1
|
Paranal RM, Wood LD, Klein AP, Roberts NJ. Understanding familial risk of pancreatic ductal adenocarcinoma. Fam Cancer 2024; 23:419-428. [PMID: 38609521 DOI: 10.1007/s10689-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is the result of an accumulation of sequential genetic alterations. These genetic alterations can either be inherited, such as pathogenic germline variants that are associated with an increased risk of cancer, or acquired, such as somatic mutations that occur during the lifetime of an individual. Understanding the genetic basis of inherited risk of PDAC is essential to advancing patient care and outcomes through improved clinical surveillance, early detection initiatives, and targeted therapies. In this review we discuss factors associated with an increased risk of PDAC, the prevalence of genetic variants associated with an increased risk in patients with PDAC, estimates of PDAC risk in carriers of pathogenic germline variants in genes associated with an increased risk of PDAC. The role of common variants in pancreatic cancer risk will also be discussed.
Collapse
Affiliation(s)
- Raymond M Paranal
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Human Genetics Predoctoral Training Program, the McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| | - Nicholas J Roberts
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Pantaleo A, Forte G, Fasano C, Lepore Signorile M, Sanese P, De Marco K, Di Nicola E, Latrofa M, Grossi V, Disciglio V, Simone C. Understanding the Genetic Landscape of Pancreatic Ductal Adenocarcinoma to Support Personalized Medicine: A Systematic Review. Cancers (Basel) 2023; 16:56. [PMID: 38201484 PMCID: PMC10778202 DOI: 10.3390/cancers16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.
Collapse
Affiliation(s)
- Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
3
|
Helgadottir H, Schultz K, Lapins J, Höiom V. Familial features affecting the melanoma risk in CDKN2A-negative melanoma families: a study based on the Swedish Cancer Registry. Acta Oncol 2023; 62:1967-1972. [PMID: 37801364 DOI: 10.1080/0284186x.2023.2265052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Karina Schultz
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Lapins
- Department of Dermatology, Karolinska University Hospital, Stockholm
- Dermatology and Venereology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Mishra MK, Gupta S, Shivangi, Sharma M, Sehgal S. The repertoire of mutational signatures in tobacco- and non-tobacco-induced oral cancer. Clin Transl Oncol 2023; 25:3332-3344. [PMID: 37058208 DOI: 10.1007/s12094-023-03192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The use of tobacco products is one of the established contributors toward the development and spread of oral cancer. Additionally, recent research has indicated oral microbiome, infections with Human papilloma virus (HPV), Epstein-Barr virus (EBV), Candida as significant contributing factors to this disease along with lifestyle habits. Deregulation of cellular pathways envisaging metabolism, transcription, translation, and epigenetics caused by these risk factors either individually or in unison is manifold, resulting in the increased risk of oral cancer. Globally, this cancer continues to exist as one of the major causes of cancer-related mortalities; the numbers in the developing South Asian countries clearly indicate yearly escalation. This review encompasses the variety of genetic modifications, including adduct formation, mutation (duplication, deletion, and translocation), and epigenetic changes evident in oral squamous cell carcinoma (OSCC). In addition, it highlights the interference caused by tobacco products in Wnt signaling, PI3K/Akt/mTOR, JAK-STAT, and other important pathways. The information provided also ensures a comprehensive and critical revisit to non-tobacco-induced OSCC. Extensive literature survey and analysis has been conducted to generate the chromosome maps specifically highlighting OSCC-related mutations with the potential to act as spectacles for the early diagnosis and targeted treatment of this disease cancer.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Sachin Gupta
- Department of ENT and Head and Neck Surgery, ASCOMS, Jammu, J&K, India
| | - Shivangi
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Manshi Sharma
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India
| | - Shelly Sehgal
- Centre for Molecular Biology, Central University of Jammu, Jammu, J&K, India.
| |
Collapse
|
5
|
Sargen MR, Kim J, Potjer TP, Velthuizen ME, Martir-Negron AE, Odia Y, Helgadottir H, Hatton JN, Haley JS, Thone G, Widemann BC, Gross AM, Yohe ME, Kaplan RN, Shern JF, Sundby RT, Astiazaran-Symonds E, Yang XR, Carey DJ, Tucker MA, Stewart DR, Goldstein AM. Estimated Prevalence, Tumor Spectrum, and Neurofibromatosis Type 1-Like Phenotype of CDKN2A-Related Melanoma-Astrocytoma Syndrome. JAMA Dermatol 2023; 159:1112-1118. [PMID: 37585199 PMCID: PMC10433137 DOI: 10.1001/jamadermatol.2023.2621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 08/17/2023]
Abstract
Importance Knowledge about the prevalence and tumor types of CDKN2A-related melanoma-astrocytoma syndrome (MAS) is limited and could improve disease recognition. Objective To estimate the prevalence and describe the tumor types of MAS. Design, Setting, and Participants This retrospective cohort study analyzed all available MAS cases from medical centers in the US (2 sites) and Europe (2 sites) and from biomedical population genomic databases (UK Biobank [United Kingdom], Geisinger MyCode [US]) between January 1, 1976, and December 31, 2020. Patients with MAS with CDKN2A germline pathogenic variants and 1 or more neural tumors were included. Data were analyzed from June 1, 2022, to January 31, 2023. Main Outcomes and Measures Disease prevalence and tumor frequency. Results Prevalence of MAS ranged from 1 in 170 503 (n = 1 case; 95% CI, 1:30 098-1:965 887) in Geisinger MyCode (n = 170 503; mean [SD] age, 58.9 [19.1] years; 60.6% women; 96.2% White) to 1 in 39 149 (n = 12 cases; 95% CI, 1:22 396-1:68 434) in UK Biobank (n = 469 789; mean [SD] age, 70.0 [8.0] years; 54.2% women; 94.8% White). Among UK Biobank patients with MAS (n = 12) identified using an unbiased genomic ascertainment approach, brain neoplasms (4 of 12, 33%; 1 glioblastoma, 1 gliosarcoma, 1 astrocytoma, 1 unspecified type) and schwannomas (3 of 12, 25%) were the most common malignant and benign neural tumors, while cutaneous melanoma (2 of 12, 17%) and head and neck squamous cell carcinoma (2 of 12, 17%) were the most common nonneural malignant neoplasms. In a separate case series of 14 patients with MAS from the US and Europe, brain neoplasms (4 of 14, 29%; 2 glioblastomas, 2 unspecified type) and malignant peripheral nerve sheath tumor (2 of 14, 14%) were the most common neural cancers, while cutaneous melanoma (4 of 14, 29%) and sarcomas (2 of 14, 14%; 1 liposarcoma, 1 unspecified type) were the most common nonneural cancers. Cutaneous neurofibromas (7 of 14, 50%) and schwannomas (2 of 14, 14%) were also common. In 1 US family, a father and son with MAS had clinical diagnoses of neurofibromatosis type 1 (NF1). Genetic testing of the son detected a pathogenic CDKN2A splicing variant (c.151-1G>C) and was negative for NF1 genetic alterations. In UK Biobank, 2 in 150 (1.3%) individuals with clinical NF1 diagnoses had likely pathogenic variants in CDKN2A, including 1 individual with no detected variants in the NF1 gene. Conclusions and Relevance This cohort study estimates the prevalence and describes the tumors of MAS. Additional studies are needed in genetically diverse populations to further define population prevalence and disease phenotypes.
Collapse
Affiliation(s)
- Michael R. Sargen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Thomas P. Potjer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Mary E. Velthuizen
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami
| | - Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jessica N. Hatton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jeremy S. Haley
- Department of Genomic Health, Geisinger Clinic, Geisinger Health System, Danville, Pennsylvania
| | - Gretchen Thone
- Department of Genomic Health, Geisinger Clinic, Geisinger Health System, Danville, Pennsylvania
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, Frederick, Maryland
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - David J. Carey
- Department of Genomic Health, Geisinger Clinic, Geisinger Health System, Danville, Pennsylvania
| | - Margaret A. Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
6
|
Gironi LC, Esposto E, Zottarelli F, Giorgione R, Farinelli P, Zavattaro E, Cammarata E, Di Cristo N, Ogliara P, Camillo L, Giordano M, Mellone S, Pasini B, Ambrosi A, Savoia P. Temporal correlation between the first melanoma and the first noncutaneous tumor in CKDN2A genotyped patients. Melanoma Res 2023; 33:425-430. [PMID: 37352544 DOI: 10.1097/cmr.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
CDKN2A pathogenic variants are well known to be associated with cutaneous melanoma and noncutaneous tumors (NCTs). Herein, we investigated the temporal correlation between the first cutaneous melanoma and NCT both in CDKN2A mutation carriers (MUT) and in wild-type melanoma patients, a poorly explored issue to date. Two hundred forty-five cutaneous melanoma patients were genotyped for the CDKN2A gene and divided into 51 MUT and 189 wild-type; the remaining five variant carriers were excluded from the analyses. MUT developed a significantly higher number of cutaneous melanoma than wild-type, while 13.7% in both genotyped groups received a diagnosis of at least one malignant NCT, without statistically significant differences. The onset of the first cutaneous melanoma preceded that of the first malignant or benign NCT in both MUT and wild-type patients by an average of 4.5 and 3.02 years, respectively. Considering only malignant tumors, the diagnosis of melanoma preceded that of the first NCT on an average of 8 and 4.34 years, in MUT and wild-type patients respectively. We emphasize the relevance to adopt a global vision for the primary and secondary surveillance of patients affected by cutaneous melanoma, not only limited to high-risk for multiple primary skin cancers but also to NCT that may develop several years after the diagnosis of the first cutaneous melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Elisa Zavattaro
- Department of Health Sciences, University of Eastern Piedmont, Novara
| | | | - Nunzia Di Cristo
- Department of Health Sciences, University of Eastern Piedmont, Novara
| | - Paola Ogliara
- Department of Medical Sciences, University of Turin, Turin
| | - Lara Camillo
- Department of Health Sciences, University of Eastern Piedmont, Novara
| | - Mara Giordano
- Department of Health Sciences, University of Eastern Piedmont, Novara
- SCDU of Clinical Biochemistry, Laboratory of Genetics, AOU Maggiore della Carità, Novara
| | - Simona Mellone
- SCDU of Clinical Biochemistry, Laboratory of Genetics, AOU Maggiore della Carità, Novara
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin
| | - Alessandro Ambrosi
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Paola Savoia
- Department of Health Sciences, University of Eastern Piedmont, Novara
| |
Collapse
|
7
|
Pissa M, Lapins J, Sköldmark C, Helgadottir H. Melanoma-specific survival before and after inclusion in a familial melanoma dermatologic surveillance program in CDKN2A mutation carriers and non-carriers. J Eur Acad Dermatol Venereol 2023; 37:284-292. [PMID: 36156317 PMCID: PMC10091727 DOI: 10.1111/jdv.18589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Inherited mutations in the CDKN2A gene are among the strongest known risk factors for cutaneous melanoma. Further, previous studies have reported inferior melanoma-specific survival in CDKN2A mutation carriers. OBJECTIVES Here, the melanoma-specific survival was studied, depending on CDKN2A carrier status and if the melanomas had been diagnosed before or after families were included in a surveillance program. METHODS Melanoma-prone families participating in this study were identified through a nationwide preventive program starting in 1987. Information on melanoma tumours and deaths was obtained through the Swedish Cancer Registry and Cause of Death Registry. Kaplan-Meier and Cox proportional hazards regression models were used to assess melanoma-specific survival in four defined cohorts, CDKN2A mutation (MUT) carriers with first invasive melanoma before or after inclusion [MUT-pre (n = 53) and MUT-post (n = 43)] and likewise in CDKN2A wild type (WT) cases [WT-pre (n = 255) and WT-post (n = 122)]. RESULTS The MUT-pre and MUT-post cases were diagnosed with their first invasive melanoma at a significantly younger ages (38 and 42 years, respectively) than the WT-pre and WT-post cases (48 and 57 years, respectively). The melanomas in the MUT-pre had significantly higher T stage compared with MUT-post (p = 0.006), whereas no such difference was seen comparing WT-pre with WT-post (p = 0.849). MUT-pre had compared with WT-pre, significantly worse melanoma-specific survival, unadjusted (HR 2.33, 95% CI 1.33-4.08, p = 0.003) adjusted (HR 2.70, 95% CI 1.46-5.00, p = 0.001). However, the MUT-post cases had compared with the WT-post cases, no significant survival differences. CONCLUSION This study is the first to address the impact on survival from introducing a dermatologic surveillance program to familial melanoma cases with or without CDKN2A mutations. The CDKN2A-mut carriers appeared to have a clear benefit with less advanced melanomas diagnosed and better melanoma-specific survival after inclusion. Among the CDKN2A-wt cases, the effect of the inclusion on the studied outcomes was less evident.
Collapse
Affiliation(s)
- Maria Pissa
- Department of Dermatology and Venereology, Ryhov County Hospital, Jönköping, Sweden
| | - Jan Lapins
- Department of Medicine, Unit of Dermatology, Karolinska Institutet, Stockholm, Sweden.,Department of Dermatology, Skin Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Sköldmark
- Department of Dermatology and Venereology, Ryhov County Hospital, Jönköping, Sweden
| | - Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Oncology, Skin Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Astiazaran-Symonds E, Graham C, Kim J, Tucker MA, Ingvar C, Helgadottir H, Pastorino L, van Doorn R, Sampson JN, Zhu B, Bruno W, Queirolo P, Fornarini G, Sciallero S, Carter B, Hicks B, Hutchinson A, Jones K, Stewart DR, Chanock SJ, Freedman ND, Landi MT, Höiom V, Puig S, Gruis N, Yang XR, Ghiorzo P, Goldstein AM. Gene-Level Associations in Patients With and Without Pathogenic Germline Variants in CDKN2A and Pancreatic Cancer. JCO Precis Oncol 2022; 6:e2200145. [PMID: 36409970 PMCID: PMC10166474 DOI: 10.1200/po.22.00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a component of familial melanoma due to germline pathogenic variants (GPVs) in CDKN2A. However, it is unclear what role this gene or other genes play in its etiology. MATERIALS AND METHODS We analyzed 189 cancer predisposition genes using parametric rare-variant association (RVA) tests and nonparametric permutation tests to identify gene-level associations in PDAC for patients with (CDKN2A+) and without (CDKN2A-) GPV. Exome sequencing was performed on 84 patients with PDAC, 47 CDKN2A+ and 37 CDKN2A-. After variant filtering, various RVA tests and permutation tests were run separately by CDKN2A status. Genes with the strongest nominal associations were evaluated in patients with PDAC from The Cancer Genome Atlas and the UK Biobank (UKB). A secondary analysis including only GPV from UKB was also performed. RESULTS In RVA tests, ERCC4 and RET showed the most compelling evidence as plausible PDAC candidate genes for CDKN2A+ patients. In contrast, the findings in CDKN2A- patients provided evidence for HMBS, EPCAM, and MRE11 as potential new candidate genes and confirmed ATM, BRCA2, and PALB2 as PDAC genes, consistent with findings in The Cancer Genome Atlas and the UKB. As expected, CDKN2A- patients were more likely to harbor GPVs from the 189 genes investigated. When including only GPVs from UKB, significant associations with PDAC were seen for ATM, BRCA2, and CDKN2A. CONCLUSION These results suggest that variants in other genes likely play a role in PDAC in all patients and that PDAC in CDKN2A+ patients has a distinct etiology from PDAC in CDKN2A- patients.
Collapse
Affiliation(s)
- Esteban Astiazaran-Symonds
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- National Human Genome Research Institute, NIH, Bethesda, MD
- Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Cole Graham
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | | | | | - Hildur Helgadottir
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Paola Queirolo
- Melanoma Sarcoma and Rare Tumors, IEO European Institute of Oncology, Milano, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | | | - Veronica Höiom
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Susana Puig
- Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona and CIBERER, Barcelona, Spain
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | |
Collapse
|
9
|
Germline Testing for Individuals with Pancreatic Adenocarcinoma and Novel Genetic Risk Factors. Hematol Oncol Clin North Am 2022; 36:943-960. [DOI: 10.1016/j.hoc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Yeap I, Becker T, Azimi F, Kernohan M. The management of hereditary melanoma, FAMMM syndrome and germline CDKN2A mutations: a narrative review. AUSTRALASIAN JOURNAL OF PLASTIC SURGERY 2022. [DOI: 10.34239/ajops.v5n2.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Familial atypical multiple mole melanoma (FAMMM) syndrome is a rare autosomal dominant disorder, in which patients present with a large number of melanocytic naevi and a strong history of malignant melanoma, usually at a young age. The most common genetic alteration, implicated in 40 per cent of FAMMM syndrome families, is a mutation of cyclin-dependent kinase inhibitor 2A (CDKN2A).1 CDKN2A encodes the tumour suppressor gene p16INK4a, a critical cell cycle inhibitor.2
The diagnosis and management of patients with FAMMM syndrome is relevant to the plastic surgeon who manages melanoma. However, clear guidelines on its diagnostic criteria and its relationship to associated but distinct syndromes, such as hereditary melanoma and B-K mole syndrome, are lacking in the extant literature.
The aim of this review is to clarify the diagnostic criteria and management principles for FAMMM syndrome. We propose a new system of classifying FAMMM syndrome patients as a subset of all patients with hereditary melanoma. We also present a management algorithm for these distinct patient groups (FAMMM syndrome, hereditary melanoma and germline CDKN2A mutations).
Collapse
|
11
|
Zaremba A, Meier F, Schlein C, Jansen P, Lodde G, Song M, Kretz J, Möller I, Stadtler N, Livingstone E, Zimmer L, Hadaschik E, Sucker A, Schadendorf D, Griewank K. Clinical and pathological characteristics of familial melanoma with germline TERT promoter variants. Pigment Cell Melanoma Res 2022; 35:573-586. [PMID: 35912549 DOI: 10.1111/pcmr.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Around 10% of melanoma occur in patients with a suspected familial predisposition. TERT promoter mutations are the most common somatic hotspot mutations in human cancers. However, only two families with germline mutations have been identified to date. We present detailed histological, clinical and molecular pathologic analyses of affected patients and details of newly identified individuals in one of these previously reported families. TERT (NM_198253.3) Chr.5:1,295,161T>C (c.-57 T>C) promoter variants were detected in all melanoma-affected (n=18) and one non-diseased family member. Median age at diagnosis was 30 years (n=18, range 16-46 years, 2 unknown). While most primary melanoma arose on the upper extremities (n=7, 21%) and were superficial spreading melanoma (SSM, n=8, 24%), many primary melanoma also originated from non UV-exposed mucosal (n=2, 6%) and acral (n=4, 12%) locations. One SSM sample harboured a Chr.5:1,295,228C>T TERT promoter region in addition to the germline Chr.5:1,295,161T>C variant, arguing additional pathway activation can support tumor pathogenesis. Patients treated with BRAF inhibitor and/or immune checkpoint inhibition (ICI) showed responses, although of limited duration. One mucosal melanoma harboured both a KIT copy number gain and an activating c.1727 p.Leu576Pro mutation. Following modest response to ICI, subsequent KIT inhibitor (imatinib) therapy demonstrated an ongoing complete pathological response (currently 7 months).
Collapse
Affiliation(s)
- Anne Zaremba
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Jansen
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany.,Clinic and Polyclinic for Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Mingxia Song
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Julia Kretz
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Inga Möller
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nadine Stadtler
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Eva Hadaschik
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Klaus Griewank
- Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany, and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
12
|
Pauley K, Khan A, Kohlmann W, Jeter J. Considerations for Germline Testing in Melanoma: Updates in Behavioral Change and Pancreatic Surveillance for Carriers of CDKN2A Pathogenic Variants. Front Oncol 2022; 12:837057. [PMID: 35372037 PMCID: PMC8967159 DOI: 10.3389/fonc.2022.837057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/23/2022] [Indexed: 01/13/2023] Open
Abstract
The largest proportion of hereditary melanoma cases are due to pathogenic variants (PVs) in the CDKN2A/p16 gene, which account for 20%-40% of familial melanomas and confer up to a 30%-70% lifetime risk for melanoma in individuals with these variants. In addition, PVs in the CDKN2A gene also increase risk for pancreatic cancer (~5-24% lifetime risk). Individuals with PVs in the CDKN2A gene also tend to have an earlier onset of cancer. Despite these known risks, uptake of germline testing has been limited in the past, largely due to perceptions of limited benefit for patients. Prevention recommendations have been developed for individuals with CDKN2A PVs as well the providers who care for them. On the patient level, behavioral modifications regarding melanoma prevention such as wearing sunscreen, limiting prolonged sun exposure and practicing general sun safety can help reduce risks. Germline testing can provide motivation for some individuals to adhere to these lifestyle changes. On the provider level, pancreatic cancer surveillance for individuals with CDKN2A PVs has been increasingly endorsed by expert consensus, although the efficacy of these surveillance methods remains under study. This review summarizes the updated surveillance guidelines for individuals with CDKN2A PVs and explores the impact of genetic counseling and testing in influencing behavioral changes in these individuals.
Collapse
Affiliation(s)
- Kristen Pauley
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Ambreen Khan
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Wendy Kohlmann
- Family Cancer Assessment Clinic, Huntsman Cancer Institute, Salt Lake City, UT, United States
| | - Joanne Jeter
- Department of Internal Medicine, Huntsman Cancer Institute, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Ferdosi S, Saffari M, Alishahi R, Ghanadan A, Shirkoohi R. Study on Early Onset Melanoma and Germ-Line Mutation in CDKN2A among Patients in Imam Khomeini Hospital Complex. Asian Pac J Cancer Prev 2021; 22:3347-3353. [PMID: 34711012 PMCID: PMC8858231 DOI: 10.31557/apjcp.2021.22.10.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/16/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Malignant melanoma is a highly lethal melanocytic neoplasia with different predisposing factors. The genetic background in familial cases is an important issue in finding at risk family members. CDKN2A is one of these predisposing genes which have been estimated to be involved in germ line mutation in approximately 5-10% of familial melanoma cases. MATERIALS AND METHODS An inclusion criteria for familial melanoma was prepared according to the literature, and the age of onset was considered as a single criteria for selection. A total number of 322 melanoma cases were investigated regarding the criteria, among which 20 patients were chosen (<40 years). DNA was extracted from Formalin Fixed Paraffin Embed of normal tissues and DNA sequencing was performed for all coding sequences of CDKN2A (p16). RESULTS One of the cases showed a pathogenic mutation in codon 108, exon 2(322G >C; Asp108His). Further analysis of his offspring indicated no mutation in the next generation. CONCLUSION As far as the authors of the present study are concerned, this was the first report on this germ-line mutation with mentioned amino acid alteration in the melanoma. Screening the CDKN2A gene for possible mutation could prevent the incidence of familial cases in at risk members. .
Collapse
Affiliation(s)
- Samira Ferdosi
- Cancer Research Center, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mojtaba Saffari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical sciences Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Razieh Alishahi
- Cancer Research Center, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Alireza Ghanadan
- Department of Medical Genetics, School of Medicine, Tehran University of Medical sciences Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Dermatopathology, Razi Hospital, Tehran, Iran.
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Research Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Dermatopathology, Razi Hospital, Tehran, Iran.
| |
Collapse
|
14
|
Kimura H, Klein AP, Hruban RH, Roberts NJ. The Role of Inherited Pathogenic CDKN2A Variants in Susceptibility to Pancreatic Cancer. Pancreas 2021; 50:1123-1130. [PMID: 34714275 PMCID: PMC8562885 DOI: 10.1097/mpa.0000000000001888] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT CDKN2A is cell cycle negative regulator, and the role of CDKN2A in the development of pancreatic ductal adenocarcinoma, which continues to be a lethal cancer, is well-established. Somatic loss of CDKN2A is considered one of the major drivers of pancreatic tumorigenesis. CDKN2A gene is one of the pancreatic cancer susceptibility gene; in addition to melanoma, pathogenic germline CDKN2A variants have been identified in up to 3.3% patients with pancreatic ductal adenocarcinoma depending on family history of disease. Carriers of a known pathogenic germline CDKN2A variant have up to a 12.3-fold increased risk of developing pancreatic cancer. Recently, several studies have demonstrated the benefit of clinical surveillance in patients with pathogenic germline CDKN2A variants. Therefore, identification of patients with a pathogenic germline CDKN2A variant is important for screening of at-risk relatives for pancreatic cancer. It has the potential to lead to the detection of early, potentially curable pancreatic cancer and precursor neoplasms, and reduce mortality. Furthermore, patients with a germline pathogenic CDKN2A variant and somatic loss of CDKN2A may benefit in the future from treatment with targeted therapies, such as a CDK4/6 inhibitor.
Collapse
Affiliation(s)
- Hirokazu Kimura
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alison P. Klein
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Epidemiology, the Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas J. Roberts
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Familial Melanoma and Susceptibility Genes: A Review of the Most Common Clinical and Dermoscopic Phenotypic Aspect, Associated Malignancies and Practical Tips for Management. J Clin Med 2021; 10:jcm10163760. [PMID: 34442055 PMCID: PMC8397216 DOI: 10.3390/jcm10163760] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
A family history of melanoma greatly increases the risk of developing cutaneous melanoma, a highly aggressive skin cancer whose incidence has been steadily increasing worldwide. Familial melanomas account for about 10% of all malignant melanomas and display an inheritance pattern consistent with the presence of pathogenic germline mutations, among which those involving CDKN2A are the best characterized. In recent years, a growing number of genes, such as MC1R, MITF, CDK4, POT1, TERT, ACD, TERF2IP, and BAP1, have been implicated in familial melanoma. The fact that individuals harboring these germline mutations along with their close blood relatives have a higher risk of developing multiple primary melanomas as well as other internal organ malignancies, especially pancreatic cancer, makes cascade genetic testing and surveillance of these families of the utmost importance. Unfortunately, due to a polygenic inheritance mechanism involving multiple low-risk alleles, genetic modifiers, and environmental factors, it is still very difficult to predict the presence of these mutations. It is, however, known that germline mutation carriers can sometimes develop specific clinical traits, such as high atypical nevus counts and specific dermoscopic features, which could theoretically help clinicians predict the presence of these mutations in prone families. In this review, we provide a comprehensive overview of the high- and intermediate-penetrance genes primarily linked to familial melanoma, highlighting their most frequently associated non-cutaneous malignancies and clinical/dermoscopic phenotypes.
Collapse
|
16
|
Rammal S, Kourie HR, Jalkh N, Mehawej C, Chouery E, Moujaess E, Dabar G. Molecular pathogenesis of hereditary lung cancer: a literature review. Pharmacogenomics 2021; 22:791-803. [PMID: 34410147 DOI: 10.2217/pgs-2020-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among all cancer types, pulmonary cancer has the highest mortality rate. Tobacco consumption remains the major risk factor for the development of lung cancer. However, many studies revealed a correlation between inherited genetic variants and predisposition to lung cancer, especially in nonsmokers. To date, genetic testing for the detection of germline mutations is not yet recommended in patients with lung cancer and testing is focused on somatic alterations given their implication in the treatment choice. Understanding the impact of genetic predisposition on the occurrence of lung cancer is essential to enable the introduction of accurate guidelines and recommendations that might reduce mortality. In this review paper, we describe familial lung cancer, and expose germline mutations that are linked to this type of cancer. We also report pathogenic genetic variants linked to syndromes associated with lung cancer.
Collapse
Affiliation(s)
- Souraya Rammal
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Cybel Mehawej
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Eliane Chouery
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Elissar Moujaess
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Georges Dabar
- Pulmonary & Critical Care Division, Hotel Dieu de France, Saint Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
17
|
Molecular landscape of Hereditary Melanoma. Crit Rev Oncol Hematol 2021; 164:103425. [PMID: 34245855 DOI: 10.1016/j.critrevonc.2021.103425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 05/20/2021] [Accepted: 07/04/2021] [Indexed: 12/27/2022] Open
Abstract
Melanoma is considered the most lethal skin cancer and its incidence has increased during the past decades. About 10 % of cases are classified as hereditary melanoma. Genetic predisposition usually manifests itself clinically as early onset and multiple cutaneous melanomas. Several genes have been identified as involved to melanoma susceptibility, some of them still with unknown clinical relevance. Beyond melanoma, the affected families are also more prone to develop other malignancies, such as pancreatic cancer. The identification of risk families and involved genes is of great importance, since different forms of oncological surveillance are recommended. However, well established guidelines to standardize both the selection of individuals and the genetic panel to be requested are still lacking. Given the importance of the genetic counseling and testing in the context of clinical suspicion of hereditary melanoma, this paper aims to review the literature regarding genetic panel indications worldwide.
Collapse
|
18
|
Pissa M, Helkkula T, Appelqvist F, Silander G, Borg Å, Pettersson J, Lapins J, Nielsen K, Höiom V, Helgadottir H. CDKN2A genetic testing in melanoma-prone families in Sweden in the years 2015-2020: implications for novel national recommendations. Acta Oncol 2021; 60:888-896. [PMID: 33945383 DOI: 10.1080/0284186x.2021.1914346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Inherited pathogenic variants (PVs) in the CDKN2A gene are among the strongest known risk factors for cutaneous melanoma. Carriers are at high risks to develop multiple primary melanomas and other cancers, in particular pancreatic cancer. In this study, the CDKN2A testing, carried out in Sweden in the years 2015-2020, was evaluated.Materials and methods: Included families had (1) three or more cases of melanoma and/or pancreatic cancer, (2) two melanomas in first-degree relatives, the youngest case <55 years or (3) individuals with three or more multiple primary melanomas, the first before the age of 55 years, and no other affected family members. The included families had at least one affected member that had been tested for CDKN2A PVs.Results: In total, 403 families were included, whereof 913 family members had been diagnosed with cutaneous melanoma and 129 with pancreatic cancer, 33 (8.2%) were found to have PVs in CDKN2A. Frequencies ranged from 0.9% in families with only two melanomas to 43.2% in families with three or more melanoma cases and pancreatic cancer (p < 0.001). The frequency of PVs ranged from 2.1% to 16.5% in families where the youngest case was ≥55 years or <35 years (p = 0.040). In families with or without CDKN2A PVs, 37.6% and 10.0% had melanoma cases that had died from melanoma, respectively (p < 0.001).Discussion: Significant differences were seen in the frequencies of CDKN2A PVs, dependent on numbers or age at diagnosis of melanomas and diagnoses of pancreatic cancers in the family. Further, melanoma cases belonging to families that tested positive for CDKN2A PVs had a significantly higher mortality. To summarize, the current evaluation shows that, with adequately selected criteria to guide genetic testing, CDKN2A PVs are identified at significant frequencies. Identification of carrier families is of importance to ensure that members are enrolled in a preventive surveillance program.
Collapse
Affiliation(s)
- Maria Pissa
- Department of Dermatology and Venereology, Ryhov County Hospital, Jönköping, Sweden
| | - Teo Helkkula
- Department of Clinical Sciences, Division of Dermatology, Lund University Skin Cancer research group, Lund University, Lund, Sweden
- Department of Dermatology, Skåne University Hospital, Lund, Sweden
| | - Frida Appelqvist
- Department of Dermatology, Institute of Clinical Sciences, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Gustav Silander
- Department of Radiation Sciences, Division of Oncology, Umeå University, Umeå, Sweden
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jenny Pettersson
- Department of Oncology, Ryhov County Hospital, Jönköping, Sweden
| | - Jan Lapins
- Department of Dermatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kari Nielsen
- Department of Clinical Sciences, Division of Dermatology, Lund University Skin Cancer research group, Lund University, Lund, Sweden
- Department of Dermatology, Skåne University Hospital, Lund, Sweden
- Department of Dermatology, Helsingborg Hospital, Helsingborg, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet and Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet and Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Efficacy of BRAF and MEK Inhibition in Patients with BRAF-Mutant Advanced Melanoma and Germline CDKN2A Pathogenic Variants. Cancers (Basel) 2021; 13:cancers13102440. [PMID: 34069952 PMCID: PMC8157545 DOI: 10.3390/cancers13102440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary In our study, we retrospectively collected data of patients with germline CDKN2A pathogenic variants who received targeted therapy for advanced melanoma across four European centers. Since loss of CDKN2A function may intrinsically limit the activity of MAPK-directed targeted therapy, we decided to assess whether patients with germline CDKN2A pathogenic variants may achieve suboptimal results with BRAF and MEK inhibitors. To the best of our knowledge, this is the first study reporting on patients with BRAF-mutant advanced melanoma and a germline CDKN2A pathogenic variant who received treatment with BRAF with or without MEK inhibitors. Despite the limitations of our study, mostly due to the rare frequency of CDKN2A pathogenic variants, a challenge for the conduction of prospective trials with proper sample size, our results support treatment with targeted therapy in this subset of patients. Abstract Inherited pathogenic variants (PVs) in the CDKN2A tumor suppressor gene are among the strongest risk factors for cutaneous melanoma. Dysregulation of the p16/RB1 pathway may intrinsically limit the activity of MAPK-directed therapy due to the interplay between the two pathways. In our study, we assessed, for the first time, whether patients with germline CDKN2A PVs achieve suboptimal results with BRAF inhibitors (BRAFi)+/−MEK inhibitors (MEKi). We compared the response rate of nineteen CDKN2A PVs carriers who received first-line treatment with BRAFi+/−MEKi with an expected rate derived from phase III trials and “real-world” studies. We observed partial response in 16/19 patients (84%), and no complete responses. The overall response rate was higher than that expected from phase III trials (66%), although not statistically significant (p-value = 0.143; 95% CI = 0.60–0.97); the difference was statistically significant (p-value = 0.019; 95% CI = 0.62–0.97) in the comparison with real-world studies (57%). The clinical activity of BRAFi+/−MEKi in patients with germline CDKN2A PV was not inferior to that of clinical trials and real-world studies, which is of primary importance for clinical management and genetic counseling of this subgroup of patients.
Collapse
|
20
|
Budden T, Gaudy-Marqueste C, Craig S, Hu Y, Earnshaw CH, Gurung S, Ra A, Akhras V, Shenjere P, Green R, Jamieson L, Lear J, Motta L, Caulín C, Oudit D, Furney SJ, Virós A. Female Immunity Protects from Cutaneous Squamous Cell Carcinoma. Clin Cancer Res 2021; 27:3215-3223. [PMID: 33795258 DOI: 10.1158/1078-0432.ccr-20-4261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer susceptibility and mortality are higher in males, and the mutational and transcriptomic landscape of cancer differs by sex. The current assumption is that men are at higher risk of epithelial cancers as they expose more to carcinogens and accumulate more damage than women. We present data showing women present with less aggressive primary cutaneous squamous cell carcinoma (cSCC) and early strong immune activation. EXPERIMENTAL DESIGN We explored clinical and molecular sexual disparity in immunocompetent and immunosuppressed patients with primary cSCC (N = 738, N = 160), advanced-stage cSCC (N = 63, N = 20) and FVB/N mice exposed to equal doses of DMBA, as well as in human keratinocytes by whole-exome, bulk, and single-cell RNA sequencing. RESULTS We show cSCC is more aggressive in men, and immunocompetent women develop mild cSCC, later in life. To test whether sex drives disparity, we exposed male and female mice to equal doses of carcinogen, and found males present with more aggressive, metastatic cSCC than females. Critically, females activate cancer immune-related expression pathways and CD4 and CD8 T-cell infiltration independently of mutations, a response that is absent in prednisolone-treated animals. In contrast, males increase the rate of mitosis and proliferation in response to carcinogen. Women's skin and keratinocytes also activate immune-cancer fighting pathways and immune cells at UV radiation-damaged sites. Critically, a compromised immune system leads to high-risk, aggressive cSCC specifically in women. CONCLUSIONS This work shows the immune response is sex biased in cSCC and highlights female immunity offers greater protection than male immunity.
Collapse
Affiliation(s)
- Timothy Budden
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Caroline Gaudy-Marqueste
- APHM, CRCM Inserm U1068, CNRS U7258, CHU Timone, Department of Dermatology and Skin Cancer, Aix-Marseille Univesrity, Marseille, France
| | - Sarah Craig
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Yuan Hu
- Department of Otolaryngology, Head and Neck Surgery, University of Arizona, Tucson, Arizona.,University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Charles H Earnshaw
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Shilpa Gurung
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom.,NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | - Amelle Ra
- Department of Dermatology, St. George's NHS Foundation Trust, London, United Kingdom
| | - Victoria Akhras
- Department of Dermatology, St. George's NHS Foundation Trust, London, United Kingdom
| | - Patrick Shenjere
- Department of Histopathology, The Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Ruth Green
- Department of Histopathology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Lynne Jamieson
- Department of Histopathology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - John Lear
- Department of Dermatology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Luisa Motta
- Department of Histopathology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| | - Carlos Caulín
- Department of Otolaryngology, Head and Neck Surgery, University of Arizona, Tucson, Arizona.,University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Deemesh Oudit
- Department of Plastic and Reconstructive Surgery, The Christie Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Simon J Furney
- Genomic Oncology Research Group, Department of Physiology and Medical Physics, Royal College of Surgeons, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons, Dublin, Ireland
| | - Amaya Virós
- Skin Cancer and Ageing Lab, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, United Kingdom. .,NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom.,Department of Dermatology, Salford Royal NHS Foundation Trust, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Helgadottir H, Isaksson K, Fritz I, Ingvar C, Lapins J, Höiom V, Newton-Bishop J, Olsson H. Multiple Primary Melanoma Incidence Trends Over Five Decades: A Nationwide Population-Based Study. J Natl Cancer Inst 2021; 113:318-328. [PMID: 32577730 PMCID: PMC7936055 DOI: 10.1093/jnci/djaa088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Over the past decades, many regions have experienced a steady increase in the incidence of cutaneous melanoma. Here, we report on incidence trends for subsequent primary melanoma. METHODS In this nationwide population-based study, patients diagnosed with a first primary cutaneous melanoma reported to the Swedish Cancer Registry were followed for up to 10 years for a diagnosis of subsequent primary melanoma. Patients were grouped with patients diagnosed with first melanoma in the same decade (1960s, 1970s, 1980s, 1990s, and 2000s, respectively). Frequencies, incidence rates (IRs), standardized incidence ratios (SIRs), and 95% confidence intervals (CIs) for second melanomas were calculated. All tests of statistical significance were 2-sided. RESULTS Of patients with melanoma, 54 884 were included and 2469 were diagnosed, within 10 years, with subsequent melanomas. Over the 5 decades, there was a statistically significant steady increase in the frequency, IR, and SIR for second primary melanoma. For example, in the 1960s cohort, less than 1% (IR = 1.0, 95% CI = 0.5 to 1.7, and IR = 1.1, 95% CI = 0.5 to 1.9 per 1000 person-years in women and men, respectively) had second primary melanoma, and this rose to 6.4% (IR = 7.5, 95% CI = 6.8 to 8.3, per 1000 person-years) in the women and 7.9% (IR = 10.3, 95% CI = 9.3 to 11.2, per 1000 person-years) in the men in the 2000s cohort. This rise was seen independent of age, sex, invasiveness, or site of the melanoma. Further, in patients diagnosed with a second melanoma, the frequency of those having more than 2 melanomas increased statistically significantly and was 0.0% in the 1960s and rose to 18.0% in the 2000s (P < .001). CONCLUSIONS This is the first study to evaluate and report on a rising trend for subsequent primary melanoma. Additional primary melanomas worsen the patients' survival, and precautions are needed to turn this steep upgoing trend.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Karolin Isaksson
- Department of Clinical Sciences Lund, Surgery, Lund University, Lund, Sweden
- Department of Surgery, Central Hospital Kristianstad, Kristianstad, Sweden
| | - Ildiko Fritz
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Christian Ingvar
- Department of Clinical Sciences Lund, Surgery, Lund University, Lund, Sweden
| | - Jan Lapins
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Genetic Alterations in the INK4a/ARF Locus: Effects on Melanoma Development and Progression. Biomolecules 2020; 10:biom10101447. [PMID: 33076392 PMCID: PMC7602651 DOI: 10.3390/biom10101447] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 01/02/2023] Open
Abstract
Genetic alterations in the INK4a/ARF (or CDKN2A) locus have been reported in many cancer types, including melanoma; head and neck squamous cell carcinomas; lung, breast, and pancreatic cancers. In melanoma, loss of function CDKN2A alterations have been identified in approximately 50% of primary melanomas, in over 75% of metastatic melanomas, and in the germline of 40% of families with a predisposition to cutaneous melanoma. The CDKN2A locus encodes two critical tumor suppressor proteins, the cyclin-dependent kinase inhibitor p16INK4a and the p53 regulator p14ARF. The majority of CDKN2A alterations in melanoma selectively target p16INK4a or affect the coding sequence of both p16INK4a and p14ARF. There is also a subset of less common somatic and germline INK4a/ARF alterations that affect p14ARF, while not altering the syntenic p16INK4a coding regions. In this review, we describe the frequency and types of somatic alterations affecting the CDKN2A locus in melanoma and germline CDKN2A alterations in familial melanoma, and their functional consequences in melanoma development. We discuss the clinical implications of CDKN2A inactivating alterations and their influence on treatment response and resistance.
Collapse
|
23
|
Abstract
The incidence of cutaneous melanoma continues to increase in pale skinned peoples in Europe and elsewhere. Epidemiological studies identified genetically determined phenotypes such as pale skin, freckles and red hair, and sunburn as risk factors for this cancer. The development of many melanocytic naevi is also genetically determined and a strong melanoma risk phenotype. Not surprisingly then, genome wide association studies have identified pigmentation genes as common risk genes, and to a lesser extent, genes associated with melanocytic naevi. More unexpectedly, genes associated with telomere length have also been identified as risk genes. Higher risk susceptibility genes have been identified, particularly CDKN2A as the most common cause, and very rarely genes such as CDK4, POT1, TERT and other genes in coding for proteins in the shelterin complex are found to be mutated. Familial melanoma genes are associated with an increased number of melanocytic naevi but not invariably and the atypical naevus phenotype is therefore an imperfect marker of gene carrier status. At a somatic level, the most common driver mutation is BRAF, second most common NRAS, third NF1 and increasing numbers of additional rarer mutations are being identified such as in TP53. It is of note that the BRAF and NRAS mutations are not C>T accepted as characteristic of ultraviolet light induced mutations.
Collapse
|
24
|
Toussi A, Mans N, Welborn J, Kiuru M. Germline mutations predisposing to melanoma. J Cutan Pathol 2020; 47:606-616. [PMID: 32249949 DOI: 10.1111/cup.13689] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Nearly 15% of melanomas occur in patients with a family history and a subset of these patients have a germline mutation in a melanoma predisposing gene. CDKN2A mutations are responsible for the majority of hereditary melanoma, but many other susceptibility genes have been discovered in recent years, including CDK4, TERT, ACD, TERF2IP, POT1, MITF, MC1R, and BAP1. Additionally, melanoma risk is increased in mixed cancer syndromes caused by mutations in PTEN, BRCA2, BRCA1, RB1, and TP53. While early onset, multiple tumors, and family cancer history remain the most valuable clinical clues for hereditary melanoma, characteristic epithelioid cytology of melanocytic tumors may suggest an underlying BAP1 mutation. Herein, we review the clinical and histopathologic characteristics of melanocytic tumors associated with these germline mutations and discuss the role of genetic counseling.
Collapse
Affiliation(s)
- Atrin Toussi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Nicole Mans
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Jeanna Welborn
- Hereditary Cancer Program, Comprehensive Cancer Center, University of California, Davis, Sacramento, California, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
25
|
Dalmasso B, Ghiorzo P. Evolution of approaches to identify melanoma missing heritability. Expert Rev Mol Diagn 2020; 20:523-531. [PMID: 32124637 DOI: 10.1080/14737159.2020.1738221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Around 10% of melanoma patients have a positive family history of melanoma and/or related cancers. Although a germline pathogenic variant in a high-risk gene can be identified in up to 40% of these patients, the remaining part of melanoma heritability remains largely unexplained.Areas covered: The aim of this review is to provide an overview of the impact that new technologies and new research approaches had and are having on finding more efficient ways to unravel the missing heritability in melanoma.Expert opinion: High-throughput sequencing technologies have been crucial in increasing the number of genes/loci that might be implicated in melanoma predisposition. However, results from these approaches may have been inferior to the expectations, due to an increase in quantitative information which hasn't been followed at the same speed by an improvement of the methods to correctly interpret these data. Optimal approaches for improving our knowledge on melanoma heritability are currently based on segregation analysis coupled with functional assessment of candidate genes. An improvement of computational methods to infer genotype-phenotype correlations could help address the issue of missing heritability.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| |
Collapse
|
26
|
Li X, Liu J, Wang K, Zhou J, Zhang H, Zhang M, Shi Y. Polymorphisms and rare variants identified by next-generation sequencing confer risk for lung cancer in han Chinese population. Pathol Res Pract 2020; 216:152873. [PMID: 32107087 DOI: 10.1016/j.prp.2020.152873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Lung cancer is one of the leading causes of cancer death worldwide, and genetic risk factors account for a large part of its carcinogenesis. The low economic requirements and high efficiency of next-generation sequencing (NGS) make it widely used in detecting genetic alterations in pathogenesis. METHODS We performed targeted panel sequencing in 780 Han Chinese lung cancer patients using a commercial probe, and the correlations between dozens of susceptible sites were verified in 1113 healthy controls. This study used Fisher's exact test and Benjamini-Hochberg FDR correction to analyze the mutual exclusion between mutated genes, and Pearson's p was used to verify the correlations between mutations and lung cancer susceptibility. RESULTS Our results determined the mutation spectrum and showed that each lung cancer patient carried at least one DNA mutation. The most frequently mutated gene was BRCA2 (mutation rate,10.6 %.). The co-occurrence and mutual exclusion analysis of DNA damage related genes showed that gene ATM was mutually exclusive from MSH6. We conducted a further case-control study in different subtypes of lung cancer and the results described 14 mutations associated with adenocarcinoma, 9 with squamous cell carcinoma, and 4 with small cell lung cancer. These variants were novel de-novo germline mutations in lung cancer. Particularly, rs3864017 in FANCD2 showed a protective effect of lung adenocarcinoma for carriers (OR = 0.146, 95 % CI = 0.052∼0.405, Padjusted = 3.37 × 10-4). CONCLUSIONS 18 candidate mutations might alter the risk of lung cancer in the Han Chinese population, including polymorphisms rs3864017(FANCD2), rs55740729(MSH6) and 16 rare variants. The underlying mechanisms of candidate genes in lung cancer remain unclear and we suggest more functional studies on exploring how these genes affect the risk of lung cancer.
Collapse
Affiliation(s)
- Xiaoqi Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinsheng Liu
- Shanghai Jiao Tong University Hospital, Shanghai 200030, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mancang Zhang
- DYnastyGene Biotech Co. Ltd., Building 25, No.10688 Bei Qing Road, Qingpu District, Shanghai 201700, PR China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
27
|
Potrony M, Puig-Butille J, Ribera-Sola M, Iyer V, Robles-Espinoza C, Aguilera P, Carrera C, Malvehy J, Badenas C, Landi M, Adams D, Puig S. POT1 germline mutations but not TERT promoter mutations are implicated in melanoma susceptibility in a large cohort of Spanish melanoma families. Br J Dermatol 2019; 181:105-113. [PMID: 30451293 PMCID: PMC6526091 DOI: 10.1111/bjd.17443] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Germline mutations in telomere-related genes such as POT1 and TERT predispose individuals to familial melanoma. OBJECTIVES To evaluate the prevalence of germline mutations in POT1 and TERT in a large cohort of Spanish melanoma-prone families (at least two affected first- or second-degree relatives). METHODS Overall, 228 CDKN2A wild-type melanoma-prone families were included in the study. Screening of POT1 was performed in one affected person from each family and TERT was sequenced in one affected patient from 202 families (26 families were excluded owing to DNA exhaustion/degradation). TERT promoter sequencing was extended to an additional 30 families with CDKN2A mutation and 70 patients with sporadic multiple primary melanoma (MPM) with a family history of other cancers. RESULTS We identified four families with potentially pathogenic POT1 germline mutations: a missense variant c.233T>C (p.Ile78Thr); a nonsense variant c.1030G>T (p.Glu344*); and two other variants, c.255G>A (r.125_255del) and c.1792G>A (r.1791_1792insAGTA, p.Asp598Serfs*22), which we confirmed disrupted POT1 mRNA splicing. A TERT promoter variant of unknown significance (c.-125C>A) was detected in a patient with MPM, but no germline mutations were detected in TERT promoter in cases of familial melanoma. CONCLUSIONS Overall, 1·7% of our CDKN2A/CDK4-wild type Spanish melanoma-prone families carry probably damaging mutations in POT1. The frequency of TERT promoter germline mutations in families with melanoma in our population is extremely rare.
Collapse
Affiliation(s)
- Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J.A. Puig-Butille
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - M. Ribera-Sola
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - V. Iyer
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - C.D. Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico
- Experimental Cancer Genetics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - P. Aguilera
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cristina Carrera
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - J. Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - C. Badenas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - M.T. Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - D.J. Adams
- Experimental Cancer Genetics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
28
|
Shukuya T, Takahashi K. Germline mutations in lung cancer. Respir Investig 2019; 57:201-206. [PMID: 30639082 DOI: 10.1016/j.resinv.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Genetic testing for alterations in oncogenic driver genes has become essential and standard in the clinical practice of the treatment of lung cancer. Germline mutations potentially predisposing patients to lung cancer are rare; however, with the introduction of next-generation sequencing in the clinical practice of lung cancer, the identification of potentially predisposing germline abnormalities is becoming more common. In addition, liquid biopsy, which analyzes cell-free DNA in blood, increases the possibility of detecting these germline mutations. In this review, we summarize the germline mutations detected in lung cancer patients and briefly describe the future perspectives.
Collapse
Affiliation(s)
- Takehito Shukuya
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan; Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
29
|
CDKN2A germline alterations in melanoma patients with personal or familial history of pancreatic cancer. Melanoma Res 2019; 28:246-249. [PMID: 29543703 DOI: 10.1097/cmr.0000000000000442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CDKN2A germline mutations increase the risk of melanoma development and are present in 20 and 10% of familial and multiple melanoma cases, respectively. Pancreatic cancer has been associated with CDKN2A in some populations and, accordingly, its presence in first-degree or second-degree relatives of a melanoma patient is considered as a criterion for genetic testing. In this study, we show that in an area with low melanoma incidence, CDKN2A germline mutations in patients with melanoma and personal or family history of pancreatic cancer are mainly present in the setting of familial or multiple melanoma cases. In addition, a relatively young age (≤52 years) at pancreatic diagnosis is an additional single criterion that might also be considered.
Collapse
|
30
|
Helgadottir H, Ghiorzo P, van Doorn R, Puig S, Levin M, Kefford R, Lauss M, Queirolo P, Pastorino L, Kapiteijn E, Potrony M, Carrera C, Olsson H, Höiom V, Jönsson G. Efficacy of novel immunotherapy regimens in patients with metastatic melanoma with germline CDKN2A mutations. J Med Genet 2018; 57:316-321. [PMID: 30291219 PMCID: PMC7231460 DOI: 10.1136/jmedgenet-2018-105610] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/23/2018] [Accepted: 09/11/2018] [Indexed: 01/30/2023]
Abstract
Background Inherited CDKN2A mutation is a strong risk factor for cutaneous melanoma. Moreover, carriers have been found to have poor melanoma-specific survival. In this study, responses to novel immunotherapy agents in CDKN2A mutation carriers with metastatic melanoma were evaluated. Methods CDKN2A mutation carriers that have developed metastatic melanoma and undergone immunotherapy treatments were identified among carriers enrolled in follow-up studies for familial melanoma. The carriers’ responses were compared with responses reported in phase III clinical trials for CTLA-4 and PD-1 inhibitors. From publicly available data sets, melanomas with somatic CDKN2A mutation were analysed for association with tumour mutational load. Results Eleven of 19 carriers (58%) responded to the therapy, a significantly higher frequency than observed in clinical trials (p=0.03, binomial test against an expected rate of 37%). Further, 6 of the 19 carriers (32%) had complete response, a significantly higher frequency than observed in clinical trials (p=0.01, binomial test against an expected rate of 7%). In 118 melanomas with somatic CDKN2A mutations, significantly higher total numbers of mutations were observed compared with 761 melanomas without CDKN2A mutation (Wilcoxon test, p<0.001). Conclusion Patients with CDKN2A mutated melanoma may have improved immunotherapy responses due to increased tumour mutational load, resulting in more neoantigens and stronger antitumorous immune responses.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Max Levin
- Department of Oncology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Richard Kefford
- Department of Clinical Medicine, Westmead Hospital and Macquarie University, Sydney, New South Wales, Australia
| | - Martin Lauss
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties, University of Genoa and Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miriam Potrony
- Melanoma Unit, Dermatology Department, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Carrera
- Melanoma Unit, Dermatology Department, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Håkan Olsson
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Veronica Höiom
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
31
|
Dalmasso B, Pastorino L, Ciccarese G, Andreotti V, Grillo F, Mastracci L, Spagnolo F, Ballestrero A, Queirolo P, Bruno W, Ghiorzo P. CDKN2A germline mutations are not associated with poor survival in an Italian cohort of melanoma patients. J Am Acad Dermatol 2018; 80:1263-1271. [PMID: 30274933 DOI: 10.1016/j.jaad.2018.07.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cyclin dependent kinase inhibitor 2A gene (CDKN2A) germline mutations have recently been associated with poor survival in patients with melanoma. Despite the high mutation rate in our cohort (up to 10% in patients with apparently sporadic melanoma), information on the impact of CDKN2A on survival in this cohort is lacking. OBJECTIVE To investigate whether poor survival associated with CDKN2A germline mutations was confirmed in a high mutation-prevalence cohort of Italian patients with melanoma undergoing a mutation-based follow-up. METHODS A total of 1239 patients with cutaneous melanoma were tested for CDKN2A mutational status and then assigned to a follow-up scheme according not only to family history but also to CDKN2A mutational status, as follow-up intervals were more frequent for CDKN2A germline mutation-positive (MUT+) patients. From this cohort, we selected 106 MUT+ patients (with familial melanoma or apparently sporadic melanoma) and 199 CDKN2A germline mutation-negative (MUT-) patients with sporadic melanoma who were matched by age and sex and had a similar tumor stage distribution. RESULTS We found no difference in overall survival (hazard ratio, 0.85; 95% confidence interval, 0.48-1.52; P = .592,) or melanoma-specific survival (hazard ratio, 0.86; 95% confidence interval, 0.38-1.95; P = .718,) between MUT+ and MUT- patients. MUT+ patients were more likely to develop multiple melanomas and to undergo surgical excision of dysplastic nevi than were MUT- patients. LIMITATIONS Retrospective study. CONCLUSION CDKN2A mutations were not associated with survival in our cohort.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Ciccarese
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Virginia Andreotti
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences, Pathology Unit, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences, Pathology Unit, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
32
|
Gironi LC, Colombo E, Pasini B, Giorgione R, Farinelli P, Zottarelli F, Esposto E, Zavattaro E, Allara E, Ogliara P, Betti M, Dianzani I, Savoia P. Melanoma-prone families: new evidence of distinctive clinical and histological features of melanomas in CDKN2A mutation carriers. Arch Dermatol Res 2018; 310:769-784. [PMID: 30218143 DOI: 10.1007/s00403-018-1866-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 11/26/2022]
Abstract
Germline mutations on the CDKN2A gene, the most important known genetic factors associated with cutaneous melanomas (CMs), predispose carriers to multiple primary CMs (MPMs) with higher frequency and younger onset compared to non-carriers. Most of the largest published studies concerning clinical and histological characteristics of CMs with CDKN2A mutation carriers did not specify if the described CMs are first or subsequent to the first, and they used sporadic CMs from non-genotyped patients as controls. We conducted a single-centre observational study to compare clinical and histological CM features of 32 unrelated carriers (MUT) of 5 germline CDKN2A mutations (one of which was never previously described) compared to 100 genotyped wild-type (WT) patients. We stratified the data based on time of diagnosis, anatomical site and histological subtype of CMs, demonstrating several significant unreported differences between the two groups. MUT developed a higher number of dysplastic nevi and MPMs. We proved for the first time that anatomical distribution of CMs in MUT was independent of gender, unlike WTs. MUTs developed in situ and superficial spreading melanomas (SSMs) more frequently, with significantly higher number of SSMs on the head/neck. In MUTs, Breslow thickness was significantly lower for all invasive CMs. When CMs were stratified on the basis of the time of occurrence, statistical significance was maintained only for SSMs subsequent to the first. In WTs, Clark level was significantly higher, and ulceration was more prevalent than in MUTs. Significant differences in ulceration were observed only in SSMs. In nodular CMs, we did not find differences in terms of Breslow thickness or ulceration between WTs and MUTs. In situ CMs developed 10 years earlier in MUTs with respect to WTs, whereas no significant differences were observed in invasive CMs. In contrast to those reported previously by other authors, we did not find a difference in skin phototype.
Collapse
Affiliation(s)
- Laura Cristina Gironi
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy.
| | - Enrico Colombo
- Department of Translational Medicine, A. Avogadro University of Eastern Piedmont, Novara, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Giorgione
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Pamela Farinelli
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Francesca Zottarelli
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elia Esposto
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elisa Zavattaro
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Elias Allara
- NIHR Blood and Transplant Research Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paola Ogliara
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marta Betti
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| | - Paola Savoia
- Department of Health Sciences, A. Avogadro University of Eastern Piedmont, Corso Mazzini 18, 28100, Novara, Italy
| |
Collapse
|
33
|
Apatinib-based targeted therapy against pulmonary sarcomatoid carcinoma: a case report and literature review. Oncotarget 2018; 9:33734-33738. [PMID: 30263099 PMCID: PMC6154744 DOI: 10.18632/oncotarget.25989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/17/2018] [Indexed: 12/15/2022] Open
Abstract
Sarcomatoid carcinoma is a rare malignancy characterized by a combination of epithelial and sarcoma or sarcoma-like components. In this study, we reported one case of pulmonary sarcomatoid carcinoma and evaluated the safety and efficacy of apatinib, a tyrosine kinase inhibitor selectively targeting vascular endothelial growth factor receptor 2, in treating this disease. The tumor mass was detected in the left lung of a 75-year-old man and showed positive immunostaining for cytokeratin (CK) 7, CK8, smooth muscle actin, CD31, and CD34. Next-generation sequencing analysis identified 4 mutations in NF1 (p.Q347Sfs*29), CDKN2A (p.G23V), ERBB3 (p.V104L), and TP53 (p.V157F) genes. The patient was given apatinib (250 mg) orally once per day. Sustained tumor regression was observed after apatinib treatment. There was no sever complication associated with apatinib therapy. In conclusion, apatinib-based targeted therapy may represent an important option for patients with sarcomatoid carcinoma.
Collapse
|
34
|
Helgadottir H, Olsson H, Tucker MA, Yang XR, Höiom V, Goldstein AM. Phenocopies in melanoma-prone families with germ-line CDKN2A mutations. Genet Med 2018; 20:1087-1090. [PMID: 29215650 PMCID: PMC6916246 DOI: 10.1038/gim.2017.216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/30/2017] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Carriers of CDKN2A mutations have high risks of melanoma and certain other cancers. In this study we examined the occurrence of tumors among CDKN2A wild type (wt) members of melanoma-prone families with CDKN2A mutations. METHODS Swedish and US melanoma-prone families with CDKN2A mutations were included. Data was collected on tumors diagnosed among family members. Among the CDKN2A mutated families, members with CDKN2A wt status who were diagnosed with melanoma were designated phenocopies. RESULTS Of patients with melanoma in the CDKN2A mutated families (n = 266), 7.1%, were seen among members with CDKN2A wt status (phenocopy rate). Among the CDKN2A wt family members of the CDKN2A mutated families (n = 256), 7.4% were diagnosed with melanoma. The prospective relative risk for melanomas was significantly higher among the CDKN2A wt subjects compared with population-based controls (7.4 (95% confidence interval 1.7-33.2)), while no elevated risks of nonmelanoma cancers were seen and their offspring did not have significantly elevated risks of melanoma or other cancers. CONCLUSION Members of CDKN2A mutation carrying families who test negative for their family's mutation have moderately increased risk for melanoma and should, in addition to being considered for continuing dermatologic surveillance, be encouraged to follow sun safety recommendations and practice skin self-exams.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Håkan Olsson
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
35
|
Yamamoto H, Yatabe Y, Toyooka S. Inherited lung cancer syndromes targeting never smokers. Transl Lung Cancer Res 2018; 7:498-504. [PMID: 30225213 DOI: 10.21037/tlcr.2018.06.01] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Most of lung cancers develop sporadically and thus inherited lung cancers are rare. Several reports show that germline mutations in the kinase domain of epidermal growth factor receptor (EGFR) such as R776G, R776H, T790M, V843I and P848L, predispose to develop lung cancer. Most lung cancer cases with germline EGFR T790M mutations had secondary EGFR somatic mutations. Never smokers with germline EGFR T790M mutations develop lung cancer more frequently than ever smokers. In addition, germline EGFR T790M mutations favored female gender. Therefore, germline EGFR T790M mutations result in a unique inherited lung cancer syndrome targeting never smokers. The authors previously reported a Japanese familial lung cancer pedigree with germline mutations in the transmembrane domain of human epidermal growth factor receptor 2 (HER2). The female proband and her mother in this pedigree, who were light or never smokers, developed multiple lung adenocarcinomas, and had germline HER2 G660D mutations. They had no EGFR somatic mutations or other genes known to cause lung cancers. Although we know only one pedigree with germline HER2 mutations, these mutations may also cause inherited lung cancers targeting female never smokers. Based on our in vitro analyses, we administered HER2 inhibitor afatinib to the proband and achieved partial response. These lung cancers arising from germline mutations of receptor tyrosine kinases such as EGFR and HER2 may have different features from those with sporadic mutations.
Collapse
Affiliation(s)
- Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
36
|
Genome-wide linkage analysis in Spanish melanoma-prone families identifies a new familial melanoma susceptibility locus at 11q. Eur J Hum Genet 2018; 26:1188-1193. [PMID: 29706638 DOI: 10.1038/s41431-018-0149-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/23/2018] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
The main genetic factors for familial melanoma remain unknown in >75% of families. CDKN2A is mutated in around 20% of melanoma-prone families. Other high-risk melanoma susceptibility genes explain <3% of families studied to date. We performed the first genome-wide linkage analysis in CDKN2A-negative Spanish melanoma-prone families to identify novel melanoma susceptibility loci. We included 68 individuals from 2, 3, and 6 families with 2, 3, and at least 4 melanoma cases. We detected a locus with significant linkage evidence at 11q14.1-q14.3, with a maximum het-TLOD of 3.449 (rs12285365:A>G), using evidence from multiple pedigrees. The genes contained by the subregion with the strongest linkage evidence were: DLG2, PRSS23, FZD4, and TMEM135. We also detected several regions with suggestive linkage evidence (TLOD >1.9) (1q, 6p, 7p, 11q, 12p, 13q) including the region previously detected in melanoma-prone families from Sweden at 3q29. The family-specific analysis revealed three loci with suggestive linkage evidence for family #1: 1q31.1-q32.1 (max. TLOD 2.447), 6p24.3-p22.3 (max. TLOD 2.409), and 11q13.3-q21 (max. TLOD 2.654). Future next-generation sequencing studies of these regions may allow the identification of new melanoma susceptibility genetic factors.
Collapse
|
37
|
Potjer TP, Helgadottir H, Leenheer M, van der Stoep N, Gruis NA, Höiom V, Olsson H, van Doorn R, Vasen HFA, van Asperen CJ, Dekkers OM, Hes FJ. CM-Score: a validated scoring system to predict CDKN2A germline mutations in melanoma families from Northern Europe. J Med Genet 2018; 55:661-668. [PMID: 29661971 DOI: 10.1136/jmedgenet-2017-105205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Several factors have been reported that influence the probability of a germline CDKN2A mutation in a melanoma family. Our goal was to create a scoring system to estimate this probability, based on a set of clinical features present in the patient and his or her family. METHODS Five clinical features and their association with CDKN2A mutations were investigated in a training cohort of 1227 Dutch melanoma families (13.7% with CDKN2A mutation) using multivariate logistic regression. Predefined features included number of family members with melanoma and with multiple primary melanomas, median age at diagnosis and presence of pancreatic cancer or upper airway cancer in a family member. Based on these five features, a scoring system (CDKN2A Mutation(CM)-Score) was developed and subsequently validated in a combined Swedish and Dutch familial melanoma cohort (n=421 families; 9.0% with CDKN2A mutation). RESULTS All five features were significantly associated (p<0.05) with a CDKN2A mutation. At a CM-Score of 16 out of 49 possible points, the threshold of 10% mutation probability is approximated (9.9%; 95% CI 9.8 to 10.1). This probability further increased to >90% for families with ≥36 points. A CM-Score under 16 points was associated with a low mutation probability (≤4%). CM-Score performed well in both the training cohort (area under the curve (AUC) 0.89; 95% CI 0.86 to 0.92) and the external validation cohort (AUC 0.94; 95% CI 0.90 to 0.98). CONCLUSION We developed a practical scoring system to predict CDKN2A mutation status among melanoma-prone families. We suggest that CDKN2A analysis should be recommended to families with a CM-Score of ≥16 points.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hildur Helgadottir
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mirjam Leenheer
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Olsson
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hans F A Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
38
|
Gingerich MA, Smith JD, Michmerhuizen NL, Ludwig M, Devenport S, Matovina C, Brenner C, Chinn SB. Comprehensive review of genetic factors contributing to head and neck squamous cell carcinoma development in low-risk, nontraditional patients. Head Neck 2018; 40:943-954. [PMID: 29427520 DOI: 10.1002/hed.25057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The past 2 decades have seen an increased incidence of head and neck squamous cell carcinoma (HNSCC) in a nontraditional, low-risk patient population (ie, ≤45 years of age, no substance use history), owing to a combination of human papillomavirus (HPV) infection and individual genetic variation. METHODS Articles positing genetic variants as contributing factors in HNSCC incidence in low-risk, nontraditional patients were identified using a PubMed search, reviewed in detail, and concisely summarized herein. RESULTS Recent data suggest that common polymorphisms in DNA repair enzymes, cell-cycle control proteins, apoptotic pathway members, and Fanconi anemia-associated genes likely modulate susceptibility to HNSCC development in low-risk, nontraditional patients. CONCLUSION At present, there is a lack of robust, comprehensive data on genetic drivers of oncogenesis in low-risk patients and a clear need for further research on genetic alterations underlying the rising incidence of HNSCC in low-risk, nontraditional patients.
Collapse
Affiliation(s)
- Morgan A Gingerich
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Joshua D Smith
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicole L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Megan Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Samantha Devenport
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chloe Matovina
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chad Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| | - Steven B Chinn
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, Michigan.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
39
|
Identification of a rare germline NBN gene mutation by whole exome sequencing in a lung-cancer survivor from a large family with various types of cancer. Fam Cancer 2018; 16:389-394. [PMID: 27844240 DOI: 10.1007/s10689-016-9954-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nijmegen breakage syndrome is an autosomal recessive disorder caused by biallelic mutation in NBN gene. It is characterized by microcephaly, growth retardation, immuno-deficiency and cancer predisposition. The monoallelic carriers of NBN gene are also reported to be at increased risk of developing various types of malignancy. We have investigated an individual with lung cancer from an extended family segregating different types of hereditary cancer over several generations, including lung, breast, ovarian, colon, prostate and renal cancers. By using next generation whole exome sequencing approach, we identified a rare heterozygous frameshift mutation in NBN gene; c.93_94delTG (Ala32HisfsTer4), which is predicted to be pathogenic together with 3 other variants; 2 being in the BRCA1 gene, c.1648A > C (p.Asn550His) and c.536A > G (p.Tyr179Cys), and one in RAD50 gene, c.3539G > A (p.Arg1180Gln). Some of the variants were also found in six out of eight clinically normal relatives, but in different combinations. To our knowledge, this is the first report of NBN gene mutation in an individual with lung cancer in the Arab world. Reporting such findings may aid in variants' risk classification and clinical decision in the future.
Collapse
|
40
|
Tucker MA, Elder DE, Curry M, Fraser MC, Pichler V, Zametkin D, Yang XR, Goldstein AM. Risks of Melanoma and Other Cancers in Melanoma-Prone Families over 4 Decades. J Invest Dermatol 2018; 138:1620-1626. [PMID: 29408205 DOI: 10.1016/j.jid.2018.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Since 1976, melanoma-prone families have been followed at the National Cancer Institute to identify etiologic factors for melanoma. We compared risks of melanoma and other cancers in 1,226 members of 56 families followed for up to 4 decades with population rates in the Surveillance, Epidemiology, and End Results program. All families were tested for mutations in CDKN2A and CDK4; 29 were mutation-positive and 27 mutation-negative. We compared rates of invasive melanomas, both first and second, by family mutation status, with Surveillance, Epidemiology, and End Results program. Comparing three calendar periods of the study, risk of first primary melanoma decreased slightly. Risks of melanoma after first examination, however, were approximately one-third the risks prior to the first examination in both mutation-positive and mutation-negative families. Among patients with melanoma, risk of a second melanoma was increased 10-fold in all families; risk was somewhat higher in mutation-positive families. Risks of other second cancers were increased only for pancreatic cancer after melanoma in mutation-positive families. Over 4 decades, prospective risk of melanoma has decreased substantially in both mutation-positive and mutation-negative families, when melanoma has greatly increased in the general population. TRIAL REGISTRATION NCI 02-C-0211, ClinicalTrials.gov ID NCT00040352.
Collapse
Affiliation(s)
- Margaret A Tucker
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - David E Elder
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Curry
- Information Management Services, Inc, Silver Spring, Maryland
| | - Mary C Fraser
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Xiaohong R Yang
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
41
|
A Potential Role for Green Tea as a Radiation Sensitizer for Prostate Cancer. Pathol Oncol Res 2017; 25:263-268. [PMID: 29101735 DOI: 10.1007/s12253-017-0358-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer in the United States. There is currently a lack of safe and effective radiosensitizers that can enhance the effectiveness of radiation treatment (RT) for Pca. Clonogenic assay, PCNA staining, Quick Cell Proliferation assay, TUNEL staining and caspase-3 activity assay were used to assess proliferation and apoptosis in DU145 Pca cells. RT-PCR/IHC were used to investigate the mechanisms. We found that the percentage of colonies, PCNA staining intensity, and the optical density value of DU145 cells were decreased (RT/GT vs. RT). TUNEL + cells and the relative caspase-3 activity were increased (RT/GT vs. RT). Compared to RT, the anti-proliferative effect of RT/GT correlated with increased expression of the anti-proliferative molecule p16. Compared to RT, the pro-apoptotic effect of RT/GT correlated with decreased expression of the anti-apoptotic molecule Bcl-2. GT enhances RT sensitivity of DU145 by inhibiting proliferation and promoting apoptosis.
Collapse
|
42
|
Helgadottir H, Tuominen R, Olsson H, Hansson J, Höiom V. Cancer risks and survival in patients with multiple primary melanomas: Association with family history of melanoma and germline CDKN2A mutation status. J Am Acad Dermatol 2017; 77:893-901. [PMID: 28818438 DOI: 10.1016/j.jaad.2017.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Worse outcomes have been noted in patients with multiple primary melanomas (MPMs) than in patients with single primary melanomas. OBJECTIVE We investigated how family history of melanoma and germline CDKN2A mutation status of MPM patients affects risks of developing subsequent melanomas and other cancers and survival outcomes. METHODS Comprehensive data on cancer diagnoses and deaths of MPM patients, their first-degree relatives, and matched controls were obtained through Swedish national health care and population registries. RESULTS Familial MPM cases with germline CDKN2A mutations were youngest at the diagnosis of their second melanoma (median age 42 years) and had among the MPM cohorts the highest relative risks (RR) compared to controls of developing >2 melanomas (RR 238.4, 95% CI 74.8-759.9). CDKN2A mutated MPM cases and their first-degree relatives were the only cohorts with increased risks of nonskin cancers compared to controls (RR 3.6, 95% CI 1.9-147.1 and RR 3.2, 95% CI 1.9-5.6, respectively). In addition, CDKN2A mutated MPM cases had worse survival compared with both cases with familial (HR 3.0, 95% CI 1.3-8.1) and sporadic wild-type MPM (HR 2.63, 95% CI 1.3-5.4). LIMITATIONS Our study examined outcomes in subgroups of MPM patients, which affected the sample size of the study groups. CONCLUSION This study demonstrates that CDKN2A mutation status and family history of melanoma significantly affects outcomes of MPM patients.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Rainer Tuominen
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Håkan Olsson
- Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Levin T, Mæhle L. Uptake of genetic counseling, genetic testing and surveillance in hereditary malignant melanoma (CDKN2A) in Norway. Fam Cancer 2017; 16:257-265. [PMID: 27804060 PMCID: PMC5357480 DOI: 10.1007/s10689-016-9939-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Germline mutations in the CDKN2A gene are associated with an increased risk of malignant melanoma and pancreatic cancer. In order to find out if the behavior pattern in families with a CDKN2A mutation is similar to what we previously have described in families with a BRCA1 mutation, we have studied the uptake of genetic services in probands and their relatives. We describe whether they attend genetic counseling when invited, whether they want a mutation test after being counseled and whether they adhere to recommendations for surveillance. 66 % (95/144) of first-degree relatives to mutation carriers contacted us within the study period. 98 % (126/128) of all relatives who came for genetic counseling decided on genetic testing for their family's mutation, and 93 % (66/71) of all mutation carriers wanted referral to yearly skin examinations. Female relatives had a significantly higher uptake of genetic services compared to males, similar to the findings in families with a BRCA1 mutation. Uptake of genetic services in general in families with a CDKN2A mutation is high. Females seem to have a higher interest in genetic testing than males, regardless of gene mutated.
Collapse
Affiliation(s)
- Trine Levin
- Section on Hereditary Cancer, Oslo University Hospital, PB 4950 Nydalen, 0424, Oslo, Norway.
| | - Lovise Mæhle
- Section on Hereditary Cancer, Oslo University Hospital, PB 4950 Nydalen, 0424, Oslo, Norway
| |
Collapse
|
44
|
Helgadottir H, Höiom V, Tuominen R, Nielsen K, Jönsson G, Olsson H, Hansson J. Germline CDKN2A Mutation Status and Survival in Familial Melanoma Cases. J Natl Cancer Inst 2016; 108:djw135. [PMID: 27287845 DOI: 10.1093/jnci/djw135] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 04/20/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Germline mutations in CDKN2A have been associated with increased risk of melanoma and tobacco-related cancers in respiratory and upper digestive tissues. In CDKN2A wild-type (wt) melanoma families, other known high-risk, melanoma-predisposing mutations are rare, and no increased risk has been observed for nonskin cancers in this group. This study is the first to compare survival in germline CDKN2A mutated (mut) and nonmutated melanoma cases. METHODS Melanoma-prone families participating in this study were identified through a nationwide predictive program starting in 1987. Information on cancer diagnoses (types, stages, and dates) and deaths (causes and dates) were obtained through the Swedish Cancer Registry and Cause of Death Registry. Kaplan Meier and Cox proportional hazards regression models were used to assess survival in CDKN2A(mut) (n = 96) and CDKN2A(wt) (n = 377) familial melanoma cases and in matched sporadic melanoma cases (n = 1042). All statistical tests were two-sided. RESULTS When comparing CDKN2A(mut) and CDKN2A(wt) melanoma cases, after adjusting for age, sex, and T classification, CDKN2A(mut) had worse survival than melanoma (hazard ratio [HR] = 2.50, 95% confidence interval [CI] = 1.49 to 4.21) and than nonmelanoma cancers (HR = 7.77, 95% CI = 3.65 to 16.51). Compared with matched sporadic cases, CDKN2A(mut) cases had statistically significantly worse survival from both melanoma and nonmelanoma cancers while no differences in survival were seen in CDKN2A(wt) compared with sporadic cases. CONCLUSIONS CDKN2A(mut) cases had statistically significantly worse survival than nonmelanoma cancers and, intriguingly, also from melanoma, compared with melanoma cases with no CDKN2A mutations. Further studies are required to elucidate possible mechanisms behind increased carcinogen susceptibility and the more aggressive melanoma phenotype in CDKN2A mutation carriers.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Affiliations of authors: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden (HH, VH, RT, JH); Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital (GJ, HO); Department of Dermatology, Clinical Sciences Lund, Lund University and Helsingborg Hospital (KN)
| | - Veronica Höiom
- Affiliations of authors: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden (HH, VH, RT, JH); Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital (GJ, HO); Department of Dermatology, Clinical Sciences Lund, Lund University and Helsingborg Hospital (KN)
| | - Rainer Tuominen
- Affiliations of authors: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden (HH, VH, RT, JH); Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital (GJ, HO); Department of Dermatology, Clinical Sciences Lund, Lund University and Helsingborg Hospital (KN)
| | - Kari Nielsen
- Affiliations of authors: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden (HH, VH, RT, JH); Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital (GJ, HO); Department of Dermatology, Clinical Sciences Lund, Lund University and Helsingborg Hospital (KN)
| | - Göran Jönsson
- Affiliations of authors: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden (HH, VH, RT, JH); Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital (GJ, HO); Department of Dermatology, Clinical Sciences Lund, Lund University and Helsingborg Hospital (KN)
| | - Håkan Olsson
- Affiliations of authors: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden (HH, VH, RT, JH); Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital (GJ, HO); Department of Dermatology, Clinical Sciences Lund, Lund University and Helsingborg Hospital (KN)
| | - Johan Hansson
- Affiliations of authors: Department of Oncology-Pathology, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden (HH, VH, RT, JH); Department of Oncology, Clinical Sciences Lund, Lund University and Skåne University Hospital (GJ, HO); Department of Dermatology, Clinical Sciences Lund, Lund University and Helsingborg Hospital (KN)
| |
Collapse
|
45
|
Yang XR, Rotunno M, Xiao Y, Ingvar C, Helgadottir H, Pastorino L, van Doorn R, Bennett H, Graham C, Sampson JN, Malasky M, Vogt A, Zhu B, Bianchi-Scarra G, Bruno W, Queirolo P, Fornarini G, Hansson J, Tuominen R, Burdett L, Hicks B, Hutchinson A, Jones K, Yeager M, Chanock SJ, Landi MT, Höiom V, Olsson H, Gruis N, Ghiorzo P, Tucker MA, Goldstein AM. Multiple rare variants in high-risk pancreatic cancer-related genes may increase risk for pancreatic cancer in a subset of patients with and without germline CDKN2A mutations. Hum Genet 2016; 135:1241-1249. [PMID: 27449771 PMCID: PMC5152573 DOI: 10.1007/s00439-016-1715-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/16/2016] [Indexed: 12/29/2022]
Abstract
The risk of pancreatic cancer (PC) is increased in melanoma-prone families but the causal relationship between germline CDKN2A mutations and PC risk is uncertain, suggesting the existence of non-CDKN2A factors. One genetic possibility involves patients having mutations in multiple high-risk PC-related genes; however, no systematic examination has yet been conducted. We used next-generation sequencing data to examine 24 putative PC-related genes in 43 PC patients with and 23 PC patients without germline CDKN2A mutations and 1001 controls. For each gene and the four pathways in which they occurred, we tested whether PC patients (overall or CDKN2A+ and CDKN2A- cases separately) had an increased number of rare nonsynonymous variants. Overall, we identified 35 missense variants in PC patients, 14 in CDKN2A+ and 21 in CDKN2A- PC cases. We found nominally significant associations for mismatch repair genes (MLH1, MSH2, MSH6, PMS2) in all PC patients and for ATM, CPA1, and PMS2 in CDKN2A- PC patients. Further, nine CDKN2A+ and four CDKN2A- PC patients had rare potentially deleterious variants in multiple PC-related genes. Loss-of-function variants were only observed in CDKN2A- PC patients, with ATM having the most pathogenic variants. Also, ATM variants (n = 5) were only observed in CDKN2A- PC patients with a family history that included digestive system tumors. Our results suggest that a subset of PC patients may have increased risk because of germline mutations in multiple PC-related genes.
Collapse
Affiliation(s)
- Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Melissa Rotunno
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Division of Cancer Control and Population Studies, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Hildur Helgadottir
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hunter Bennett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cole Graham
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Malasky
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Giovanna Bianchi-Scarra
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Queirolo
- Medical Oncology Unit, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Johan Hansson
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Rainer Tuominen
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Veronica Höiom
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Håkan Olsson
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- , 9609 Medical Center Dr, Bethesda, MD, 20892-9769, USA.
| |
Collapse
|
46
|
Read J, Symmons J, Palmer JM, Montgomery GW, Martin NG, Hayward NK. Increased incidence of bladder cancer, lymphoid leukaemia, and myeloma in a cohort of Queensland melanoma families. Fam Cancer 2016; 15:651-63. [PMID: 27108303 DOI: 10.1007/s10689-016-9907-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Familial cancer risk has been proposed as a shared feature of many cancers, and overall susceptibility is influenced by combinations of low to moderate risk polymorphisms, rare high penetrance germline mutations, and modulation of risk by environmental and genetic factors. Clustering of melanoma occurs in approximately 10 % of families, and an over-representation of additional cancers has been noticed in some 'melanoma' families. The degree to which other cancers aggregate in families affected by melanoma has not been well defined. Therefore, this study aimed to assess the risk of cancers other than melanoma in a cohort of 178 'intermediate risk' melanoma families, not selected for specific genetic mutations. Families designated as 'intermediate risk' had two first degree relatives (FDRs) affected by melanoma when ascertained between 1982 and 1990, and were followed up over a 33 year period to assess new occurrences of cancer. We included 414 melanoma cases and 529 FDRs, comprising 25,264 person years of observation. Standardised incidence ratios and their 95 % confidence intervals were calculated for all invasive cancers, comparing observed to expected cases of cancer based on age and sex specific incidence rates for the Queensland population. Statistically significant increases were found for bladder cancer in females (observed, 7; expected, 1.99; SIR, 3.52; 95 % CI 1.41-7.25), lymphoid leukaemia in females (observed, 6; expected, 1.75; SIR, 3.43; 95 % CI 1.26-7.46), and myeloma in female melanoma cases (observed, 4; expected, 0.82; SIR, 4.89; 95 % CI 1.33-12.52). Over-representation of bladder cancer, lymphoid leukaemia, and myeloma in females of the cohort may suggest sex-dependent co-modifiers, and it is possible that specific combinations of polymorphisms predispose to certain cancer types.
Collapse
Affiliation(s)
- Jazlyn Read
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia.
- The University of Queensland, Brisbane, QLD, Australia.
| | - Judith Symmons
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Jane M Palmer
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Grant W Montgomery
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Herston, Brisbane, QLD, 4029, Australia
| |
Collapse
|
47
|
Helgadottir H, Höiom V. The genetics of uveal melanoma: current insights. APPLICATION OF CLINICAL GENETICS 2016; 9:147-55. [PMID: 27660484 PMCID: PMC5019476 DOI: 10.2147/tacg.s69210] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uveal melanoma (UM) is the most common malignant eye tumor in adults affecting ~7,000 individuals per year worldwide. UM is a rare subtype of melanoma with distinct clinical and molecular features as compared to other melanoma subtypes. UMs lack the most typical cutaneous melanoma-associated mutations (BRAF, NRAS, and NF1) and are instead characterized by a different set of genes with oncogenic or loss-of-function mutations. By next-generation sequencing efforts on UM tumors, several driver genes have been detected. The most frequent ones are BAP1, EIF1AX, GNA11, GNAQ, and SF3B1. In many cases, mutations in these genes appear in a mutually exclusive manner, have different risk of metastasis, and are consequently of prognostic importance. The majority of UM cases are sporadic but a few percentage of the cases occurs in families with an inherited predisposition for this malignancy. In recent years, germline mutations in the BAP1 gene have been found to segregate in an autosomal dominant pattern with numerous different cancer types including UM in cancer-prone families. This cancer syndrome has been denoted as the tumor predisposition syndrome.
Collapse
Affiliation(s)
- Hildur Helgadottir
- Department of Oncology and Pathology, Karolinska institutet; Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology and Pathology, Karolinska institutet
| |
Collapse
|
48
|
Abstract
Malignant melanoma is a rare, often fatal form of skin cancer with a complex multigenic etiology. The incidence of melanoma is increasing at an alarming rate. A number of heritable factors contribute to a patient's overall melanoma risk, including response to ultraviolet light, nevus number, and pigmentation characteristics, such as eye and hair color. Approximately 5%-10% of melanoma cases are familial, yet the majority of familial cases lack identifiable germ-line mutations in known susceptibility genes. Additionally, most familial melanomas lack germ-line mutations in genes that are commonly mutated in sporadic melanoma. Candidate and systematic genome-wide association studies have led to an improved understanding of the risk factors for melanoma and the identification of susceptibility genes. In this review, we provide an overview of the major risk factors and known genes implicated in familial melanoma susceptibility.
Collapse
Affiliation(s)
- Jason E Hawkes
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Amanda Truong
- Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Laurence J Meyer
- Department of Dermatology, University of Utah, Salt Lake City, UT; Veterans Administration Hospital, Salt Lake City, UT.
| |
Collapse
|
49
|
Nariman-Saleh-Fam Z, Bastami M, Somi MH, Samadi N, Abbaszadegan MR, Behjati F, Ghaedi H, Tavakkoly-Bazzaz J, Masotti A. In silico dissection of miRNA targetome polymorphisms and their role in regulating miRNA-mediated gene expression in esophageal cancer. Cell Biochem Biophys 2016; 74:483-497. [PMID: 27518186 DOI: 10.1007/s12013-016-0754-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/09/2016] [Indexed: 12/14/2022]
Abstract
Esophageal cancer is the eighth most common cancer worldwide. Also middle-aged obese adults with higher body mass index during childhood have a greater risk to develop esophageal cancer. The contribution of microRNAs to esophageal cancer has been extensively studied and it became clear that these noncoding RNAs may play crucial roles in pathogenesis, diagnosis and prognosis of the disease. Increasing evidences have suggested that polymorphisms perturbing microRNA targetome (i.e., the compendium of all microRNA target sites) are associated with cancers including esophageal cancer. However, the extent to which such variants contribute to esophageal cancer is still unclear. In this study, we applied an in silico approach to systematically identify polymorphisms perturbing microRNA targetome in esophageal cancer and performed various analyses to predict the functional consequences of the occurrence of these variants. The computational results were integrated to provide a prioritized list of the most potentially disrupting esophageal cancer-implicated microRNA targetome polymorphisms along with the in silico insight into the mechanisms with which such variations may modulate microRNA-mediated regulation. The results of this study will be valuable for future functional experiments aimed at dissecting the roles of microRNA targetome polymorphisms in the onset and progression of esophageal cancer.
Collapse
Affiliation(s)
- Ziba Nariman-Saleh-Fam
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- Faculty of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Abbaszadegan
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Medical Genetics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Gene Expression - Microarrays Laboratory, Viale di San Paolo 15, Rome, 00146, Italy.
| |
Collapse
|
50
|
Abstract
Lung cancer in multiple first degree relatives had previously been attributed to smoking and to inherited enzymes associated with increased activation of carcinogens in smoke. There was not clear agreement on the significance of the testing methods for lung cancer susceptibility. More recent studies have identified germline mutations associated with lung cancer even in the absence of smoking and other mutations with plausible explanations for their association with lung cancer caused by smoking. At this time, the clinical significance of the various germline mutations for screening and the implications for therapy are not certain. This review summarizes the currently identified germline mutations associated with lung cancer, but this growing area of research will very likely identify further significant mutations as well.
Collapse
|