enabled by the development of isoprenoid analogues YnF and YnGG in combination with quantitative chemical proteomics. Eighty prenylated proteins were identified in a single human cell line, 64 for the first time at endogenous abundance without metabolic perturbation. We further demonstrate that YnF and YnGG enable direct identification of post-translationally processed prenylated peptides, proteome-wide quantitative analysis of prenylation dynamics and alternative prenylation in response to four different prenyltransferase inhibitors, and quantification of defective Rab prenylation in a model of the retinal degenerative disease choroideremia.
Collapse
Affiliation(s)
- Elisabeth M Storck
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Julia Morales-Sanfrutos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Proteomics Unit, Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Remigiusz A Serwa
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Nattawadee Panyain
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Thomas Lanyon-Hogg
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Tanya Tolmachova
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Leandro N Ventimiglia
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Juan Martin-Serrano
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miguel C Seabra
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Beata Wojciak-Stothard
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
14
|
The Leber Congenital Amaurosis-Linked Protein AIPL1 and Its Critical Role in Photoreceptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:381-386. [PMID: 29721967 DOI: 10.1007/978-3-319-75402-4_47] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mutations in the photoreceptor/pineal-expressed gene, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), are mainly associated with autosomal recessive Leber congenital amaurosis (LCA), the most severe form of inherited retinopathy that occurs in early childhood. AIPL1 functions as a photoreceptor-specific molecular co-chaperone that interacts specifically with the molecular chaperones HSP90 and HSP70 to facilitate the correct folding and assembly of the retinal cGMP phosphodiesterase (PDE6) holoenzyme. The absence of AIPL1 leads to a dramatic degeneration of rod and cone cells and a complete loss of any light-dependent electrical response. Here we review the important role of AIPL1 in photoreceptor functionality.
Collapse
|
15
|
Mégarbané A, Hmaimess G, Bizzari S, El-Bazzal L, Al-Ali MT, Stora S, Delague V, El-Hayek S. A novel PDE6D mutation in a patient with Joubert syndrome type 22 (JBTS22). Eur J Med Genet 2018; 62:103576. [PMID: 30423442 DOI: 10.1016/j.ejmg.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/02/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Joubert syndrome (JS) is an autosomal or X-linked recessive syndrome principally characterized by hypotonia, ataxia, cognitive impairment, and a specific finding on brain imaging called a "molar tooth sign" (MTS), which can be isolated or in conjunction with variable organ involvement. The genetic basis of JS is heterogeneous, with over 35 ciliary genes being implicated in its pathogenesis. However, some of these genes (such as PDE6D) have been associated to JS only in single families, seeking confirmation. Here we report a boy, born to first cousin parents, presenting with developmental delay, hypotonia, microcephaly, post axial polydactyly, oculomotor apraxia, and MTS. Whole exome sequencing revealed the presence of a novel homozygous truncating variant in the PDE6D gene: NM_002601.3:c.367_368insG [p.(Leu123Cysfs*13)]. The variant was confirmed by Sanger sequencing and found at the heterozygous state in both parents. A review of the literature pertaining to the role of PDE6D in JS is discussed.
Collapse
Affiliation(s)
| | | | - Sami Bizzari
- Centre for Arab Genomic Studies, Dubai, United Arab Emirates
| | - Lara El-Bazzal
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | | | | |
Collapse
|
16
|
Patrício MI, Barnard AR, Xue K, MacLaren RE. Choroideremia: molecular mechanisms and development of AAV gene therapy. Expert Opin Biol Ther 2018; 18:807-820. [DOI: 10.1080/14712598.2018.1484448] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maria I Patrício
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alun R Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
17
|
Astuti GDN, van den Born LI, Khan MI, Hamel CP, Bocquet B, Manes G, Quinodoz M, Ali M, Toomes C, McKibbin M, El-Asrag ME, Haer-Wigman L, Inglehearn CF, Black GCM, Hoyng CB, Cremers FPM, Roosing S. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes. Genes (Basel) 2018; 9:genes9010021. [PMID: 29320387 PMCID: PMC5793174 DOI: 10.3390/genes9010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.
Collapse
Affiliation(s)
- Galuh D. N. Astuti
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | | | - M. Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Béatrice Bocquet
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Manir Ali
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Carmel Toomes
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Martin McKibbin
- Department of Ophthalmology, St. James’s University Hospital, LS9 7TF Leeds, UK;
| | - Mohammed E. El-Asrag
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
- Department of Zoology, Faculty of Science, Benha University, 13511 Benha, Egypt
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
| | - Chris F. Inglehearn
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Graeme C. M. Black
- Centre for Genomic Medicine, St. Mary’s Hospital, Manchester Academic Health Science Centre, University of Manchester, M13 9PL Manchester, UK;
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-(0)24-365-5266
| |
Collapse
|
18
|
Brioschi M, Martinez Fernandez A, Banfi C. Exploring the biochemistry of the prenylome and its role in disease through proteomics: progress and potential. Expert Rev Proteomics 2017; 14:515-528. [PMID: 28521569 DOI: 10.1080/14789450.2017.1332998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Protein prenylation is a ubiquitous covalent post-translational modification characterized by the addition of farnesyl or geranylgeranyl isoprenoid groups to a cysteine residue located near the carboxyl terminal of a protein. It is essential for the proper localization and cellular activity of numerous proteins, including Ras family GTPases and G-proteins. In addition to its roles in cellular physiology, the prenylation process has important implications in human diseases and in the recent years, it has become attractive target of inhibitors with therapeutic potential. Areas covered: This review attempts to summarize the basic aspects of prenylation integrating them with biological functions in diseases and giving an account of the current status of prenylation inhibitors as potential therapeutics. We also summarize the methodologies for the characterization of this modification. Expert commentary: The growing body of evidence suggesting an important role of prenylation in diseases and the subsequent development of inhibitors of the enzymes responsible for this modification lead to the urgent need to identify the full spectrum of prenylated proteins that are altered in the disease or affected by drugs. Proteomic tools to analyze prenylated proteins are recently emerging, thanks to the advancement in the field of mass spectrometry coupled to enrichment strategies.
Collapse
|
19
|
Kellner U, Stöhr H, Weinitz S, Farmand G, Weber BHF. Mevalonate kinase deficiency associated with ataxia and retinitis pigmentosa in two brothers with MVK gene mutations. Ophthalmic Genet 2017; 38:340-344. [PMID: 28095071 DOI: 10.1080/13816810.2016.1227459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To report the clinical and molecular genetic findings in two brothers with retinitis pigmentosa (RP) and mevalonate kinase deficiency (MKD). METHODS The brothers were examined clinically and with fundus autofluorescence, near-infrared autofluorescence, and spectral domain optical coherence tomography. Targeted resequencing was done with a custom designed gene panel containing 78 genes associated with RP. Mutations were confirmed by direct Sanger sequencing. RESULTS Both brothers, aged 46 and 47 years, were found to carry compound heterozygous mutations in the MVK gene (c.59A>C, c.1000G>A) encoding mevalonate kinase. They presented with severe ataxia, pseudophakia due to early onset cataract, and progressed retinitis pigmentosa. In one brother with cystoid macular edema, treatment with dorzolamide was beneficial. Serum IgD levels were markedly increased in both brothers and mevalonic acid blood and urine levels were markedly increased in the one brother who could be examined. The disease severity differed between the brothers-one had more severe ataxia and less severe visual deficiency compared to the other. CONCLUSION MKD can be associated with RP and early onset cataract. Most MKD patients developing RP carry the (p.Ala334Thr) mutation. Macular edema can be treated using local dorzolamide.
Collapse
Affiliation(s)
- Ulrich Kellner
- a Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg , MVZ ADTC Siegburg GmbH , Siegburg , Germany.,b RetinaScience , Bonn , Germany
| | - Heidi Stöhr
- c Institut für Humangenetik , Universität Regensburg , Regensburg , Germany
| | - Silke Weinitz
- a Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg , MVZ ADTC Siegburg GmbH , Siegburg , Germany.,b RetinaScience , Bonn , Germany
| | - Ghazaleh Farmand
- a Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg , MVZ ADTC Siegburg GmbH , Siegburg , Germany
| | - Bernhard H F Weber
- c Institut für Humangenetik , Universität Regensburg , Regensburg , Germany
| |
Collapse
|