1
|
Xue Q, Wu Z, Zhao Y, Wei X, Hu M. Progress in the pathogenic mechanism, histological characteristics of hereditary dentine disorders and clinical management strategies. Front Cell Dev Biol 2024; 12:1474966. [PMID: 39717845 PMCID: PMC11663852 DOI: 10.3389/fcell.2024.1474966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Hereditary dentine disorders are autosomal dominant diseases that affect the development and structure of dentine, leading to various dental abnormalities and influencing the individual's oral health. It is generally classified as dentinogenesis imperfecta (DGI) and dentine dysplasia (DD). Specifically, DGI is characterized by the abnormal formation of dentine, resulting in teeth that are discolored, translucent, and prone to fracture or wear down easily. DD is characterized by abnormal dentine development, manifested as teeth with short roots and abnormal pulp chambers, leading to frequent tooth loss. Up to now, the pathogenesis of hereditary dentine disorders has been poorly clarified and the clinical intervention is limited. Treatment for hereditary dentine disorders focuses on managing the symptoms and preventing further dental problems. Genetic counseling and testing may also be recommended as these conditions can be passed on to future generations. In this review, we summarize the clinical features, pathogenic genes, histomorphological characteristics and therapy of hereditary dentine disorders. Due to the limited understanding of the disease at present, we hope this review could improve the recognition of the disease by clinicians, stimulate more scholars to further study the deeply detailed mechanisms of the disease and explore potential therapeutic strategies, thus achieving effective, systematic management of the disease and improving the life quality of patients.
Collapse
Affiliation(s)
| | | | | | - Xiaoxi Wei
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Min Hu
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang H, Ma J, Gao X. Identifying molecular subgroups of patients with preeclampsia through bioinformatics. Front Cardiovasc Med 2024; 11:1367578. [PMID: 38887449 PMCID: PMC11180819 DOI: 10.3389/fcvm.2024.1367578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Preeclampsia (PE) is a pregnancy-related disorder associated with serious complications. Its molecular mechanisms remain undefined; hence, we aimed to identify molecular subgroups of patients with PE using bioinformatics to aid treatment strategies. R software was used to analyze gene expression data of 130 patients with PE and 138 healthy individuals from the Gene Expression Omnibus database. Patients with PE were divided into two molecular subgroups using the unsupervised clustering learning method. Clinical feature analysis of subgroups using weighted gene co-expression network analysis showed that the patients in subgroup I were primarily characterized by early onset of PE, severe symptoms at disease onset, and induced labor as the main delivery method. Patients in subgroup II primarily exhibited late PE onset, relatively mild symptoms, and natural delivery as the main delivery method. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the significant enrichment of calcium ion channels in subgroup II indicated the potential efficacy of calcium antagonists and magnesium sulfate therapy. In conclusion, the establishment of PE molecular subgroups can aid in diagnosing and treating PE.
Collapse
Affiliation(s)
- Huijie Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianglei Ma
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Xueli Gao
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
3
|
Adding Some "Splice" to Stress Eating: Autophagy, ESCRT and Alternative Splicing Orchestrate the Cellular Stress Response. Genes (Basel) 2021; 12:genes12081196. [PMID: 34440370 PMCID: PMC8393842 DOI: 10.3390/genes12081196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a widely studied self-renewal pathway that is essential for degrading damaged cellular organelles or recycling biomolecules to maintain cellular homeostasis, particularly under cellular stress. This pathway initiates with formation of an autophagosome, which is a double-membrane structure that envelopes cytosolic components and fuses with a lysosome to facilitate degradation of the contents. The endosomal sorting complexes required for transport (ESCRT) proteins play an integral role in controlling autophagosome fusion events and disruption to this machinery leads to autophagosome accumulation. Given the central role of autophagy in maintaining cellular health, it is unsurprising that dysfunction of this process is associated with many human maladies including cancer and neurodegenerative diseases. The cell can also rapidly respond to cellular stress through alternative pre-mRNA splicing that enables adaptive changes to the cell's proteome in response to stress. Thus, alternative pre-mRNA splicing of genes that are involved in autophagy adds another layer of complexity to the cell's stress response. Consequently, the dysregulation of alternative splicing of genes associated with autophagy and ESCRT may also precipitate disease states by either reducing the ability of the cell to respond to stress or triggering a maladaptive response that is pathogenic. In this review, we summarize the diverse roles of the ESCRT machinery and alternative splicing in regulating autophagy and how their dysfunction can have implications for human disease.
Collapse
|
4
|
Orthodontic Treatment of a Patient with Dentin Dysplasia Type I and Bilateral Maxillary Canine Impaction: Case Presentation and a Family-Based Genetic Analysis. CHILDREN-BASEL 2021; 8:children8060519. [PMID: 34207061 PMCID: PMC8234607 DOI: 10.3390/children8060519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Dentin dysplasia is a rare hereditary disorder, transmitted by autosomal dominant mode, affecting both dentin and pulp. In Type I crown morphology is normal, but root dentin organization loss leads to shorter roots. Mutations in the SSUH2, VPS4B and SMOC2 genes have been reported as responsible for this condition. Orthodontic treatment was conducted on an 11-year-old female patient presenting the disorder along with bilaterally impacted permanent maxillary canines, in close proximity to the roots of the lateral and central incisors. Treatment plan included lateral incisors extraction, surgical exposure and traction of the impacted canines. Light forces were applied from a custom-made trans-palatal arch. Comprehensive orthodontic treatment was performed using edgewise appliances. After 3 years and 2 months, group function occlusion was achieved. The canines underwent composite resin restorations. At one year post-retention, the dentition remained stable. Family-based genetic analysis did not reveal any mutations in the aforementioned genes pointing to further genetic heterogeneity of this disorder. As dental medicine becomes more sophisticated and personalized, the association between mutation type/function and orthodontic treatment response may provide useful therapeutic insights. The positive treatment response of the presented case could be attributed to a more “benign” mutation awaiting to be identified.
Collapse
|
5
|
Tian Q, Wang YY, Li Q, Chen D. Expressions of cytokeratin 14 and proliferating cell nuclear antigen in the Hertwig's epithelial root sheath of a Vps4b knockout mouse. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:274-278. [PMID: 34041875 DOI: 10.7518/hxkq.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The effect of Vps4b gene mutation on the expressions of cytokeratin 14 (CK14) and proliferating cell nuclear antigen (PCNA) in the Hertwig's epithelial root sheath (HERS) is investigated. METHODS The bilateral mandibular tissues of mouse on postnatal days 5, 9, 11, 15, and 19 were removed. The mandibular first molar tissue sections were obtained after paraffin embedding. The CK14 and PCNA expressions in the epithelial root sheath of the normal mouse and Vps4b knockout mouse were compared through immunohistochemistry. RESULTS On postnatal day 5, the normal mouse began to form HERS and had a strong positive PCNA expression in the HERS cells; on postnatal day 9, the HERS structure was continuous, and PCNA was positive in the HERS cells; on postnatal day 11, a small portion of HERS began to break, and PCNA was weakly positive in the HERS cells; on postnatal day 15, HERS continued to fracture; PCNA was weakly and positively expressed in the HERS cells on the root surface; on postnatal day 19, the tooth root reached normal physiological length, and PCNA was positively expressed in the HERS cells of the terminal part. Similar to the normal mouse, the gene knockout mouse also formed a HERS structure on postnatal day 5. However, HERS began to break on postnatal day 9. On postnatal day 19, only a few fragments of HERS were found on the root surface, and the root development was immature. Moreover, the expression intensity of PCNA in the gene knockout mouse was decreased. CONCLUSIONS The Vps4b gene mutation may change the CK14 and PCNA expressions, leading to abnormal root development.
Collapse
Affiliation(s)
- Qing Tian
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Stomatological Hospital, Zhengzhou 450052, China
| | - Ying-Ying Wang
- Dept. of Stomatology, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Qiang Li
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Stomatological Hospital, Zhengzhou 450052, China
| | - Dong Chen
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Stomatological Hospital, Zhengzhou 450052, China
| |
Collapse
|
6
|
Chen D, He F, Lu T, Huang J, Li M, Cai D, Huang C, Chen D, Xiong F. VPS4B deficiency causes early embryonic lethality and induces signal transduction disorders of cell endocytosis. Genesis 2021; 59:e23415. [PMID: 33682352 DOI: 10.1002/dvg.23415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/08/2022]
Abstract
VPS4B (vacuolar protein sorting 4B), a member of the ATPase associated with diverse cellular activities (AAA) protein family, is a component of the endosomal sorting complexes required for transport machinery which regulates the internalization and lysosomal degradation of membrane proteins. We previously reported that VPS4B is one of the pathogenic genes related to dentin dysplasia type I, although its function was largely unknown. To investigate the role of VPS4B in tooth development, we deleted the Vps4b gene in mice. We found that heterozygous knockout mice (Vps4b+/- ) developed normally and were fertile. However, homozygous deletion of the Vps4b gene resulted in early embryonic lethality of Vps4b-/- mice at approximately embryonic day 9.5 (E9.5). To investigate the underlying molecular mechanisms, we examined the molecular functions of VPS4B in vivo and in vitro. Cell experiments showed that VPS4B influenced the proliferation, apoptosis, and cell cycle of transfected human neuroblastoma cells (IMR-32 cells) with over-expression or knockdown of VPS4B. Moreover, qRT-PCR detection showed that the mRNA expression levels of apoptosis-, cell cycle-, and endocytosis-related genes was significantly down or up-regulated in RNA interference-mediated knockdown of VPS4B in IMR-32 cells and Vps4b+/- E12.5 embryos. We accordingly speculated that signal transduction disorders of cell endocytosis are a contributing factor to the prenatal lethality of Vps4b-/- mice.
Collapse
Affiliation(s)
- Danna Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dong Chen
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Single Cell Technology and Application in Guangdong, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
7
|
Alvarez MEV, Chivers M, Borovska I, Monger S, Giannoulatou E, Kralovicova J, Vorechovsky I. Transposon clusters as substrates for aberrant splice-site activation. RNA Biol 2020; 18:354-367. [PMID: 32965162 PMCID: PMC7951965 DOI: 10.1080/15476286.2020.1805909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transposed elements (TEs) have dramatically shaped evolution of the exon-intron structure and significantly contributed to morbidity, but how recent TE invasions into older TEs cooperate in generating new coding sequences is poorly understood. Employing an updated repository of new exon-intron boundaries induced by pathogenic mutations, termed DBASS, here we identify novel TE clusters that facilitated exon selection. To explore the extent to which such TE exons maintain RNA secondary structure of their progenitors, we carried out structural studies with a composite exon that was derived from a long terminal repeat (LTR78) and AluJ and was activated by a C > T mutation optimizing the 5ʹ splice site. Using a combination of SHAPE, DMS and enzymatic probing, we show that the disease-causing mutation disrupted a conserved AluJ stem that evolved from helix 3.3 (or 5b) of 7SL RNA, liberating a primordial GC 5ʹ splice site from the paired conformation for interactions with the spliceosome. The mutation also reduced flexibility of conserved residues in adjacent exon-derived loops of the central Alu hairpin, revealing a cross-talk between traditional and auxilliary splicing motifs that evolved from opposite termini of 7SL RNA and were approximated by Watson-Crick base-pairing already in organisms without spliceosomal introns. We also identify existing Alu exons activated by the same RNA rearrangement. Collectively, these results provide valuable TE exon models for studying formation and kinetics of pre-mRNA building blocks required for splice-site selection and will be useful for fine-tuning auxilliary splicing motifs and exon and intron size constraints that govern aberrant splice-site activation.
Collapse
Affiliation(s)
| | - Martin Chivers
- School of Medicine, University of Southampton, Southampton, UK
| | - Ivana Borovska
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | - Steven Monger
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Jana Kralovicova
- School of Medicine, University of Southampton, Southampton, UK.,Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | | |
Collapse
|
8
|
Buchanan GD, Tredoux S, Nel C, Gamieldien MY. Endodontic treatment of dentin dysplasia type I D. AUST ENDOD J 2020; 47:343-349. [PMID: 32964546 DOI: 10.1111/aej.12444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 11/26/2022]
Abstract
Dentin dysplasia (DD) Type I is a developmental condition affecting dentin, inherited in an autosomal-dominant pattern or occurring due to a new mutation. Whilst the crowns of DD Type I affected teeth appear clinically normal, the roots are blunt and shortened. Pulp necrosis and periapical pathoses may be seen in the absence of obvious causes. Pulp stones and calcifications are frequently encountered. Endodontic management of DD may be challenging. A case of DD Type I, sub-classification d, in which spontaneous irreversible pulpitis developed on three mandibular incisors is documented. The case was managed by conventional endodontic treatment. Knowledge of this uncommon dental condition may assist dentists to adequately diagnose and manage these cases. Extraction should not be considered the first-line treatment option when sufficient root length is available to attempt endodontic treatment. Referral for medical evaluation is recommended to rule out systemic diseases which may mimic this condition.
Collapse
Affiliation(s)
- Glynn Dale Buchanan
- Department of Odontology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sheree Tredoux
- Department of Odontology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chane Nel
- Department of Oral Biology and Oral Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mohamed Yasin Gamieldien
- Department of Maxillofacial and Oral Surgery, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
9
|
VPS4B mutation impairs the osteogenic differentiation of dental follicle cells derived from a patient with dentin dysplasia type I. Int J Oral Sci 2020; 12:22. [PMID: 32737282 PMCID: PMC7395790 DOI: 10.1038/s41368-020-00088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/05/2023] Open
Abstract
A splicing mutation in VPS4B can cause dentin dysplasia type I (DD-I), a hereditary autosomal-dominant disorder characterized by rootless teeth, the etiology of which is genetically heterogeneous. In our study, dental follicle cells (DFCs) were isolated and cultured from a patient with DD-I and compared with those from an age-matched, healthy control. In a previous study, this DD-I patient was confirmed to have a loss-of-function splicing mutation in VPS4B (IVS7 + 46C > G). The results from this study showed that the isolated DFCs were vimentin-positive and CK14-negative, indicating that the isolated cells were derived from the mesenchyme. DFCs harboring the VPS4B mutation had a significantly higher proliferation rate from day 3 to day 8 than control DFCs, indicating that VPS4B is involved in cell proliferation. The cells were then replenished with osteogenic medium to investigate how the VPS4B mutation affected osteogenic differentiation. Induction of osteogenesis, detected by alizarin red and alkaline phosphatase staining in vitro, was decreased in the DFCs from the DD-I patient compared to the control DFCs. Furthermore, we also found that the VPS4B mutation in the DD-I patient downregulated the expression of osteoblast-related genes, such as ALP, BSP, OCN, RUNX2, and their encoded proteins. These outcomes confirmed that the DD-I-associated VPS4B mutation could decrease the capacity of DFCs to differentiate during the mineralization process and may also impair physiological root formation and bone remodeling. This might provide valuable insights and implications for exploring the pathological mechanisms underlying DD-I root development.
Collapse
|
10
|
Sun SC, Ma D, Li MY, Zhang RX, Huang C, Huang HJ, Xie YZ, Wang ZJ, Liu J, Cai DC, Liu CX, Yang Q, Bao FX, Gong XL, Li JR, Hui Z, Wei XF, Zhong JM, Zhou WJ, Shang X, Zhang C, Liu XG, Tang BS, Xiong F, Xu XM. Mutations in C1orf194, encoding a calcium regulator, cause dominant Charcot-Marie-Tooth disease. Brain 2020; 142:2215-2229. [PMID: 31199454 DOI: 10.1093/brain/awz151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Charcot-Marie-Tooth disease is a hereditary motor and sensory neuropathy exhibiting great clinical and genetic heterogeneity. Here, the identification of two heterozygous missense mutations in the C1orf194 gene at 1p21.2-p13.2 with Charcot-Marie-Tooth disease are reported. Specifically, the p.I122N mutation was the cause of an intermediate form of Charcot-Marie-Tooth disease, and the p.K28I missense mutation predominately led to the demyelinating form. Functional studies demonstrated that the p.K28I variant significantly reduced expression of the protein, but the p.I122N variant increased. In addition, the p.I122N mutant protein exhibited the aggregation in neuroblastoma cell lines and the patient's peroneal nerve. Either gain-of-function or partial loss-of-function mutations to C1ORF194 can specify different causal mechanisms responsible for Charcot-Marie-Tooth disease with a wide range of clinical severity. Moreover, a knock-in mouse model confirmed that the C1orf194 missense mutation p.I121N led to impairments in motor and neuromuscular functions, and aberrant myelination and axonal phenotypes. The loss of normal C1ORF194 protein altered intracellular Ca2+ homeostasis and upregulated Ca2+ handling regulatory proteins. These findings describe a novel protein with vital functions in peripheral nervous systems and broaden the causes of Charcot-Marie-Tooth disease, which open new avenues for the diagnosis and treatment of related neuropathies.
Collapse
Affiliation(s)
- Shun-Chang Sun
- Department of Clinical Laboratory, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Di Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Mei-Yi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Ru-Xu Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Hua-Jie Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yong-Zhi Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhong-Ju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - De-Cheng Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cui-Xian Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Qi Yang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Fei-Xiang Bao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Xiao-Li Gong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jie-Ru Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zheng Hui
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiao-Feng Wei
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jian-Mei Zhong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wan-Jun Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Cheng Zhang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xing-Guo Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, P.R. China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, P.R. China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R.China
| | - Xiang-Min Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, P.R. China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R.China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brian Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
11
|
Pan Y, Lu T, Peng L, Chen Z, Li M, Zhang K, Xiong F, Wu B. Vacuolar protein sorting 4B regulates the proliferation and odontoblastic differentiation of human dental pulp stem cells through the Wnt-β-catenin signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2575-2584. [PMID: 31218890 DOI: 10.1080/21691401.2019.1629950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our previous studies have revealed that a dominant mutation in vacuolar protein sorting 4B (VPS4B), a member of the AAA ATPase family, causes dentin dysplasia type I. The purpose of the present study was to investigate the roles of VPS4B in human dental pulp stem cells (hDPSCs) and to elucidate the underlying molecular mechanisms. In this study, we found that VPS4B was highly expressed in the dental pulp cells of the mouse molar tooth germ, and the expression of VPS4B increased significantly during the odontoblastic differentiation of hDPSCs. VPS4B downregulation inhibited the proliferation, migration, and odontoblastic differentiation of hDPSCs. Moreover, treatment with lithium chloride, an agonist of the Wnt-β-catenin signalling pathway, partially reversed the VPS4B knockdown-driven suppression of proliferation and of odontoblastic differentiation of hDPSCs. Collectively, our findings indicate that VPS4B, via Wnt-β-catenin signalling, acts as a regulator of the proliferation and differentiation of hDPSCs. Our results suggest potential therapeutic avenues for dentin formation and regenerative endodontics in patients with dentin dysplasia type I.
Collapse
Affiliation(s)
- Yuhua Pan
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Ting Lu
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Ling Peng
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Zhao Chen
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Meiyi Li
- b Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Single-Cell Technology and Application , Guangzhou , China
| | - Kaiying Zhang
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Fu Xiong
- b Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Single-Cell Technology and Application , Guangzhou , China
| | - Buling Wu
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
12
|
Chen D, Wang YY, Li XC, Lu FL, Li Q. [Spatio-temporal expression of dentin sialophosphoprotein and collagen Ⅰ during molar tooth germ development in vps4b knockout mouse]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:248-252. [PMID: 31218856 DOI: 10.7518/hxkq.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To verify the effect of the mutant gene vps4b on the expression of tooth development-related proteins, dentin sialophosphoprotein (DSPP) and collagenⅠ (COL-Ⅰ). METHODS Paraffin tissue sections of the first molar tooth germ were obtained from the heads of fetal mice at the embryonic stages of 13.5, 14.5, and 16.5 days and from the mandibles of larvae aged 2.5 and 7 days after birth. The immunohistochemical method was used to detect the expression and location of DSPP and COL-Ⅰ in wild-type mouse and vps4b knockout mouse. RESULTS DSPP and COL-Ⅰ were not found in the bud and cap stages of wild-type mouse molar germ. In the bell stage, DSPP was positively expressed in the inner enamel epithelium and dental papilla, whereas COL-Ⅰ was strongly expressed in the dental papilla and dental follicle. During the secretory and mineralized periods, DSPP and COL-Ⅰ were intensely observed in ameloblasts, odontoblasts, and dental follicles, but COL-Ⅰ was also expressed in the dental papilla. After vps4b gene knockout, DSPP was not expressed in the dental papilla of the bell stage and in the dental papilla and dental follicle of the secretory phase. The expression position of COL-Ⅰ in the bell and mineralization phase was consistent with that in the wild-type mice. Moreover, the expression of COL-Ⅰ in the dental papilla changed in the secretory stage. CONCLUSIONS Gene vps4b plays a significant role in the development of tooth germ. The expression of DSPP and COL-Ⅰ may be controlled by gene vps4b and regulates the development of tooth dentin and cementum together with vps4b.
Collapse
Affiliation(s)
- Dong Chen
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ying-Ying Wang
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiao-Cong Li
- Dept. of Stomatology, Puyang People's Hospital, Puyang 457099, China
| | - Fang-Li Lu
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qiang Li
- Dept. of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
13
|
de La Dure-Molla M, Fournier BP, Manzanares MC, Acevedo AC, Hennekam RC, Friedlander L, Boy-Lefèvre ML, Kerner S, Toupenay S, Garrec P, Vi-Fane B, Felizardo R, Berteretche MV, Jordan L, Ferré F, Clauss F, Jung S, de Chalendar M, Troester S, Kawczynski M, Chaloyard J, Manière MC, Berdal A, Bloch-Zupan A. Elements of morphology: Standard terminology for the teeth and classifying genetic dental disorders. Am J Med Genet A 2019; 179:1913-1981. [PMID: 31468724 DOI: 10.1002/ajmg.a.61316] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Dental anomalies occur frequently in a number of genetic disorders and act as major signs in diagnosing these disorders. We present definitions of the most common dental signs and propose a classification usable as a diagnostic tool by dentists, clinical geneticists, and other health care providers. The definitions are part of the series Elements of Morphology and have been established after careful discussions within an international group of experienced dentists and geneticists. The classification system was elaborated in the French collaborative network "TÊTECOU" and the affiliated O-Rares reference/competence centers. The classification includes isolated and syndromic disorders with oral and dental anomalies, to which causative genes and main extraoral signs and symptoms are added. A systematic literature analysis yielded 408 entities of which a causal gene has been identified in 79%. We classified dental disorders in eight groups: dental agenesis, supernumerary teeth, dental size and/or shape, enamel, dentin, dental eruption, periodontal and gingival, and tumor-like anomalies. We aim the classification to act as a shared reference for clinical and epidemiological studies. We welcome critical evaluations of the definitions and classification and will regularly update the classification for newly recognized conditions.
Collapse
Affiliation(s)
- Muriel de La Dure-Molla
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,INSERM UMR_S1163 Bases moléculaires et physiopathologiques des ostéochondrodysplasies, Institut Imagine, Necker, Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Benjamin Philippe Fournier
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
| | - Maria Cristina Manzanares
- Unitat d'Anatomia i Embriologia Humana, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Ana Carolina Acevedo
- ral Care Center for Inherited Diseases, University Hospital of Brasilia, University of Brasilia, Brasilia, Brazil.,Department of Dentistry, Health Sciences School, University of Brasilia, Brasilia, Brazil
| | - Raoul C Hennekam
- Department of Pediatrics, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Friedlander
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,INSERM UMR_S1123, ECEVE, Epidémiologie clinique, évaluation économique des populations vulnérables, Paris, France
| | - Marie-Laure Boy-Lefèvre
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Stephane Kerner
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Steve Toupenay
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Pascal Garrec
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Brigite Vi-Fane
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Rufino Felizardo
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Marie-Violaine Berteretche
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Laurence Jordan
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - François Ferré
- Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
| | - François Clauss
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Jung
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Myriam de Chalendar
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | - Sebastien Troester
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Marzena Kawczynski
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jessica Chaloyard
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Marie Cécile Manière
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ariane Berdal
- Centre de Référence des Maladies rares Orales et Dentaires, Hôpital Rothschild, AP-HP, Faculté Odontologie Garancière, Université de Paris, France.,Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Laboratoire de Physiopathologie Orale Moléculaire INSERM UMR S1138, Centre de Recherche des Cordeliers, Universités Paris-Diderot et Paris-Descartes, Paris, France
| | - Agnès Bloch-Zupan
- Filière de santé Maladies Rares TETECOU: Malformations rares de la tête, du cou et des dents, Hôpital Necker-Enfants Malades, Paris, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.,Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Maladies Rares Orales et Dentaires, CRMR O-Rares, ERN CRANIO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire and Cellulaire, Centre Européen de Recherche en Biologie et en Médecine, Université de Strasbourg, CNRS UMR7104, INSERM U1258, Illkirch, France.,Institut d'Etudes Avancées, Université de Strasbourg, USIAS, Strasbourg, France
| |
Collapse
|
14
|
Ranjitkar S, Yong R, Wu IC, Gully G, Farmer D, Watson I, Heithersay G. Dentinal dysplasia type 1: A 3D micro-computed tomographic study of enamel, dentine and root canal morphology. AUST ENDOD J 2019; 45:298-304. [PMID: 31310441 DOI: 10.1111/aej.12359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022]
Abstract
Dentine dysplasia type 1 is a rare and complex dental anomaly. Our aim was to conduct a morphometric assessment of a dentinal dysplasia type 1c (DD1c) caries-free mandibular second molar, extracted due to symptomatic apical periodontitis. Controls consisted of five intact mandibular second molars. Micro-computed tomography analysis showed that the DD1c volume % for enamel, dentine/cementum and pulp chamber fell in the 0.36th, 99.97th and 0.09th percentiles of the control teeth (P < 0.01). It also revealed an extremely complicated root canal system in the DD1c tooth with a varying degree of dentine mineralisation and aberrant dentine deposition in the pulp chamber. A crack extending from the external tooth surface to the pulp chamber was identified as a potential site for microbial invasion. Clinical implications include preventive measures and early intervention in reversible pulpitis. Conclusion: Micro-CT imaging can be useful in establishing post-extraction diagnosis of cracks and phenomic characterisation of tooth anomalies.
Collapse
Affiliation(s)
- Sarbin Ranjitkar
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robin Yong
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - I-Cheng Wu
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Grant Gully
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Daniel Farmer
- Adelaide Endodontic Specialists, Adelaide, South Australia, Australia
| | - Ian Watson
- 7 Bartley Ave, Netherby, South Australia, Australia
| | - Geoffrey Heithersay
- Adelaide Dental School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Abstract
This chapter describes methods related to the diagnosis of genetic dental diseases. Based on the present knowledge, clinical phenotyping and next-generation sequencing techniques are discussed. Methods necessary for Sanger sequencing, multiplex ligation-dependent probe amplification, and epigenetic modification methods are detailed. In addition, protocols for cell culture establishment and characterization from patients with inherited dental anomalies are described.
Collapse
|
16
|
Vps4b heterozygous mice do not develop tooth defects that replicate human dentin dysplasia I. BMC Genet 2019; 20:7. [PMID: 30634912 PMCID: PMC6330468 DOI: 10.1186/s12863-018-0699-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vacuolar protein sorting-associated protein 4B (VPS4B) is a member of the ATP enzyme AAA protein family, and is mainly involved in protein degradation and cell membrane fusion. Recently, a dominant mutation in this gene was identified in human dentin dysplasia type I (DD-I). Herein, we report the generation of Vps4b knockout (Vps4b KO) mice; however, the homozygous Vps4b KO mutation was embryonic lethal at the early stages of embryo development, and we therefore report the results of heterozygous mutant mice. RESULTS Mice heterozygous for Vps4b did not develop tooth defects replicating human DD-I. Immunohistochemistry showed that gene KO was successful, as there was decreased expression of Vps4b in heterozygous mice; hematoxylin and eosin (H&E) staining also showed that the width of the pre-dentin zone was increased in heterozygous mice, although the arrangement of the odontoblasts was not significantly different from wild-type (WT) mice. However, H&E staining showed no obvious abnormalities in the bones of heterozygous mice. Moreover, stereomicroscopic and X-ray radiography results indicated no abnormal manifestations in teeth or bones. Furthermore, statistical analysis of the volume and density of dentin and enamel, as well as skeletal analysis, including the volume and separation of trabecular bone analyzed by micro-CT, all showed no differences between Vps4b heterozygotes and WT mice. In addition, there also were no significant differences in bone or cartilage mineralization as evaluated by Alcian blue-Alizarin red staining. CONCLUSIONS The heterozygous Vps4b KO mice do not develop tooth defects that replicate human DD-I and this is likely to be due to differences in tooth development between the two species. Consequently, further studies are needed to determine whether mice are an appropriate animal model for human tooth diseases.
Collapse
|
17
|
Lu T, Li M, Xu X, Xiong J, Huang C, Zhang X, Hu A, Peng L, Cai D, Zhang L, Wu B, Xiong F. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int J Oral Sci 2018; 10:26. [PMID: 30174330 PMCID: PMC6119682 DOI: 10.1038/s41368-018-0027-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Tooth development is a complex process that involves precise and time-dependent orchestration of multiple genetic, molecular, and cellular interactions. Ameloblastin (AMBN, also named “amelin” or “sheathlin”) is the second most abundant enamel matrix protein known to have a key role in amelogenesis. Amelogenesis imperfecta (AI [MIM: 104500]) refers to a genetically and phenotypically heterogeneous group of conditions characterized by inherited developmental enamel defects. The hereditary dentin disorders comprise a variety of autosomal-dominant genetic symptoms characterized by abnormal dentin structure affecting either the primary or both the primary and secondary teeth. The vital role of Ambn in amelogenesis has been confirmed experimentally using mouse models. Only two cases have been reported of mutations of AMBN associated with non-syndromic human AI. However, no AMBN missense mutations have been reported to be associated with both human AI and dentin disorders. We recruited one kindred with autosomal-dominant amelogenesis imperfecta (ADAI) and dentinogenesis imperfecta/dysplasia characterized by generalized severe enamel and dentin defects. Whole exome sequencing of the proband identified a novel heterozygous C-T point mutation at nucleotide position 1069 of the AMBN gene, causing a Pro to Ser mutation at the conserved amino acid position 357 of the protein. Exfoliated third molar teeth from the affected family members were found to have enamel and dentin of lower mineral density than control teeth, with thinner and easily fractured enamel, short and thick roots, and pulp obliteration. This study demonstrates, for the first time, that an AMBN missense mutation causes non-syndromic human AI and dentin disorders. A mutation on a gene involved in healthy tooth development may cause both enamel and dentin disorders. The ameloblastin enamel protein, and its associated gene, AMBN, play vital roles in enamel formation and tooth remodelling. Mutations on AMBN can cause amelogenesis imperfecta (AI), a genetic and hereditory condition resulting in enamel defects and severe tooth decay. Now, Fu Xiong and Bu-Ling Wu at Southern Medical University in Guangzhou, China, and co-workers have identified an AMBN mutation found in both enamel and dentin defect disorders. The researchers analyzed extracted teeth from a Chinese patient with both AI and a severe dentin disorder, along with teeth from affected and non-affected members of the same family, and compared the results with a control group. They identified a rare mutation on AMBN common to all affected individuals.
Collapse
Affiliation(s)
- Ting Lu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China
| | - Jun Xiong
- Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuelian Zhang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Aiqin Hu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Alhilou A, Beddis HP, Mighell AJ, Durey K. Dentin dysplasia: diagnostic challenges. BMJ Case Rep 2018; 2018:bcr-2017-223942. [PMID: 29895546 DOI: 10.1136/bcr-2017-223942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dentin dysplasia(DD) is a rare autosomal dominant disorder associated with disturbance of the dentin. While the crowns appear clinically normal, on radiography, the pulp spaces appear partially or completely obliterated, with short blunted roots, and multiple periapical radiolucencies affecting the apparently sound teeth. Clinical signs include spontaneous abscess formation or increased tooth mobility which can lead to exfoliation. DD can therefore have a significant impact on the patient's dentition, and treatment is often challenging. Shields' classification of dentin disorders has been recently criticised for failing to consider differential variations and expressions of these disorders. This paper describes a case of a 23-year-old woman with previously undiagnosed DD, who presented with clinical and histological features belonging to several of these diseases, thus highlighting the potential diagnostic challenges faced with Shields' classification.
Collapse
Affiliation(s)
- Ahmed Alhilou
- Restorative Dentistry, Leeds Dental Institute, Leeds, West Yorkshire, UK
| | - Hannah P Beddis
- Restorative Dentistry, Leeds Dental Institute, Leeds, West Yorkshire, UK
| | | | - Kathryn Durey
- Restorative Dentistry, Leeds Dental Institute, Leeds, West Yorkshire, UK
| |
Collapse
|
19
|
Chen D, Li X, Lu F, Wang Y, Xiong F, Li Q. Dentin dysplasia type I-A dental disease with genetic heterogeneity. Oral Dis 2018; 25:439-446. [PMID: 29575674 PMCID: PMC7818184 DOI: 10.1111/odi.12861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
Hereditary dentin disorders include dentinogenesis imperfecta (DGI) and dentin dysplasia (DD), which are autosomal dominant diseases characterized by altered dentin structure such as abnormality in dentin mineralization and the absence of root dentin. Shields classified DGI into three subgroups and DD into two subtypes. Although they are all hereditary dentin diseases, they do not share the same causative genes. To date, the pathogenic genes of DGI type I, which is considered a clinical manifestation of syndrome osteogenesis imperfecta, include COL1A1 and COL1A2. Mutations of the DSPP gene, which encodes the dentin sialophosphoprotein, a major non-collagenous protein, are responsible for three isolated dentinal diseases: DGI-II, DGI-III, and DD-II. However, DD-I appears to be special in that researchers have found three pathogenicity genes-VPS4B, SSUH2, and SMOC2-in three affected families from different countries. It is believed that DD-I is a genetically heterogeneous disease and is distinguished from other types of dentin disorders. This review summarizes the DD-I literature in the context of clinical appearances, radiographic characteristics, and functions of its pathogenic genes and aims to serve clinicians in further understanding and diagnosing this disease.
Collapse
Affiliation(s)
- D Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F Lu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Q Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|